Sums of sets of group elements

b

John E. Olson (University Park, Penn.)

Dedicated to Henry B. Mann on his 70th birthday

1. Introduction. Let S be a set of s distinct non-zero elements in a group G (written additively).

Recently Szemerédi [4] proved the conjecture of Erdös and Heilbronn that if G is an abelian group of order n and $s \ge cn^{1/2}$ (c is an absolute constant), then the zero element has a representation as a sum $0 = a_1 + \dots + a_t$ of distinct elements a_i in S. Earlier Erdös and Heilbronn [1] had shown that if G is the group of prime order p and $s \ge cp^{1/2}$, then every element in G occurs as a sum of distinct elements in G. The constant $c = 3\sqrt{6}$ given by Erdös and Heilbronn was reduced to c = 2 by the present author [3].

In this paper we investigate similar questions for an arbitrary group. We prove that if G has finite order n and $s \ge 3n^{1/2}$, then zero occurs as a sum of distinct elements in S. This will follow from the stronger result that (for any group G) there is an arrangement a_1, \ldots, a_s of the elements of S such that either the sums $\varepsilon_1 a_1 + \ldots + \varepsilon_s a_s$ ($\varepsilon_i = 0$ or 1) represent at least cs^2 elements, or no element is represented exactly once. We show also that if G has finite order $n, s \ge 3\sqrt{2}n^{1/2}$, and not too many of the elements of S belong to a proper subgroup, then every g in G occurs as a sum of distinct elements in S.

2. Notation and preliminaries. If S is a subset of the group G, we shall denote by |S| the cardinality of S, by \overline{S} the complement of S in G, and by $\langle S \rangle$ the subgroup generated by S. If A_1, \ldots, A_n are subsets of G, let $A_1 + \ldots + A_n$ denote the set of all sums $a_1 + \ldots + a_n$, where $a_i \in A_i$. Finally, if A is a subset of G and n is a positive integer, let $nA = A + \ldots + A$ (n times).

THEOREM 2.1 (Kemperman, Wehn). Let A and B be finite non-empty subsets of G and let

$$|A+B| = |A| + |B| - k$$
.

Then every element $c \in A + B$ has at least k representations as a sum c := a + b with $a \in A$, $b \in B$.

Theorem 2.1 goes back to results of L. Moser and P. Scherk in the case of abelian groups, and was proved for non-abelian groups by J. H. B. Kemperman and (independently) D. F. Wehn. For proof see Kemperman's paper [2]. We shall use this theorem in the proof of the following result which appears to be new.

THEOREM 2.2. If A is a finite subset of G, $0 \in A$, and n is a positive integer, then either $nA = \langle A \rangle$ or

$$|nA| \ge |A| + (n-1) \left[\frac{1}{2} (|A| + 1) \right].$$

(Here [m] denotes the greatest integer in m.)

Proof. It suffices to show that

$$|nA| \geqslant |(n-1)A| + \frac{1}{2}|A|,$$

assuming n > 1 and $nA \neq \langle A \rangle$. Since $0 \in A$, we have $nA \subseteq (n+1)A$. Moreover, nA must be a proper subset of (n+1)A for, otherwise, nA = mA for all m > n which implies $nA = \langle A \rangle$, since nA is a finite set. Choose $x \in (n+1)A$, $x \notin nA$. Hence $x = a_0 + y$ where $a_0 \in A$ and $y \in nA$. Now define k by

(2)
$$|nA| = |(n-1)A| + |A| - k.$$

Since $y \in nA = (n-1)A + A$, y has, by Theorem 2.1, at least k representations as a sum y = z + a, with $z \in (n-1)A$, $a \in A$. Hence the set $A^* = \{a \in A \mid y - a \in (n-1)A\}$ is not empty and has size $|A^*| \ge k$. Since $y - A^* \subseteq (n-1)A$, we have

$$x-A^* = a_0 + y - A^* \subseteq a_0 + (n-1)A \subseteq nA$$
.

Thus $nA \supseteq (n-1)A \cup (x-A^*)$. But the sets (n-1)A and $x-A^*$ are disjoint since $x \notin nA$. Hence

$$|nA| \ge |(n-1)A| + |x-A^*| = |(n-1)A| + |A^*|$$

and so

$$(3) |nA| \geqslant |(n-1)A| + k.$$

The inequality (1) follows from (2) and (3).

