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and, by Theorem 3, we have v, < 49.75 (3 = 0.03), v, < 52.41 (8 = 0.925)
and. v, < 55.08 (5 = 0.92). Using these resnliy Wé easily check that any
natural nmmber & with (hy) satisfies (h,), if g < 19. (Note that »‘;L log (£ anﬂ)

. ke ¢
is, for fized g, a decreasing funection of %.)

When g = 20,
g(log(2g) +7) = (¢ +1)10g (2.63¢ --5.15)
holds, which, in virtue of (3.17} and
51
3 = logg +v,

. Fe=l

completes the proof of Theorem 2.

Remark. If we make use of the corollary and subsﬁituté (8.17) in
(h;), we get the following lower bound for %, which is simpler than (h,)

. o B
(4.4) k> k-1 (g+ 1) log (2.637c 1515 f_) _y__tzg .

k g ke 2.6354b.1b
If g > 17, (4.4) represents the best known approximation to H. For small
g Halberstam and Richert, using Porter's tables on ¥y, carvied out some
computations (see [3] and [4]) that lead to better results.
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Kaplansky’s radical and quadratic forms
over non-real fields

by
Crare M. Corpug (Baton Rouge, La.)

In [4], Kaplansky infrodueed the concept of & radical for_ a field
¥ as the set B of all ae ¥ satisfying [a,d] = 1 for all be ¥ where
[a, b] is the Hilbert symbol for a, b. That is, [a,b] =1 if there
are @,ye¢k such that azf+by? =1, and [a,b] = —L otherwise. It
is eagy to see that two other descriptions of B are 1) ac R if and only
if the quadratic form ®?—ay? is universal ¢ver F and 2) B = QG(l, a)

aek

- where (1, a) is the quadratic form #*-ay? and G(1,e) is the non-zero

clements of I represented by (1, a). Thus R is a subgroup of F' containing
P Kaplansky showed that a field whose radieal had index 2 on F was
an. ordered field in which every positive element was the som of two squares
and B eoincided with the positive elements. He then found the relationship.
between the radical and the guadratic form structure over generalized
Hilberti fields (see [4]). _ '

In this paper the radical for non-real fields (characteristic not 2 is

" always agsumed) is investigated. It turns out that in many cases, results

which held in terms of F* can be strengthened by replacing F? with E.
Tor example, Kneser’s lemma states that if ¢ @(a) is anisotropic, then
Glp) & Gp@(a)]. It is immediate from this that if ¢ is an anigsotropic
n-ary quadratic form, fhen ¢ represents at least # square clagses., We
will show ¢ represents at least n cosets of E. We also look at when the
radical’s index is 4 and what happens to B under quadratic extensions.
Finally, an oxample iy given illustrating a-field with a radical which is
neither I or F*. -

In the remainder of the paper I is always a hon-real field of ehara_,cteris-
tic not 2. Any quadratic form over F represents whole cosets of 72 The
following proposition shows any ¢ with dimg > 1 represents cosets of K.

 Provosrrion 1. Let ¢ be o gquadratic form with = diagonalization
(Gyy orey ), 0322 and Lot vy, ..., 7ye B, Then ‘

) G(Qﬂ) = G (It e ey Tna).a)‘
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Proof. Clearly G(1, —a} = {lﬂ[c&, b1 =1}. So since [r, 5] =1 for
all be K and sinee [#, b] = [a, b] =1 implies [re, b] =1,

@1, —a) = G(1, —ra) for ack, reR.

The case for # ==2 now follows and those for > 2 are immediate by
induetion.

COROLLARE. (ay, -. .,
8 isofropic. _ _

Tmava. If B = F, then G(1, —b) £ R for any be .

Proof. Suppose, in fact, that G(1, —b) = R. Clearly b¢ R and so
b¢G(1, —b). Hence (L, —b, —b, 1) is anisotropic ([5], Hilfsatz 5). By

@) 1 22 3, 18 isotropic if and only if (1 6y, ..., 7, 8,)

Proposition 1, G(1, —&) = G(r,+') = R for r, r'< B. Thus
G_(]-: —b, —=b,1) = U G, p) =
o, fe@(1, —b)

But this contradiets Kneger’s lemma.
We are now in a posmon to strengthen Kneser’s result. First some

notation. Tf 7 is a subset of 7 consisting of cosets of F2 then denote the
number of those cosets by V (#H). That is, V(&) = | & /FZI. Every quadratic
form ¢ over ¥ represents cosets of R and if B ¢ F every binary form

represents at least two cosets of E. The theorem helow now follows by

Kneger’s lemma and by induction on dime.
Temoren 1. Let ¢ be an n-ary anisotropic form over a non-real field
with B % I*. Then for n > 2,

ViG(p)l =

If we denote the order of 7 /F” by ¢ and the maximnm dimension of
all anisotropic forms over I by u, we have the immediate corollary.

