ACTA ARITHMETICA XXVIII (1975)

Sieve methods and polynomial sequences

by

H. W. HAGEDORN (Ulm)

1. Introduction. A famous problem in prime number theory is the "prime twins" conjecture, i.e. the question of whether there are infinitely many primes p such that p+2 is again a prime. In 1958 Schinzel [9] suggested the following generalization:

HYPOTHESIS H. Let f_1, \ldots, f_g be distinct irreducible polynomials in Z[x] (with positive leading coefficients) and suppose that $f_1 \ldots f_g$ has no fixed prime divisors. Then there exist infinitely many integers n such that each $f_i(n)$ $(i = 1, \ldots, g)$ is prime.

Let $F_g := f_1 \dots f_g$, and let P_r denote an almost prime of order r, that is, a number having at most r prime factors when these are counted according to multiplicity. Then H asserts (subject to the stated conditions on F_g) that

(1.1)
$$F_q(n) = P_q$$
 infinitely often.

When g = 1, and $f_1(n) = an + b$, with (a, b) = 1, (1.1) reduces to the assertion that there exist infinitely many primes $p \equiv b \mod a$; this is the famous theorem proved by Dirichlet and the only case where H is known to be true.

2. The distribution of polynomial sequences. Buchstab, Selberg, Miech, Halberstam and Richert, and other authors proved approximations to H, i.e. they found lower bounds for h such that

$$F_g(n) = P_h$$
 infinitely often,

where h = h(g, k) and k denotes the degree of F_g .

When g=1, the best known results are stated in [2] and [8]. For the case g>1 we find the following results [3] based on three different types of weighted sieves:

THEOREM 1. Let $f_1(n), \ldots, f_g(n)$ (g > 1) be distinct irreducible polynomials with integral coefficients, write $F_g(n)$ for the product $f_1(n) \ldots f_g(n)$, and let k_1, \ldots, k_g , k denote the degrees of f_1, \ldots, f_g and F_g respectively.

Suppose that F_g has no fixed prime divisors. Then

$$(2.1) F_{\sigma}(n) = P_{h} infinitely often$$

for any natural number h satisfying one of the following three conditions

$$(h_1) h > k-1 + \left(g + \frac{g}{k}\right) \log\left(\frac{k}{g}\nu_g\right) - \frac{g}{k} \frac{k-g}{\nu_g}$$

where vo is defined in Chapter 3, or

(h₂)
$$h > k-1+g \sum_{j=1}^{g} \frac{1}{j} + g \log \left(\frac{2k}{g} + \frac{1}{g+1} \right)$$

or

(h_a)
$$h > k-1+g\sum_{j=1}^{g}\frac{1}{j}+g\log\frac{2}{\vartheta}+\sum_{j=1}^{g}\left[\vartheta k_{j}\right],$$

where ϑ is an arbitrary number with $0 < \vartheta < 1$.

In fact, Halberstam and Richert (see [3], Theorem 4 and Theorem C) stated (2.1) in a quantitative form, but we are mainly interested in a comparison of the conditions (h_1) , (h_2) and (h_3) . To be precise, we shall prove:

THEOREM 2. Let g > 1, k_1, \ldots, k_g , k be natural numbers with $\sum_{i=1}^{n} k_i = k$. Then any natural number h with (h_2) or (h_3) satisfies (h_1) as well.

The conditions (h_1) , (h_2) and (h_3) correspond to the weights of Richert [8], Selberg [10] and Miech [6], and Kuhn [5] respectively. So we may read Theorem 2 as follows: the choice of weights in [8] appears to be the best known. However one must mention that Buchstab's new weighted sieve method [2], which is exceedingly complicated, gives similar or possibly better results.

Halberstam and Richert [3] formulated a companion conjecture \mathbf{H}^* that, roughly speaking, $F_g(p) = P_g$ infinitely often, where p denotes a prime. If we compare the results (see [3], Theorem 6 and Theorem D) that correspond to Theorem 1, we may derive from Theorem 2 that the weights, introduced in [8], lead to the best known approximations of \mathbf{H}^* as well.