We remark that equality may hold in Theorem 2.2. For example, suppose H is a finite subgroup of G and (assuming H is properly included in its normalizer in G) let x+H=H+x for some $x \in G$, $x \notin H$. Take $A=H\cup (x+H)$. Clearly, for each positive integer n, either $nA=\langle A \rangle$ or $|nA|=(n+1)|H|=\frac{1}{2}(n+1)|A|$.

3. Main theorems. The results in this section depend on the following lemma whose proof we postpone until the next section.

Lemma 3.1. Let B be a non-empty proper subset of a group G such that either B or its complement \overline{B} in G is finite, and let $k = \min\{|B|, |\overline{B}|\}$. Let a_1, \ldots, a_w be w distinct non-zero elements of G. Assume that the subgroup $H = \langle a_1, \ldots, a_w \rangle$ generated by a_1, \ldots, a_w has size $|H| \geq 2k$. Then

$$|(B+a_v) \cap \bar{B}| \geqslant \min\{\frac{1}{2}(k+1), \frac{1}{4}(w+2)\}$$

for at least one index $1 \leq v \leq w$.

Remark. In the lemma, the subgroup H may be infinite, in which case the condition $|H| \ge 2k$ is satisfied.

If a_1, \ldots, a_t is a sequence of group elements let $\Sigma = \Sigma(a_1, \ldots, a_t)$ denote the sum set

$$\Sigma = \{0, a_1\} + \{0, a_2\} + \ldots + \{0, a_t\}.$$

Note that if G is not abelian, then Σ depends on the order in which the a_i are listed. If $g \in \Sigma$, then by the number of representations of g in Σ we shall mean the number of t-tuples $(\varepsilon_1, \ldots, \varepsilon_t)$, $\varepsilon_i = 0$ or 1, such that $g = \varepsilon_1 a_1 + \ldots + \varepsilon_t a_t$.

THEOREM 3.1. Let S be a set of $s \ge 3$ distinct non-zero elements of G such that $\langle S \rangle = G$. Then there is an arrangement a_1, \ldots, a_s of the elements of S and an index $2 \le q \le s$ such that either $\Sigma(a_1, \ldots, a_{s-1}) = G$ or the following hold.

(i) For all $2 \leq t \leq q$

(4) $|\mathcal{L}(a_1, \ldots, a_t)| \ge 4 + \frac{1}{8} [(s-2)(s+3) - (s-t)(s-t+5)] - \Delta(s),$ where $O(s\log s) = \Delta(s) < s^2/72.$

(ii) If q < s, then $H = \langle a_{q+1}, \ldots, a_s \rangle$ is a finite proper subgroup of G and $|H| < 2\min\{|\Sigma|, |\overline{\Sigma}|\}$, where $\Sigma = \Sigma(a_1, \ldots, a_q)$ and $\overline{\Sigma}$ is the complement of Σ in G.

Proof. We first give the arrangement of the a_i for which the theorem holds. Choose $a_1 \in S$ arbitrarily and, having chosen a_1, \ldots, a_{j-1} , choose a_j from among the rest so as to maximize the size of $\Sigma(a_1, \ldots, a_j)$. Assume now that $\Sigma(a_1, \ldots, a_{s-1}) \neq G$.

For each $2 \le t \le s$, let $\sigma_l = |\mathcal{L}(a_1, \ldots, a_l)|$. Since $s \ge 3$ we must have $\sigma_2 = 4$ (i.e. $a_2 \ne -a_1$).

Fix an index $2 < t \le s$ and let $B = \Sigma(a_1, ..., a_{t-1})$. Clearly

$$\Sigma(a_1,\ldots,a_l)=B\cup[(B+a_l)\cap\bar{B}],$$

and hence

$$\sigma_i = \sigma_{t-1} + |(B + a_t) \cap \overline{B}|.$$

We now use Lemma 3.1. Let $k = \min\{|B|, |\overline{B}|\}$ and $H_t = \langle a_t, \ldots, a_s \rangle$. Assume, for the moment, that $|H_t| \ge 2k$. Then, by Lemma 3.1, there is an index $t \le v \le s$ such that

(5)
$$|(B+a_n) \cap \bar{B}| \geqslant \min\{\frac{1}{2}(k+1), \frac{1}{4}(s-t+3)\}.$$

By the way the a_i were arranged, equation (5) holds with v = t, therefore

(6)
$$\sigma_t \geqslant \sigma_{t-1} + \min\left\{\frac{1}{2}(k+1), \frac{1}{4}(s-t+3)\right\}.$$