COROLLARY. If < oo, then u < g/ V(R) providing R 5= "

In [1] fields with 4 = q were characterized. As ‘might be expected,
fields satisfying w = ¢/V(R) behave similarly in general as the case V(&)
= 1. Before proceeding, howmrer, 2 little more information is noeded.

Pfigter [7] showed that s, the level of a field (smallest number of
squares in & field of which —1 is the sum), when finite, is always a power
of two. Scharlau ([9], p. 72) pointed out that if waeli: and if s, is the
smallest number of squares of which @ is the sow, then s, is also a power
of two. :

LEMMA. If s> 2 and a¢ 2 then 8, =¢ for all —ackR.

Proof. Cleaaly $, % §+1 and :-,mce §=2

nV(R).

and s, is a 2-power, we

& 4
have s, <Cs. Let (b) denotc the form Z‘bm . Then aeG(lm) == Y(-—»uar,) by

Tl

icm
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'Eﬂ Sq . By 2a . .
Propogition 1. But G{—a) = —a@(1l). So &, —a<@(1) and G(1) being

. 8
a subgroup of Fimply —1e G(f). Hence, ¢ < ¢,, and the proof is complete.
From Pfister’s proof of Satz 18(d) [8], it is seen that V[G(1,1)] = s.
With a similar argument, we can make the lower bound sV (R).
TurorEM 2. If F is a non-real field, with R+F° then V[G(1, 1)}
= sV (R).
Proof. It § =1, the result is obvious; and if ¢ = 2, it follows from
& .
4 and let —1 = Y of, ;e F. Furthermore,
=1
leb y; = ;) +agy, 1 <j < /2. Suppose y39,¢ B. Then from —1 = Ya?,
we get

Theorem 1. So agsume § =

Bl2 .

—1¥s = YU+ D) Yl
=3

But y;¢ G(1, 1) implies ¥, ¥ G(1, 1) and so —y,¥, is the sum of lags than
s squares. This contradicts the lemma. So we see that no two distinet y; lie-
in the same coset of R. In the same way, no ¥; iz actually in E. There-
fore,

G(L, L)/B > 1+4s.

Now G(1, 1)/E is a 2-power so the right side is at least s and the theorem
is proved. ‘ , :
Using Satz 18{d} again, we obtain this immediate conseguence
sg(sg+1)

COROLLARY. If § = 2%, =2 * V(R) providing R %I
- TurorREM 3. Let ¥ be w non-real field with q < oo and denole the number
of anisotropic forms of dimension k by Ny ond let t = q/V (R). Then

b ‘
(i) No<gft—~1+gft (;), N, < qft (k)_fnr L £ 2.
i) N, = gt (fa) for k=3 if and only if
Vi(p)] = (dimg) V(B) for all anisotropic ¢, dimg = 3.
{iil) N, = gqft ( ) Sfor any particular k=3 if cmcl only if

¥ = ap-trail)

" Proof. Thig theorem is the R-analog of Theorem 3.3 in [1]. The
proof is virtwally the same. In (i), the case k& = 1'is obvious. For & = 2,
congider first the nniversal formy, They all look like (1, --a), ae . Dis-
counting ae F™ gince it is not anisotropie, wesee there are g/t—1 universal,

T — aArta Avithmetiea SOSOCUTTT.R
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anisotropic binary forms. By Theorem 1, each binavy form represents
at least 2 cosets of B. So for each of the possible ¢—g¢/ft determinant
values not in —R, there are at most /2 non-equivalent binary forms.

Hence, there are ab mosb— (g—gfty = q/f( )non—univerml binary forms;

.J

and Ny gt —1+ ( ) . The remainder of the proof is identical to Theorem

3.3 of [1] except cosets of R are considered instead of A%

We now are in a position to start characterizing fields with « == ¢/ V (R).
The sitnation i easier if V' (R) = 1 since (iii) of the last theorem can be
applied immediately. Here a proposition is needed first.