3. An upper bound for v_{\varkappa} . For each $\varkappa > 1$ let $\sigma_{\varkappa}(u)$ denote the continuous solution of the differential-difference equation

(3.1)
$$\sigma_{\varkappa}(u) = \frac{2^{-\varkappa}e^{-\varkappa y}}{\Gamma(\varkappa+1)} u^{\varkappa} \qquad (0 \leqslant u < 2), \\ (u^{-\varkappa}\sigma_{\varkappa}(u))' = -\varkappa u^{-\varkappa-1}\sigma_{\varkappa}(u-2) \quad (u \geqslant 2)$$

where y is Euler's constant.

Let ν_x denote the unique and positive solution x of the equation

(3.2)
$$\eta_{\varkappa}(x) = \varkappa x^{-\varkappa} \int_{x}^{\infty} \left(\frac{1}{\sigma_{\varkappa}(t-1)} - 1\right) t^{\varkappa-1} dt = 1.$$

From [1] we quote the following properties of the function (1)

(3.3)
$$f_{\mathbf{z}}(u) \equiv 1 - \sigma_{\mathbf{z}}(2u) \quad (u \geqslant 0).$$

LEMMA 1. (a) $f_{\mathbf{x}}(u)$ is monotonically decreasing towards 0.

(3.4) (b)
$$-f_{\varkappa}'(u) = \varkappa u^{-1} \{ f_{\varkappa}(u-1) - f_{\varkappa}(u) \}$$
 $(u \ge 1)$.

(c) $f_{\kappa}(u)$ is convex from below for $u \geqslant \kappa$.

Ankeny and Onishi [1] deduced results on ν_{κ} as well: LEMMA 2. Let $\kappa > 1$:

(3.5)
$$v_{\kappa} \leqslant 2(e-1)\kappa + 1 + 2\log\frac{e-1}{e-2},$$

(3.6)
$$\lim_{\kappa \to \infty} \frac{\nu_{\kappa}}{\kappa} = 2 \exp \left\{ \int_{0}^{\log 2} \frac{e^{t} - 1}{t} dt - \log \log 2 - 1 \right\} = 2.44 \dots$$

Halberstam and Richert [3] conjecture that ν_{κ}/κ increases with κ ; then (3.6) would imply $\nu_{\kappa} \leq 2.44 \dots \kappa$, and (3.5) would appear to be rather a weak result. This conjecture is quite difficult to prove, but we can improve (3.5) essentially.

We shall need the following tools:

LEMMA 3. (a) $f_{\varkappa}(u)e^{2u}u^{-2\varkappa}$ decreases monotonically for $u \geqslant \varkappa + 1$.

(b) For every δ , $0 < \delta < 2$, there exists a $\xi = \xi(\kappa, \delta)$ such that $\xi < (e^{\delta} - 1) \delta^{-1} \kappa$ and

$$(3.7) f_{\varkappa}(u)e^{\delta u} \leqslant f_{\varkappa}(\xi)e^{\delta \xi} (u \geqslant 0).$$

Proof. Using (3.4) and integrating by parts we infer

$$\int_{u}^{\infty} f_{\varkappa}(t) dt = -u f_{\varkappa}(u) - \int_{u}^{\infty} t f_{\varkappa}'(t) dt = -u f_{\varkappa}(u) + \varkappa \int_{u-1}^{u} f_{\varkappa}(t) dt$$

or

$$(3.8) uf_{\varkappa}(u) < \varkappa \int_{u-1}^{u} f_{\varkappa}(t) dt (u \geqslant 1).$$

⁽¹⁾ Note that $f_{\kappa}(u) = F_{\kappa}(u)/(\Gamma(\kappa)e^{\kappa y})$, and $\nu_{\kappa} = 2\zeta_{\kappa}$ in the notation of [1].