We show next that the inequality (6) remains valid if k is replaced by $|B| = \sigma_{t-1}$. Suppose not. Then $k = |\overline{B}| < |B|$ and also s-t+3 > 2(k+1). Hence G is a finite group and $s-t+1 > 2k > |\overline{B}|$. But the set $C = \{0, a_t\} + \dots + \{0, a_{s-1}\}$ has size $|C| \ge s-t+1 > |\overline{B}|$, hence

(7)
$$|B| + |C| > |B| + |\bar{B}| = |G|.$$

It follows from (7) that B+C=G. Therefore $\Sigma(a_1,\ldots,a_{s-1})=G$, contrary to our assumption. Thus

(8)
$$\sigma_t \geqslant \sigma_{t-1} + \min\{\frac{1}{2}(\sigma_{t-1}+1), \frac{1}{4}(s-t+3)\},$$

provided $|H_t| \geqslant 2k$.

We now let q be the smallest index $(2 \leq q)$ such that

(9)
$$|\langle a_{q+1}, \ldots, a_s \rangle| < 2\min\{|\Sigma|, |\widetilde{\Sigma}|\},$$

where $\Sigma = \Sigma(a_1, ..., a_q)$. (Take q = s if (9) never occurs.) Hence statement (ii) holds, and the inequality (8) holds for all $2 < t \le q$.

The rest of the proof is a computation based on (8). Define numbers y_2, \ldots, y_s by the recursion $y_2 = 4$ and (for $2 < t \le s$)

(10)
$$y_t = y_{t-1} + \min\{\frac{1}{2}(y_{t-1}+1), \frac{1}{4}(s-t+3)\}.$$

Since $\sigma_t \geqslant y_t$ for all $2 \leqslant t \leqslant q$, it suffices to show

(11)
$$y_t \ge 4 + \frac{1}{8} [(s-2)(s+3) - (s-t)(s-t+5)] - \Delta(s),$$

where $O(s \log s) = \Delta(s) < s^2/72$.

If $s \leq 10$, equation (10) reduces to $y_t = y_{t-1} + \frac{1}{4}(s-t+3)$, and a simple computation shows that equality holds in (11) with $\Delta(s) = 0$.

For $s \ge 11$, let u = u(s) be the largest integer in the interval $3 \le u < s - 1$ such that

$$\frac{1}{2}(y_{u-1}+1) < \frac{1}{4}(s-u+3).$$

Hence

$$(12) 2y_{u-1} + u - 1 < s.$$

Equation (10) becomes

$$y_{t} = \begin{cases} \frac{1}{2}(3y_{t-1}+1) & \text{if} \quad 3 \leq t \leq u, \\ y_{t-1} + \frac{1}{4}(s-t+3) & \text{if} \quad u < t \leq s. \end{cases}$$

Hence

(13)
$$y_t = 5\left(\frac{3}{2}\right)^{t-2} - 1 \quad \text{(for } 2 \le t \le u\text{)}.$$

From (12) and (13) we get

$$(14) 10(\frac{3}{2})^{u-3} + u - 3 < s.$$

For $2 \le t \le s$ we have

$$y_t = 4 + \sum_{j=3}^t \frac{1}{4}(s-j+3) - \sum_{j=3}^r \frac{1}{4}(s-j+3) + \sum_{j=3}^r \frac{1}{2}(y_{j-1}+1),$$

where $r = \min\{u, t\}$. Hence

$$y_{t} \ge 4 + \sum_{j=3}^{t} \frac{1}{4} (s-j+3) - \sum_{j=3}^{u} \frac{1}{4} (s-j+3) + \sum_{j=3}^{u} \frac{1}{2} (y_{j-1}+1)$$

$$= 4 + \frac{1}{8} [(s-2)(s+3) - (s-t)(s-t+5)] - \Delta(s),$$

where

$$\Delta(s) = -\sum_{j=3}^{u} \frac{1}{2} (y_{j-1} + 1) + \sum_{j=3}^{u} \frac{1}{4} (s - j + 3)$$
$$= -y_{u} + 4 + \frac{1}{8} [(s - 2)(s + 3) - (s - u)(s - u + 5)].$$

Thus (11) holds with

(15)
$$\Delta(s) = \frac{1}{8} \{ 2s(u-2) + u(5-u) + 26 - 8y_u \}.$$

By (14) $u = O(\log s)$, hence by (15) $\Delta(s) = O(s\log s)$. If $u \ge 10$, then by (14) s > 18(u-2), and so by (15) $\Delta(s) < \frac{1}{4}s(u-2) < s^2/72$. By computing the value of y_u from (13) for each u in the range $3 \le u \le 9$, it is easy to verify from (15) that $\Delta(s) < s^2/72$. This completes the proof.

