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1. Introduction. A famous problem in prime number theory is the
“prime twins” conjecture, i.e. the guestion of whether there are infinitely
many primes p such that p+2 i3 again a prime. In 1958 Schinzel [9]
suggested the following genevalization:

Hyporuests H. Let fi,...,f, be distinet irreducible polynomials
in Z{x] (with positive leading coefficients) and suppose that f, ... f, has
no fixed prime divisors. Then there exist infinitely many integers % such
that each fi{n) (i =1, ..., ¢) 18 prime.

Let F,: =f;...f,, and let P, denote an almost prime of order r,
that is, a number having at most + prime factors when these are counted
according to multiplicity. Then H asserts (subject to the stated conditions
on F,) that :

(1.1) Fy(n) =P, infinitely offen.

When g =1, and fi(%) = en—+b, with (&, b) =1, (2.1) reduces to the
asserfion that there exist infinitely many primes p = bmode; this is
the famous theorem proved by Dirichlet and the only case where H is
known fo be true. '

2. The distribution of polynomial sequences. Budllﬂﬁ&b, Selberg,
Miech, Halberstam and Richert, and other authors provedl approximations
to H, ic. they found lower bounds for k such that

I, (n) =P,  infinitely oftem,

where b = (g, k) and % denotes the degree of Fj. .

When ¢ == 1, the best known results are stated in [2] and [8]. For
the cage g > 1 we find the following results [3] based on three different
types of weighted sieves:

TanorBM 1. Let fi(n), ..., f,(») (g=> 1) be distinct irreducible polyno-
mials with integral cogfficients, write Fy(n) for the product fi(n) ... f(n),
and et Ty, ...y by, b denote the degrees of fa,...,f, and ¥, respectively.
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Suppose that F, has no fized prime divisors. Then

(2.1) F,in) =P, infinilely ofien
for any natural number h salisfiing one of the following three conditions
. g |k g k—g '
(hy) h>k—1+4 (g - “7:) log (? w”)— & .
where v, is defined in Chapier' 3, or
% 9% 1
h h>k-1 \ e ( I
(hy) b >k +J, +ggg+H)
or
(1) h>k~1+g;2 +gMg—u+;§rﬁhL

j=1 Fen 1
where # i an arbitrary wumber with 0 < 9 < 1.

Tn fact, Halberstam and Richert (see [3], Theorem 4 and Theorem ()
stated (2.1) in a gquantitative form, but we are mainly interested in a
eomparizon of the conditions (h,}), (h,) and {hy). To be precise, we shall

prove:
¥

ky, T be natural numbers with 3%, = k.
Then any natural number k with (hy) or (hy) satisfies (hy) as weil.l

The conditions (h,), (hs) and (h,) correspond to the weights of Richert
[8], Selberg [10] and Miech [6], and Kuhn [5] respectively. So we may
read Theorem 2 as follows: the choice of weightis in [8] appears to be
the hegt known. However one must mention that Buchstab’s new
weighted sieve method [2], which is exceedingly complicated, gives similar
or possibly better results.

Halberstam and Richert [3] formulated a companion econjecture
H* that, roughly speaking, F,(p) = P, infinitely ofter, where p denotes
a prime. If we compare the results (see [3], Theorem 6 and Theorem. D)
that eorrespond o Theorem 1, we may derive from Theorern 2 that the
weights, introduced in [8], lead to the best known approximations of
H* ag well.

THROREM 2. Let g > 1, &y, ...,

3. An upper bound for »,. For each » > 1 let o, (%) denote the conting-
ous solution of the differentinl-difference equation

Qg™
(3 1) O‘n(u) = m}* W | (0 & U< 2),
(W% () = —ew ™Yo (u—2)  (u32)

where ¥ is Euler’s constant.
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Let v, denote the unique and positive solution « of the equation

. o L
(3.2) e (%) E”?”""f(m

From [1] we quote the following properties of the funetion (%)
(3.3) C fu) =10, (2m)

Levmea L. (a) f.(n) 48 monotonically decreasing towards (0.
(34) (b) —fulw) = {6 —1) —f(w)} (w3 1),

(a) f.{u} is convex from below for u = =

—1) ld = 1.

(= 0).

Ankeny and Onishi [1] deduced results on », as well:

LewvA 2. Let = > 1:
: e—1
(3.5) v, < 2(e—1)x+1-2log Py
log 2 t
b
S (3.6)  lim2= = 2exp{f L dtwloglog.:— } —2.44 ...
H—-00 %

Halberstam and Richert [3] con]eetu_re that »,/# increages with s;
then (3.6) would imply v, < 2.44 ... %, and (3.5) would appear to be rather
a weak result. This conjecture is quite difficult to prove, but we can
improve (3.5) essentially.

‘We shall need the following tools: .

ImMyma 3. (a) fo(w)e™u ™ decreases monolonically for w2z x+1.

(b) For every 68,  0<< 62, there emists a & = &, 8) such that |
< ()87 % and

(3.7) Fulu)e™ < fo (8 (w3 0).