PROPOSITION 2. Let I be a field with ¢ < oo and w = ¢/V{R)., Then
every anisotropic w-ary form, n2= 3, represents exactly n coseis of B. Moreover,
every non-universal binary form represents evactly hwo cosets of B and ¢ 5 2.

Proof. Suppose —ad E and let ¢ be u-dimensional and anisotropic.
Then le &(p) and so ¢ = (1) @y. By Theoerem 1, V[G(p)] = (u—1) V(R)
and equality follows immediately. Thug ¢ represents all cosets of B excepd
~R, and we may write y = (a)@y’, ¢ = (1, a)@y’. ¢ anisotropic means
G, a)n—G(y') = @. Using this and Theorem 1 again, we obtain

V[G‘( V] = {u—-2V(B), VI[&1,a)] =2.

The hinary case now follows. Combining the fact that

G(ala"'sa’n) = U G(OS o )
. eel{ay, ...ty 1) . ‘
with Theorem 1 and an induction argument yields the result for = 3= 3.
s < 2 is an immediate consequence of the above and Theorem 2.

By Proposition 2 it is possible to determine modulo B all pousible
forms which represent & given set of cosets of B, For example, if § =1
or ¢ =2 and —1ec¢R and {m, R, ..., ¢, R} ix such a set, then the forms
representing it are (a,+,, ..., 6,7,), ¥;e B. If § = 2 and —1¢ B and { 4.4, 8,

oy, B, b R, ..., b, B I such a set (where b ¢ —by R, 4 4 ), then
all the forms representing it wre (a7, &,F, ..., 6,7, GF,, P00, < oy Pinly)
with #;, 7, e B, . _

It w = q/V(R), Proposition 2 shows that (ii) and (iil) of Theoreny
3 apply; and the following theoremn is an immediate consequence.

THEOREM 4. Let I be o field with g < co and denoie ¢/V (R) by t. Then
the following statements ave equivelent:

i) uw =1 _

. (il) The Witt group for F has order (g/1)2". _

(i) V[G ()] = 2V{(R) for oll non-wniversal binary forms .

icm
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As has been noted already, Kaplansky showed there are no non-real
fields F whose radical has index two in F. Consider the case when the index
is four. By the corollary to Theorem 1, u < 4. Since u is never 3 and since
E = F when # = 2, we must have u = 4, and F satisfies the statements
in fhe last theorem. Since N, :%(:) = ¢, the nwmber of non-split
quaternion algebras over ¥ is 1 by Theorem 3.8 of [1]..The Witt group
structure ¢an be caleulated as in Theorem 4.5 of [1]. Furthermore, Z must
be a non-real generalized Hilbert field (see [4]). From this (or directly
from Proposition 2), it is clear that every anisotropie ternary form is deter-
mined by its determinant and represents ail but one coset of E. In fact,
for non-rveal fields, this property is equivalent to there being only two
quaternion algebras. Before showing this, we need a lemma.

Lunmya. Let ¥V be o vector spoce of dimension v over GF{q) and let
{Hbie, be @ seb of k-dimensional proper subspaces of V satisfying H,-- H;
=V for all 4 4. Then

g—1

L

qr—k__l )

Prooi. Denote the dual space of ¥ by ¥V and let H; & ¥ be the anni-
hilator of H,, 1= ¢< n Then H ~+H; = V implies H;nK; = {0}. Since

each K, has dimension +—£F, U K, munst contain n(g”" —1) distinct
i=1

non-zero elements. From dim V' = r, we get n{gF—1)< g —1.

From Kaplansky’s work in [4], it can be seen that if the index of
G(1,a) in F is at most two for all ae F (and is two for at least one aj,
then there are exacfly two quaternion algebras over F. Another charac-
terization of this property iz given in the next theorem.

=

THEOREM D. Let I' be o non-real field with w > 2, g < co. Suppose
every amisotropic ternary form over F yepresents all but one coset of R. Then
there are exactly two guaternion algebms over B and hence ¥ is a generalized
Hilbert field,