Thus, by Lemma 1(c)

$$uf_{\varkappa}(u) < \frac{\varkappa}{2} \left(f_{\varkappa}(u-1) + f_{\varkappa}(u) \right) \quad (u \geqslant \varkappa + 1)$$

01

$$-f'_{\varkappa}(u) = \varkappa u^{-1} (f_{\varkappa}(u-1) - f_{\varkappa}(u)) > \varkappa u^{-1} f_{\varkappa}(u) (2u\varkappa^{-1} - 2),$$

$$0 > f'_{\varkappa}(u) + f_{\varkappa}(u) (2 - 2\varkappa u^{-1})$$

01

(3.9)

$$0 > (f_{\kappa}(u) e^{2u - 2\kappa \log u})' \qquad (u \geqslant \kappa + 1),$$

which completes the proof of part (a).

If $u > 2\kappa(2-\delta)^{-1}$, we note by (3.9) that

$$-f_{\varkappa}'(u)f_{\varkappa}^{-1}(u) > \delta \qquad (u \geqslant \varkappa + 1).$$

If 0 < u < 1, by (3.1),

$$-f_{\varkappa}'(u)f_{\varkappa}^{-1}(u) = \frac{\varkappa u^{\varkappa-1}}{\Gamma(\varkappa+1)e^{\varkappa y} - u^{\varkappa}} < \delta$$

for sufficiently small u > 0.

Let u_1, u_2 be respectively the smallest and the largest root of

$$-f_{\varkappa}'(u)f_{\varkappa}^{-1}(u) = \delta.$$

Let $\xi = \xi(x, \delta)$ be the real number in the interval $[u_1, u_2]$ such that

(3.10)
$$f_{\varkappa}(\xi)e^{\delta\xi} = \max_{u_1 \leqslant u \leqslant u_2} (f_{\varkappa}(u)e^{\delta u}).$$

If $u < u_1$, by $-f'_{\kappa}(u)f_{\kappa}^{-1}(u) < \delta$, we infer that $f_{\kappa}(u)e^{\delta u}$ is increasing, and $f_{\kappa}(u)e^{\delta u}$ decreases monotonically for $u > u_2$. Considering (3.10), this completes the proof of (3.7). Combining (3.8) and (3.7) we find

$$\xi f_{\varkappa}(\xi) < \varkappa \int_{\xi-1}^{\xi} f_{\varkappa}(t) \, dt \leqslant \varkappa f_{\varkappa}(\xi) \int_{\xi-1}^{\xi} e^{\delta(\xi-t)} \, dt$$

or

$$\xi < (e^{\delta} - 1) \delta^{-1} \varkappa.$$

Next we shall prove the main result of this chapter:

THEOREM 3. For any δ , $\delta_0 < \delta < 2$, we have

$$(3.11) \quad v_{\varkappa} \leqslant 2 \operatorname{Max} \left(\varkappa + 1, \frac{\varkappa}{\delta} \log M(\delta) \right) + 1 + \frac{2}{\delta} \log \frac{\log M(\delta)}{\log M(\delta) - 1},$$

where $M(\delta) := \left(\frac{e^{\delta}-1}{\delta}\right)^2 \exp\{2+(\delta-2)\delta^{-1}(e^{\delta}-1)\}$ and δ_0 denotes the unique root of $M(\delta) = e$.

Remark 1. $\delta_0 < 0.8$, in fact $\delta_0 = 0.79089...$

Remark 2. As $\delta^{-1}\log M(\delta)$ increases with δ , we have

$$\delta^{-1}\log M(\delta)\geqslant \delta_0^{-1}$$
,

and

$$\operatorname{Max} \left(\varkappa + 1, \frac{\varkappa}{\delta} \log \, M(\delta) \right) = \frac{\varkappa}{\delta} \log M(\delta) \quad \text{ for all } \varkappa \geqslant \delta_0 (1 - \delta_0)^{-1},$$

at least for all numbers $\varkappa \geqslant 4$.

Remark 3. The best possible constant in the leading term would be $2 \delta_0^{-1} = 2.52 \dots$, which should be compared with $2(e-1) = 3.43 \dots$ and $2.44 \dots$ respectively (see Lemma 2).