THEOREM 3.2. Let S be a set of s distinct non-zero elements of G. Then there is an arrangement a_1, \ldots, a_s of the elements of S such that either

(A) every element in $\Sigma = \Sigma(a_1, ..., a_s)$ has at least two representations in Σ , or

(B)
$$|\Sigma| > 1 + cs^2$$
, where $c = \frac{1}{8} - O(\log s/s) > \frac{1}{9}$.

Proof. The proof is by induction on s. Statement (B) holds trivially for small s (with $c = \frac{1}{8}$), so assume $s \ge 6$. Our induction hypothesis is that, for smaller s, the theorem is true in the weaker form with $c = \frac{1}{9}$. We may assume without loss of generality that $\langle S \rangle = G$. Now let a_1, \ldots, a_s be the arrangement and $2 \le q \le s$ the index given by Theorem 3.1. We may assume that $\mathcal{L}(a_1, \ldots, a_{s-1}) \ne G$, since otherwise statement (A) holds. Hence, by Theorem 3.1,

(16)
$$|\Sigma(a_1,\ldots,a_t)| > 3 + cs^2 - \frac{1}{8}(s-t)(s-t+5)$$

holds for all $2 \leqslant t \leqslant q$, where $c = \frac{1}{8} - O(\log s/s) > \frac{1}{9}$. If q = s we are done. Assume q < s. Thus $H = \langle a_{q+1}, \ldots, a_s \rangle$ is a proper subgroup of G. Now let $1 \leqslant v \leqslant q$ be the largest index such that $a_v \notin H$. We now apply our

induction hypothesis to the set of s-v elements $a_{v+1},\,\ldots,\,a_s$. Thus after relabelling these elements, either

(17)
$$|\Sigma(a_{v+1},\ldots,a_s)| > 1 + \frac{1}{9}(s-v)^2,$$

or every element in $\Sigma(a_{v+1}, \ldots, a_s)$ has at least two representations. But the latter possibility implies that every element of $\Sigma(a_1, \ldots, a_s)$ has at least two representations. We may assume, therefore, that (17) holds. Since $a_{v+1}, \ldots, a_s \in H$ and $a_v \notin H$, the set $\Sigma(a_v, a_{v+1}, \ldots, a_s)$ contains twice as many elements as $\Sigma(a_{v+1}, \ldots, a_s)$. Hence

(18)
$$|\Sigma(a_v, \ldots, a_s)| > 2 + \frac{2}{9}(s-v)^2.$$

We may assume that $v \ge 3$ since, if v = 1 or 2 and $s \ge 6$, the right hand side of (18) exceeds $1 + \frac{1}{8}s^2$. Put $A = \Sigma(a_1, \ldots, a_{v-1})$ and $B = \Sigma(a_v, \ldots, a_s)$. Clearly

$$\Sigma = \Sigma(a_1, \ldots, a_s) = A + B.$$

We may assume that at least one element of Σ has a unique representation as a sum a+b, $a \in A$, $b \in B$, for otherwise every element of Σ has at least two representations in Σ . Hence, by Theorem 2.1,

$$|\Sigma| \geqslant |A| + |B| - 1,$$

Taking t = v - 1 in (16) we get

(20)
$$|A| > 3 + cs^2 - \frac{1}{8}(s - v + 1)(s - v + 6).$$

Hence, by (18), (19) and (20),

$$|\mathcal{Z}| > 4 + cs^2 + \frac{2}{9}(s-v)^2 - \frac{1}{8}(s-v+1)(s-v+6) > 1 + cs^2$$
.

This proves the theorem.

Taking $c = \frac{1}{9}$ in Theorem 3.2, we get as a direct consequence the following result for a finite group.

COROLLARY 3.2.1. If S is a set of s distinct non-zero elements in a finite group of order n and $s \ge 3n^{1/2}$, then there is an arrangement a_1, \ldots, a_s of the elements of S such that every element in $\Sigma = \Sigma(a_1, \ldots, a_s)$ has at least two representations in Σ . In particular, 0 occurs non-trivially in Σ .