Proof. Clearly 4 = 4. If¢is a quaternion form (dimp = 4, déty = 1),
then g = (L)@w where v is an anisotropic ternary form. By hypothesis
G (y) must represent everything not in —R. Soforae¢ —&,¢ = (1, @, b, ab).
Since 1 = 4, the number of anizotropic quaternary forms of determinant
d iz the number of quaternion algebras minus the order of b [G(1, —d).
Sinee. izotropic quaternion forms are unique, the above shows the nmumber
of quaternion algebras is the index of &(1, a) in 7. This is frue for every
a¢ —k and so V[G(1, a)] is constant. Moreover, the above formula shows
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(1, &, —z, —ba) is isotropic if ab¢ B. Consequently, every cme’n of (1, a)
has & non-empty intersection with evelv cosel of G{1, b) pmwdmg ab¢ R.
Pick & set of representatives {a%].?,}i _1 with a,« —R for j'f‘/R (md consider
the Z,-vector space F[R If #H, = G(1, a;) /B, then the set {II}1 g Satislioy
(a+HINE+H) =@ for all a,be F/R it 4 5 4. But this is equivalent
to Hy+H; = F[R for all i ] (since char /R = 2). S0 (HHE, H:ld‘iiﬂfy
the conditions of the lemma and we may conclude 21 < B ?;1 ii—
where kb = dimH,;, 4= 2. Thus & =t¢—1 and this means V[G(1, a)]
= g/2 for 4 2. The index of every non-universal binary form iy two,
but this index is the mumber of quaternion algehras.

Lam and Flman [3] demonstrated that << ¢/2 if s 4 and that

« could not lie strictly between ¢/2 and ¢ if ¢ = 1, 2. Upon substituting
R for F* in their proofs of these results and. using Proposition 1 and Theo-
‘rem 1, we can gef am R-analog.

THROREM 6. Lét F be o non-real field with g < co. If w + q/V(R),
then u < g2V (R)

By Proposition 2, we note that w = ¢/V(R) only if s = 1 or 2. Also
by the corollary to Theorem 1, < g/V(R) always.

We now have completed our work on “strengthening” previous
results by viewing them in terms of R instead of Fre, Next we wish to look
at what happeuns to B and some quadratico forms in quadratic extensions
of F. The results here are incomplete as the problem of determining quadra-
tie form structure after a quadratic extension appears to be a diffieult
one. From now on, let K = F{(Va) where ae 7.

Prorosirion 3. If o is & multiplicative and universal form over F, then
@ 18 universal over K = F(Va).

Proof. We use Scharlaw’s [8] method of transfer. Let g: K10 be
aﬂrsf non-zero llnefl.r functional. For any we I, s*{wp) = pps*(a) Is iso-
tropic over F since ¢ is universal. If s iy defined by s(1) =0, 8 l/a =
§*(2¢) being isotropic implies there is a vector whose value ‘und.ur tha
quadratic form ap is ec F. Bince ¢ iy multiplicative, wy o= ep. Ho ¢ Gug
is isofropic over K since ¢ Gep is isotropic over F. But this means —ue G ()
over K for all we K. Thus, ¢ s universal over K,

Applying the proposition to the form (1, —b) when be R(F) gives
the next result. :

CoroLLARY. R{F) = R(K).

Suppose be F' and —be B(K). By Scharlaws norm principle ([#],
‘Theorem 2.2.6), Ngp{o Ne G (L, b) over F for all we K. Butb NK/I,.(K)

-3

icm

_ let ¢ = {1, —a).
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= @1, —a). 80 (1, b), be F, is universal over K only if ¢(1,
over F. We can use this remark to show that if fu(P) =2
and so «(K)> 2. If Fe E(K),

G, —a)= M G, b) = R(F).

bel

—a)s G(1,5)
, then F & BE(K

But this contradicts the lemma preeeding Theorem 1. Consequently,
it ' i3 o field with non-trivial radical {({fe— R If‘z F) then sois K = lf(l/a)
providing R(I) £ {1, a,}»l"2 Furthermore, by Gross and Fischer [2],
((K) = 30pVIGQ, —a)]; and since VIG(L, —a)]>3V(R) >4, ¢(K)
> ¢(¥) providing q(F)< co. Adjoining sgnare roots then is a method
for generating these fields where B is non-trivial.

Using the norm principle again, we can obtain quickly a partial
converse to Proposition 3.

ProrosITION 4. If ¢ s a multiplicative form over F and is universal
over K = P(Va) where ae R(F), then ¢ is universal over T.
hY

This proposition does not necessarily hold if a¢ R{F). For example,
Hven for binary ¢, it is a hard question to discover when
o iy universal over K. It is poskible for (1, b) to represent F over K bub
—b¢ R{K) -— this happens in certain extensions of the 2- adie numbers.
We do, however, have the following result which also is a consequence
of the norm principle.

Prorosition b, —ae B(K) = — _NK,F(m)sR(E)

The converse iz false though. Let ¥ be the 2-adic numberq and
K = (VY —=1). Then —(—1)e R(F) but —¥ —1¢ R(K).