Proof. Let x > 0.5, then we have

$$\begin{split} \eta_{\kappa}(2x) &= \varkappa x^{-\varkappa} \int\limits_{x}^{\infty} \left(\frac{1}{\sigma_{\kappa}(2t-1)} - 1\right) t^{\varkappa-1} dt \\ &= \varkappa x^{-\varkappa} \int\limits_{x}^{\infty} \frac{f_{\kappa}(t-0.5)}{1 - f_{\kappa}(t-0.5)} \ t^{\varkappa-1} dt \\ &\leqslant \varkappa x^{-\varkappa} \frac{f_{\kappa}(\xi) e^{\delta \xi}}{1 - f_{\kappa}(x-0.5)} \int\limits_{x}^{\infty} e^{-\delta(t-0.5)} t^{\varkappa-1} dt \end{split}$$

in view of Lemma 1(a) and (3.7).

Noting that

$$\int\limits_{x}^{\infty}e^{-\delta t}t^{\varkappa-1}dt< x^{\varkappa}e^{-\delta x}(\delta x+1-\varkappa)^{-1} \quad \text{ if } \quad \delta x>\varkappa,$$

and again using (3.7) we have

$$(3.12) \eta_{\varkappa}(2x) < \frac{\varkappa}{\delta x + 1 - \varkappa} \frac{f_{\varkappa}(\xi) e^{\delta \xi + \delta(0.5 - x)}}{1 - f_{\varkappa}(\xi) e^{\delta \xi + \delta(0.5 - x)}} (\delta x > \varkappa).$$

For fixed \varkappa and fixed δ we treat the two cases (a) $\xi \geqslant \varkappa + 1$ and (b) $\xi < \varkappa + 1$. In case (a) we apply Lemma 3(a):

$$f_{\varkappa}(\xi) e^{\delta \xi} \leqslant f_{\varkappa}(\varkappa + 1) e^{2(\varkappa + 1)} (\varkappa + 1)^{-2\varkappa} e^{\delta \xi - 2\xi} \xi^{2\varkappa}.$$

As $e^{(b-2)x}x^{2x}$ increases with x, provided that

$$x < \frac{2\kappa}{2-\delta}$$
, and $\xi < (e^{\delta}-1)\delta^{-1}\kappa \leqslant \frac{2}{2-\delta}\kappa$ $(0 < \delta < 2)$,

we conclude

$$f_{\varkappa}(\xi) e^{\delta \xi} \leqslant f_{\varkappa}(\varkappa + 1) e^{2} \left(\frac{\varkappa}{\varkappa + 1} \right)^{2\varkappa} M(\delta)^{\varkappa}.$$

$$(3.13) f_{\varkappa}(\xi)e^{\delta\xi} < f_{\varkappa}(\varkappa) M(\delta)^{\varkappa},$$

using that $\left(1+\frac{1}{\varkappa}\right)^{2\varkappa+1}\geqslant e^{2}$ for $\varkappa>1$.

Combining (3.13) and (3.12) we have

$$(3.14) \eta_{\varkappa}(2x) < \frac{\varkappa}{\varkappa \log M(\delta) + 1 - \varkappa} \frac{f_{\varkappa}(\varkappa) h(\varkappa, \delta, x)}{f_{\varkappa}(\varkappa) - f_{\varkappa}(\varkappa) h(\varkappa, \delta, x)},$$

if $\delta x > \varkappa \log M(\delta)$. Here we put

$$h(\varkappa,\,\delta,\,x):=M(\delta)^{\varkappa}e^{\delta(0.5-x)}.$$

If now

$$(3.15) x > \frac{1}{2} + \frac{\kappa}{\delta} \log M(\delta) + \frac{1}{\delta} \log \frac{\log M(\delta)}{\log M(\delta) - 1},$$

we obtain

$$M(\delta)^{\kappa}e^{\delta(0.5-x)} < \frac{\log M(\delta) - 1}{\log M(\delta)}$$

 \mathbf{or}

$$\frac{1}{\log M(\delta)-1} \frac{h(\varkappa,\,\delta,\,x)}{1-h(\varkappa,\,\delta,\,x)} < 1.$$

Together with (3.14) this yields, in particular, $\eta_{\kappa}(2x) < 1$. As $\eta_{\kappa}(x)$ decreases with x, this proves (3.11) in view of (3.2).