For the group of prime order p it is known (see [3]) that every element of the group can be written as a sum of distinct elements from a set S provided $|S| > 2p^{1/2}$. We next use Theorem 3.1 to prove a similar result for an arbitrary finite group.

THEOREM 3.3. Let S be a set of s distinct non-zero elements in a finite group G of order n, where $s \ge cn^{1/2}$ and $c \ge 3\sqrt{2}$. Assume that no proper subgroup H of G contains more than $c \mid H \mid^{1/2}$ of the elements in S. Then there is an arrangement a_1, \ldots, a_s of the elements of S such that $\Sigma(a_1, \ldots, a_s) = G$, and every element of G has at least two representations in $\Sigma(a_1, \ldots, a_s)$.

Remark. The proof is such that the bound $c \ge 3\sqrt{2}$ can be improved if the smallest prime divisor of n is greater than 2. In fact, we shall prove the theorem assuming

(21)
$$c \geqslant 3 \left(\frac{8p-2}{8p-9} \right)^{1/2},$$

where p is the smallest prime divisor of n.

Proof. Our hypothesis implies $\langle S \rangle = G$, so we may apply Theorem 3.1. Let q $(2 \leq q \leq s)$ be the index and a_1, \ldots, a_s the arrangement given in Theorem 3.1. It suffices to show that $\Sigma(a_1, \ldots, a_{s-1}) = G$. Suppose not. Then

(22)
$$|\Sigma(a_1, \ldots, a_t)| \ge 4 + \frac{1}{8} [(s-2)(s+3) - (s-t)(s-t+5)] - s^2/72$$

 $> 1 + \frac{1}{9} s^2 - \frac{1}{8} (s-t)^2 - \frac{1}{2} (s-t),$

for all $2 \le t \le q$. We must have q < s-1, since otherwise (22) implies $|\Sigma(a_1, \ldots, a_{s-1})| > \frac{1}{5}s^2 > n$,

which is impossible. Now let $\Sigma = \Sigma(a_1, \ldots, a_q)$ and let $H = \langle a_{q+1}, \ldots, a_s \rangle$. H is a non-trivial proper subgroup of G satisfying $|H| < 2|\overline{\Sigma}| = 2(n - |\Sigma|)$. Hence

(23)
$$n\left(\frac{2d-1}{2d}\right) > |\Sigma|,$$

where |H| = n/d, By (22) we have

$$|\Sigma| > \frac{1}{9}s^2 - \frac{1}{8}(s-q)^2 - \frac{1}{2}(s-q).$$

Hence, by (23) and (24),

(25)
$$n\left(\frac{2d-1}{2d}\right) > \frac{1}{9}s^2 - \frac{1}{8}(s-q)^2 - \frac{1}{2}(s-q).$$

Clearly $\Sigma(a_1,\ldots,a_{s-1})=\Sigma+C$, where $C=\{0,a_{q+1}\}+\ldots+\{0,a_{s-1}\}$. The inequality $|\Sigma|+|C|>n$ implies $\Sigma+C=G$, contrary to assumption. Therefore $|\Sigma|+|C|\leqslant n$. Since $|C|\geqslant s-q$, we have $n\geqslant |\Sigma|+(s-q)$, and therefore, by (24),

$$(26) n > \frac{1}{9}s^2 - \frac{1}{8}(s-q)^2 + \frac{1}{2}(s-q).$$

Adding the inequalities (25) and (26), we get

(27)
$$n\left(\frac{4d-1}{4d}\right) > \frac{1}{9}s^2 - \frac{1}{8}(s-q)^2.$$

Now $s \ge cn^{1/2}$ and, since H contains at most $c(n/d)^{1/2}$ of the elements in S, $s-q \le c(n/d)^{1/2}$. Hence, by (27),

(28)
$$c^2 < 9 \left(\frac{8d-2}{8d-9} \right).$$

Since $d \ge p$, where p is the smallest prime divisor of n, the inequality (28) contradicts the bound on c given in (21). Thus $\Sigma(a_1, \ldots, a_{s-1}) = G$ and the theorem is proved.

Assuming $s \ge cn^{1/2}$, we may now strengthen the conclusion of Corollary 3.2.1. Again assume c satisfies (21), where p is the smallest prime divisor of n.