Proof. Using (3.4) and integrating by parts we infer

fmnw — fLGt

i)

jf,, dt = —uf, ()~

{w = 1).

-(3.8) af (W) <n [ f0)a

() Nate that Juln) = Fy)[(T(x)e), and v, = 2[, in the notation of [1].



248 © H. W. Hagedorn

Thus, by Lemma 1{¢)

ufe (1) < %(fx(%—l) +faw)  (wz s +1)
or ,
(W) = ™ (% —1) = f () > 0 f () (2unt - 2),
(3.9) 0 > F1(2) b F() (2~ 2oes™)
or
0 > (f(w) e 28 (u 3z w1),

which completes the proof of part (a).
oo > 2202~ 87, we note by (3.9) that

—faw) 7w > 6 (w3 x+1) .
It 0<u<l, by (3.1),
(ol - %’M”ﬂl o
fX(q't) 5 (’M) F(%»{—l)ﬁw—’él,‘

for sufficiently small % > 0.
Let 4y, 4, be respectively the smallest and the largest 100‘b of

—fo(w)f u) = 6.
Let & = £(x, 8) be the real numper in the interval [u,, u,] such that
(3.10) fAE)" = Max (f,(u)e™). |

Uy Uy
I u< thyy DY ~—Folu)fi (1) << 8, we infer that fo () 6% is increasing, and
f.(u)e™ decreases monotomea,lly for » > u,. Considering (3.10), this com-
pletes the proof of (3.7). Combining (3.8) and (3.7) we find

§ &
)< [ f0)d < 5 [ g
£--1 )

or
R G Y.
Next we shall prove the main result of this chapter:
TarorrM 3. For any 8, §,< § < 2, we have
o % 2 log M (8)
(3.11) < 2Max (;44“1-—10 M a)+1 Zlog o
< g g MO LT log o e

&

. - &£ —1\? |
where JVI((S)::( )exp{ﬁ (6 2)87M e’ —1)} and 3, denotes 'th&

unique root of M(8) = a.
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Remark 1. §,<< 0.8, in fact 8, = 0.79089 ...
Remark 2. As 4 'log M(8) increases with &, we have

8-Yog M (8) = &,
and

Max(w +1,—:~ log M(5) =% log (8} for all x 3 8y(1— 6,1,
at leagt for all numbers » == 4.

Remark 3. The best possible consfant in the leading term would
be 24;7 == 2.52 ..., which should be compared with 2(¢—1) = 3.43 ...
and 2.44 ... respectively (see Lemma 2),

Proof. Lek x> 0., then we have

o 1

7’],‘(250} = " j (m —1)f‘_1 it

f fnt"”"o‘)) tz—ldt
1—f,(1—0.5)
I AL f-" (0,5 pimt
g I atas et gy
ST @ —05)

in view of Lemma 1{a} and (3.7).
Noting that

- .
f PRl R et €1 RN ) R 1 SR B R
and again using (3.7) we have
TE4B(0.5 —2)
% fulg)e (80> ).

(3.12) ' dw-+1—n L—Ff,(£)e

Tor fixed » and Hixed § we treat the two cases (a) & 3z »+T1and (b) & <C =z-+1.
In cage (a) we apply Lemmo 3(a):

f(E)OﬁE . (x+1)32(’”‘1)(%-{—1)‘2"3‘%‘”52”. '

Ag =222 inereases with @, provided that

7, (2a) < SETED %)

- 2’{ [N 1
& < Yy anc

we conclude

2 ‘
e (f—1)0 w s T (0 < 8 < 2},

E

2
ﬂ(&)a‘*é@f”(m;l)eﬁ(xﬂ) (o)




250 H. W. Hagedorn

By (3.8) we fin_d that f, (2 --1) < ;%f”{%)’ henee

(8.13) Tul 86 < fi(w) M ()",

1 I+ 1
using that (1 + —%—) = e for x> 1.
Combining (3.13) and (3.12) we have

x  Jl#hhix, 8, )
xAog M(3) +1—» Jolm)—fu (e (, 3, )"

it 0w > xlog M (5). Here we putb

(3.14) 7, (20) <<

B(x, 8, @) 1= B (5) 05~

Tt now

| 1 = 1 log M ()

(3.15) 2> — 4+ log M(8) + —log o270
_ R R A iy ey

we obtain

ﬂ/[((s)xgé(ﬂ.s—x] < IOgM(é)'_l
log M (3)
ar
1 h(%, 9, a)

Tog M(5)—1 L—h(x, 8,8 1

Together with (3.1'4} this yields, in particular, ':7,:(233) < 1. As n,(w) decrea-
ses with , this proves (3.11) in view of (3.2).
In case (b) we start with

1 log M (9)
%> %104+ — log — ot
, 5 8 g M (3) -1
and infer ' :
{361, 5
(3.16) L A

log M {8) —1 T — fomtia—a) 1.