In case (b) we start with

$$x > \varkappa + 1.5 + \frac{1}{\delta} \log \frac{\log M(\delta)}{\log M(\delta) - 1}$$

and infer

(3.16)
$$\frac{1}{\log M(\delta) - 1} \frac{e^{\delta(x+1.5-x)}}{1 - e^{\delta(x+1.5-x)}} < 1.$$

If, moreover, x satisfies (3.15), we may derive from (3.12) that

$$\eta_{\kappa}(2x) < rac{arkappa}{arkappa \log M\left(\delta
ight) + 1 - arkappa} \cdot rac{e^{\delta\left(arkappa + 1.5 - arkappa
ight)}}{1 - e^{\delta\left(arkappa + 1.5 - arkappa
ight)}}$$

and, by (3.16), $\eta_{\kappa}(2x) < 1$, which completes the proof of Theorem 3. From Theorem 3 we easily get the following explicit upper bounds for r_{κ} , choosing $\delta = 1$, $\delta = 0.9$ and $\delta = 0.8$ respectively.

COROLLARY.

$$v_{\varkappa} \leqslant \begin{cases} 2.73\varkappa + 3.65 & (\varkappa \geqslant 3), \\ 2.63\varkappa + 5.15 & (\varkappa \geqslant 4), \\ 2.54\varkappa + 11.58 & (\varkappa \geqslant 4). \end{cases}$$

4. Proof of Theorem 2. Comparing the three conditions (h_1) , (h_2) and (h_3) , the latter one appears to be the most complicated, as the optimal choice of the free parameter ϑ is quite difficult. Considering the modified condition

(h'₂)
$$h > k-1+g\sum_{i=1}^{g}\frac{1}{j}+g\log\frac{2k}{g}$$

instead of (h_2) , we shall prove that (h_3) implies (h'_2) . Assume that $0 < \vartheta \le g/k$, then we have

$$(4.1) g\log\frac{2}{\vartheta} + \sum_{i=1}^{g} \left[\vartheta k_{i}\right] \geqslant g\log\frac{2k}{g}.$$

Now let $g/k < \vartheta < 1$. Then we infer

$$\log \frac{k\vartheta}{g} \leqslant \frac{k\vartheta}{g} - 1$$

Oľ,

(4.2)
$$\log \frac{2k}{q} \leqslant \log \frac{2}{\vartheta} + \frac{1}{q} (k\vartheta - g).$$

We notice that

(4.3)
$$\sum_{j=1}^{g} \left[\vartheta k_{j} \right] \geqslant \sum_{j=1}^{g} \left(\vartheta k_{j} - 1 \right) = \vartheta k - g,$$

and (4.2) combined with (4.3), implies (4.1) for all θ , $0 < \theta < 1$; i.e. any natural number h with (h_3) or (h_2) satisfies (h'_2) as well.

For $g \leq 16$ Porter [7] computed ν_q :

	A.	2	3	4	5	6
-	v _g	4.42		9,32	11.80	14.28

g		Party	8	9	10	11.
v	7	16.77	19.25	21.74	24.22	26.70

	g	12	1.3	14	15	16
	ν _σ	29.21	31.68	34.15	36.62	39.09

and, by Theorem 3, we have $v_{17} \leqslant 49.75$ ($\delta = 0.93$), $v_{18} \leqslant 52.41$ ($\delta = 0.925$) and $v_{19} \leqslant 55.06$ ($\delta = 0.92$). Using these results we easily check that any natural number h with (h_2') satisfies (h_1), if $g \leqslant 19$. (Note that $\frac{g}{k} \log \left(\frac{k}{g} v_g\right)$ is, for fixed g, a decreasing function of k.)

When $g \geqslant 20$,

$$g(\log(2g) + \gamma) \geqslant (g+1)\log(2.63g+5.15)$$

holds, which, in virtue of (3.17) and

$$\sum_{j=1}^{g} \frac{1}{j} \geqslant \log g + \gamma,$$

completes the proof of Theorem 2.