COROLLARY 3.3.1. Let S be a set of non-zero elements from a finite group G of order n of size $|S| \ge cn^{1/2}$. Then G contains a subgroup H, and S contains t distinct elements a_1, \ldots, a_t , such that $\Sigma(a_1, \ldots, a_t) = H$, $t \ge c|H|^{1/2}$, and every element of H has at least two representations in $\Sigma(a_1, \ldots, a_t)$.

Proof. Simply let H be a subgroup of G such that $|S \cap H| \ge c|H|^{1/2}$, but $|S \cap K| \le c|K|^{1/2}$ for all proper subgroups K of H. Then apply Theorem 3.3 to the set $S \cap H$.

Note that each theorem in this section asserts that there is an arrangement a_1, \ldots, a_s of the elements of S such that something is true for $\Sigma(a_1, \ldots, a_s)$. We leave open the question of what can be said about $\Sigma(a_1, \ldots, a_s)$ for an arbitrary arrangement a_1, \ldots, a_s .

4. Proof of Lemma 3.1. To prove Lemma 3.1 we shall use Theorem 2.2 and a modification of the averaging process due to Erdös and Heilbronn [1].

First, we may assume without loss of generality that $k = |B| \le |\overline{B}|$. This is because, for $g \in G$,

$$(29) |(B+g) \cap \overline{B}| = |(\overline{B}+g) \cap B|.$$

To prove (29) assume first that B is finite. Hence

$$\begin{aligned} |(B+g) \cap \bar{B}| &= |B+g| - |(B+g) \cap B| \\ &= |B-g| - |B \cap (B-g)| = |(B-g) \cap \bar{B}| = |B \cap (\bar{B}+g)|. \end{aligned}$$

By symmetry (29) holds if \bar{B} is finite.

Next, define a mapping λ from G to the non-negative integers by

$$\lambda(g) = |(B+g) \cap \overline{B}|.$$

The mapping λ is "sub-additive", i.e.

(30)
$$\lambda(x+y) \leq \lambda(x) + \lambda(y),$$

as shown by the simple calculation:

$$\begin{split} \lambda(x+y) &= |(B+x+y) \cap \widetilde{B}| = |(B+x) \cap (\overline{B}-y)| \\ &= |(B+x) \cap (\overline{B}-y) \cap \overline{B}| + |(B+x) \cap (\overline{B}-y) \cap B| \\ &\leq |(B+x) \cap \overline{B}| + |(\overline{B}-y) \cap B| = |(B+x) \cap \overline{B}| + |(B+y) \cap \overline{B}| \\ &= \lambda(x) + \lambda(y) \,. \end{split}$$

Now let $\alpha = \max\{\lambda(a_i) | 1 \le i \le w\}$. We divide the proof into two cases. Case 1: $w \ge 2k-1$. Let $C = \{a_1, \ldots, a_{2k-1}\}$. Thus

(31)
$$\sum_{e \in C} \lambda(e) \leqslant (2k-1) \alpha.$$

On the other hand

$$\begin{split} \sum_{c \in C} \lambda(c) &= \sum_{c \in C} |(B+c) \cap \overline{B}| = \sum_{c \in C} [|B| - |(B+c) \cap B|] \\ &= |C| \, |B| - \sum_{c \in C} |(B+c) \cap B| \geqslant |C| \, |B| - \sum_{\substack{x \in C \\ x \neq 0}} |(B+x) \cap B| \\ &= |C| \, |B| - |B| (|B| - 1). \end{split}$$

Hence

(32)
$$\sum_{o \in C} \lambda(o) \geqslant k^2.$$

By (31) and (32), $a \ge k^2/(2k-1) > k/2$. Hence $a \ge \frac{1}{2}(k+1)$ and the lemma is proved in this case.