If, moreover, » satisfies (3.15), we may derive from (3.12) that

% sz

(20} < . .
e (30) #log M(d) 41 —2x 1 etls=a)

and, by (3.16), 7,(2s) < 1, which completes the proof of Theorem. 3.
. From T]:_Leorem 3 we casily get the following explicit upper bounds
forv,, ¢hooging 6 =1, § = 0.9 and 6 = 0.8 regpectively. -
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CoroLLARY,
2.73%+8.65 (%2 38),
{3.17) ¥, & 4 2.68% +5.15 (%= 4),

>
>
2.54x 1158 (%= 4). '
4. Proof of Theorem 2. Comparing the three conditions (h,), (k)
and (hy), the latter one appears to be the most complicated, as the optimal
choice of the free parameter ¢ is quite diffieult. Considering the modified
condition '

§1 1 9%
(hs) h>k—14+g ¥ — +glog-—
) ;;_1, j giog 7

instead of (h,;), we shall prove that (h,) implies (ha)-
Azsume that 0 << &< g/k, then we have

el N 2%
“(4.1) ' glog—{; 4+ f:;’ j['é)i!{:j] = glog:;.
Now let g/k < &< 1. Then we infer
kG ké
log il & 1
g g
or , _
2%k 2 1
. — g log — +— (kF—g).
{4.2) log , Slos ,ﬂﬁrg(o 9
‘We notice thatb
i g
(4.3) D12 ) (9% —1) = S%—g,
i= j=1

and (4.2) combined with (4.3), implies (4.1) for all 4, ¢ << & < 1; i.e. any
natoral number b with (h,) or (h,) satisfies (hy) as well.
For g« 16 Porter [7] computed v,:

g 2 3 4 5 6

v, 442 ...  683.. 032.. 1L80... 1428...

g v 8 9 10 - 1L

% 1677 ... 1925... 9LTA... 2432... 26.70...

g 12 13 14 15 16
| aemL.. BLeS.. B4d5.. 36.62.. 30.09.
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and, by Theorem 3, we have v, < 49.75 (3 = 0.03), v, < 52.41 (8 = 0.925)
and. v, < 55.08 (5 = 0.92). Using these resnliy Wé easily check that any
natural nmmber & with (hy) satisfies (h,), if g < 19. (Note that »‘;L log (£ anﬂ)

. ke ¢
is, for fized g, a decreasing funection of %.)

When g = 20,
g(log(2g) +7) = (¢ +1)10g (2.63¢ --5.15)
holds, which, in virtue of (3.17} and
51
3 = logg +v,

. Fe=l

completes the proof of Theorem 2.

Remark. If we make use of the corollary and subsﬁituté (8.17) in
(h;), we get the following lower bound for %, which is simpler than (h,)

. o B
(4.4) k> k-1 (g+ 1) log (2.637c 1515 f_) _y__tzg .

k g ke 2.6354b.1b
If g > 17, (4.4) represents the best known approximation to H. For small
g Halberstam and Richert, using Porter's tables on ¥y, carvied out some
computations (see [3] and [4]) that lead to better results.
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Kaplansky’s radical and quadratic forms
over non-real fields

by
Crare M. Corpug (Baton Rouge, La.)

In [4], Kaplansky infrodueed the concept of & radical for_ a field
¥ as the set B of all ae ¥ satisfying [a,d] = 1 for all be ¥ where
[a, b] is the Hilbert symbol for a, b. That is, [a,b] =1 if there
are @,ye¢k such that azf+by? =1, and [a,b] = —L otherwise. It
is eagy to see that two other descriptions of B are 1) ac R if and only
if the quadratic form ®?—ay? is universal ¢ver F and 2) B = QG(l, a)

aek

- where (1, a) is the quadratic form #*-ay? and G(1,e) is the non-zero

clements of I represented by (1, a). Thus R is a subgroup of F' containing
P Kaplansky showed that a field whose radieal had index 2 on F was
an. ordered field in which every positive element was the som of two squares
and B eoincided with the positive elements. He then found the relationship.
between the radical and the guadratic form structure over generalized
Hilberti fields (see [4]). _ '

In this paper the radical for non-real fields (characteristic not 2 is

" always agsumed) is investigated. It turns out that in many cases, results

which held in terms of F* can be strengthened by replacing F? with E.
Tor example, Kneser’s lemma states that if ¢ @(a) is anisotropic, then
Glp) & Gp@(a)]. It is immediate from this that if ¢ is an anigsotropic
n-ary quadratic form, fhen ¢ represents at least # square clagses., We
will show ¢ represents at least n cosets of E. We also look at when the
radical’s index is 4 and what happens to B under quadratic extensions.
Finally, an oxample iy given illustrating a-field with a radical which is
neither I or F*. -

In the remainder of the paper I is always a hon-real field of ehara_,cteris-
tic not 2. Any quadratic form over F represents whole cosets of 72 The
following proposition shows any ¢ with dimg > 1 represents cosets of K.

 Provosrrion 1. Let ¢ be o gquadratic form with = diagonalization
(Gyy orey ), 0322 and Lot vy, ..., 7ye B, Then ‘

) G(Qﬂ) = G (It e ey Tna).a)‘