Finally we want %o present an example of a non-real field # with
i F or F*. Such fields seem to be unknown in the literature. And even
for our example it is not known whether g is finite. Non-real fields with
¢ <5 8 were classified in [17, but for ¢ = 8 there are still three cases whose
existence has not been reésolved. These all have non-trivial radicals. In
fact, they all satisfy « = ¢/V(R). This forthcoming example is due to
an ides of A. Plister. _ : :

Let ¢, be the 3-adic numbers and K, = K. Assume the chain K,
cK,c...c K, <y is constructed throngh # with the properties that
(1, 2) i¢ anisotropic over each K, and K; = B, (Ve), ce K, 1<i<n.
Enumerate the algebraic integers in ¢, and let « be the first one which is
in K, bat not in G{1, 2) over K, . There iz such an a since otherwise (1, 2)
would be universal over K, and this can happen for binary forms over

‘algebraic number fields only if they are isotropic.” We will now find a

d< K, such that o-—2d%e @} —(—2K2). This will ensure (1, 2) remains
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4] 1. Kaplansky, Fréhlich’s loeal quadratic fo-rms, J. Reine Angew. Math. 230

anisotropic over K, ; = K%(l/-a»f—zm) = QS and also represents a. Suppose (1969), pp. 74717, _
=] .. . n gy

at i 9 (61 H. Lens, Binige Ungleichungen aus der dlgebra der guadratisghen Forimen, Arch.

g = -‘Ea 3 where a;¢{0,1,2}. If b = Zb 3%, we can muake a—2b s.()% Math, 14 (1963), pp. 373-382.
—_ - =01 - 81 0. T. O'Meara, Inlroduction lo Quadratic Forms, New York 1963,
by ciomg the :Eollowmg let: b 1if ?D O le;-, by b tO]i o 1 = L a];d ]mi ' [7] A.Pfister, Zur Dovslellung vor —1 als Summe von Quadralen in einem Korper,
by =1, b, = @y, by = @y —0;+af —1if ay = 2. Fix b to be such & rational . J. London Math. Soc. 40 (1965), pp. 159-165. )
integer. We note that if ¢ = 1 (mod27), then ¢—2(be)?e 2 also. . (8] — Quadratisohe Formen in bheliebigen Koérpern, Invent. Math. 1 (1966}, pp. .
‘Let & be any finite prime of K,, for which 2, 3, &, b are 111'thh Denote 116-132. o - )

the residue class field of K, with respect to & by K, and the image of (0] W.Scharlau, Quadratic Forims, Queen’s papers on pure and applied mathema-

ties No. 22, Kingston, Ontario, 1968,
a unit a¢ K, by a. Since K, is finite (- 2a 1) is universal over K, . IMence,

there exists a unit ze &, such that —%a-+@¢ K;b. Choose a unit ¢ such
that # = 2be. Then —-2[&—2(be)2] iy a non-square mod.#.

Now since 3, % are distinet prime spots over K, by the Strong ) Keceived on 1.3.1974 (539)
Approximation Theorem (see [6]), there iz an integer ¢;e K, such that

LOUISTANA, STATE UNLIVIERSITY
Baton Touge, Louisiana

leg—1] < (1% lep—ele < 1. ' -

S0 ¢; = 1(mod27) and ¢, = e(mod.#). The d we were originally looking
for is d == bey.
Continu(, the construction of the field chain by induction and leb

K = U K,;. Clearly (1, 2) is anisotropic over K. Any element in K comes

from mme K, and any such element is the gquotient of two algebraie
integers. By the construstion each of these integers, and hence their
quotient, is in GH(1,2) over K,. Therefore, (1, 2) is universal over K.
In particular, —Le G (1, 2) implies s < 2 and X is non-real. Since (1, 1, 3, 3)
is anisotropic over @y, w(XK) = 4. But by the Hasse-Minkowski theorem
then, we see % = 4. K Is thus a non-real field with non-trivial radical.

Unfortunately ¢(K) is probably not finite so examples of IKneser
fields (s < ¢ <C oo} with non-trivial radicals (if they exist) are still misging.
By using the remarks made just prior to Proposition 4, it is possible to
build & ehain of fields so that the wnion has a radical containing more
than just the squares. One might then attempt to construet o field with
finite ¢ as in Gross and Fischer [2], However, we were unable to show
that when this was done that R 7.

. " 4
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