Remark. If we make use of the corollary and substitute (3.17) in (h_1) , we get the following lower bound for h, which is simpler than (h_1)

$$(4.4) \quad h > k - 1 + \left(g + \frac{g}{k}\right) \log\left(2.63k + 5.15 \frac{k}{g}\right) - \frac{g}{k} \frac{k - g}{2.63g + 5.15}.$$

If $g \ge 17$, (4.4) represents the best known approximation to H. For small g Halberstam and Richert, using Porter's tables on ν_g , carried out some computations (see [3] and [4]) that lead to better results.

References

- [1] N. C. Ankeny and H. Onishi, The general sieve, Acta Arith. 10 (1964), pp. 31-62.
- [2] A. A. Buchstab, Combinatorial strengthening of the sieve of Eratosthenes method, Uspehi Mat. Nauk 22 (1967), no. 3 (135), pp. 199-226.
- [3] H. Halberstam and H. E. Richert, The distribution of polynomial sequences, Mathematika 19 (1972), pp. 25-50.
- [4] - Sieve Methods, New York, London 1974.
- [5] P. Kuhn, Neue Abschützungen auf Grund der Viggo Brunschen Siebmethode, Tolfte Skandinaviska Matematikerkongressen, Lund 1953, pp. 160-168.
- [6] R. J. Miech, Almost primes generated by a polynomial, Acta Arith. 10 (1964), pp. 9-30.
- [7] J. W. Porter, Some numerical results in the Selberg sieve method, Acta Arith. 20 (1972), pp. 417-421.
- [8] H. -E. Richert, Selberg's sieve with weights, Mathematika 16 (1969), pp. 1-22.
- [9] A. Schinzel et W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), pp. 185-208.
- [10] A. Selberg, On elementary methods in prime-number theory and their limitations, Den 11te Skandinaviske Matematikerkongress, Trondheim 1949, pp. 13-22.

Kaplansky's radical and quadratic forms over non-real fields

by

CRAIG M. CORDES (Baton Rouge, La.)

In [4], Kaplansky introduced the concept of a radical for a field F as the set R of all $a \in F$ satisfying [a, b] = 1 for all $b \in F$ where [a, b] is the Hilbert symbol for a, b. That is, [a, b] = 1 if there are $x, y \in F$ such that $ax^2 + by^2 = 1$, and [a, b] = -1 otherwise. It is easy to see that two other descriptions of R are 1) $a \in R$ if and only if the quadratic form $x^2 - ay^2$ is universal over F and 2) $R = \bigcap_{a \in K} G(1, a)$ where (1, a) is the quadratic form $x^2 + ay^2$ and G(1, a) is the non-zero elements of F represented by (1, a). Thus R is a subgroup of F containing F^2 . Kaplansky showed that a field whose radical had index 2 on F was an ordered field in which every positive element was the sum of two squares and R coincided with the positive elements. He then found the relationship between the radical and the quadratic form structure over generalized Hilbert fields (see [4]).

In this paper the radical for non-real fields (characteristic not 2 is always assumed) is investigated. It turns out that in many cases, results which held in terms of F^2 can be strengthened by replacing F^2 with R. For example, Kneser's lemma states that if $\varphi \oplus (a)$ is anisotropic, then $G(\varphi) \notin G[\varphi \oplus (a)]$. It is immediate from this that if φ is an anisotropic n-ary quadratic form, then φ represents at least n square classes. We will show φ represents at least n cosets of R. We also look at when the radical's index is 4 and what happens to R under quadratic extensions. Finally, an example is given illustrating a field with a radical which is neither F or F^2 .

In the remainder of the paper F is always a non-real field of characteristic not 2. Any quadratic form over F represents whole cosets of F^2 . The following proposition shows any φ with $\dim \varphi > 1$ represents cosets of R.

PROPOSITION 1. Let φ be a quadratic form with diagonalization $(a_1, \ldots, a_n), n \geq 2$ and let $r_1, \ldots, r_n \in R$. Then

$$G(\varphi) = G(r_1 a_1, \ldots, r_n a_n).$$