Case 2: $w \le 2k-2$. As in Case 1 we shall construct a set C of size |C|=2k-1. Form the set $A=\{0,\,a_1,\,\ldots,\,a_w\}$ and let

$$u = \left[\frac{1}{2}(|A|+1)\right] = \begin{cases} \frac{1}{2}(w+2) & \text{if } w \text{ is even,} \\ \frac{1}{2}(w+1) & \text{if } w \text{ is odd.} \end{cases}$$

We now use Theorem 2.2. Since, by hypothesis, the group $\langle A \rangle$ has order at least 2k, we conclude from Theorem 2.2 that $|nA| \ge 2k$ or $|nA| \ge (w+1) + (n-1)u$, for each positive integer n. Define integers r and q by

(33)
$$2k = (w+1) + (r-2)u + q, \quad 0 \le q < u.$$

Note that $r \ge 2$ because $w \le 2k-2$. Hence $|rA| \ge 2k$ and

$$|nA| \geqslant (w+1) + (n-1)u$$
 $(1 \leqslant n \leqslant r-1).$

Therefore rA has a subset C of non-zero elements of size |C|=2k-1 such that

$$|nA \cap C| \geqslant w + (n-1)u \quad (1 \leqslant n \leqslant r-1).$$

If $c \in nA$, then $\lambda(c) \leq na$ by (30). Hence

$$\sum_{a \in C} \lambda(c) \leqslant wa + u2a + \ldots + u(r-1)a + qra = a(w-u+\frac{1}{2}r^2u - \frac{1}{2}ru + rq).$$

Since $r \ge 2$ and $u \ge 1$, we have $\frac{1}{2}ru \ge \frac{1}{2}r + u - 1$, hence

$$\sum_{c \in C} \lambda(c) \leqslant \alpha (1 + w - 2u + \frac{1}{2}r^2u - \frac{1}{2}r + rq)$$

$$\leqslant \alpha (\frac{1}{2}r^2u - \frac{1}{2}r + rq) = \frac{1}{2}\alpha r(ru - 1 + 2q).$$

ACTA ARITHMETICA XXVIII (1975)

Using (33) to eliminate r, we get

$$\begin{split} \sum_{c \in C} \lambda(c) \leqslant \frac{\alpha}{2u} \left(2k - 1 + 2u - w - q \right) \left(2k - 2 + 2u - w + q \right) \\ \leqslant \frac{\alpha}{2u} \left(2k - 1 + 2u - w \right) \left(2k - 2 + 2u - w \right). \end{split}$$

Hence

$$\sum_{c \in C} \lambda(c) \leqslant \begin{cases} \frac{\alpha}{w+2} (2k+1)(2k) & \text{if } w \text{ is even,} \\ \frac{\alpha}{w+1} (2k)(2k-1) & \text{if } w \text{ is odd.} \end{cases}$$

Since $w \leqslant 2k-2$, $\frac{2k+1}{w+2} < \frac{2k}{w+1}$, hence

$$\sum_{c \in C} \lambda(c) < \frac{4k^2\alpha}{w+1}.$$

On the other hand $\sum_{c \in C} \lambda(c) \ge k^2$, exactly as in Case 1, so $\alpha > \frac{1}{4}(w+1)$. Hence $\alpha \ge \frac{1}{4}(w+2)$ and the lemma is proved.

References

- P. Erdös and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1964), pp. 149-159.
- [2] J. H. B. Kemperman, On complexes in a semigroup, Indag. Math. 18 (1956), pp. 247-254.
- [3] J. E. Olson, An addition theorem modulo p, J. Combinatorial Theory 5 (1968), pp. 45-52.
- [4] E. Szemerédi, On a conjecture of Erdős and Heilbronn, Acta Arith. 17 (1970), pp. 227-229.

DEPARTMENT OF MATHEMATICS PENNSYLVANIA STATE UNIVERSITY University Park, Pennsylvania

Received on 29. 3. 1974 (548)

A note on a cyclotomic diophantine equation

Ъ

VEIKKO ENNOLA (Turku)

1. Introduction. Let $m \ge 3$ be a natural number, $\zeta_m = \exp(2\pi i/m)$, and let $K_m = Q(\zeta_m)$ denote the cyclotomic field over the rationals Q. We shall prove the following result:

THEOREM A. If $q \geqslant 3$, β is a unit in K_m , and the equation

$$a^q = \beta + 1$$

has a solution $a \in K_m$, then a = 0 or a is a root of unity.

In the special case when m is a prime > 3 and a is required to be a unit in K_m , this result has been recently proved by Newman [5]. His proof depends on the following theorem (for prime values of m):

THEOREM B. If m is any integer ≥ 4 , $2 \leq g \leq m-2$, and $q \geq 2$, then the only solution $a \in K_m$ of the equation

$$(2) 1 + \zeta_m + \zeta_m^2 + \ldots + \zeta_m^{g-1} = \alpha^q$$

is given by q=2, m=12, g=7, $\alpha=\pm\zeta_m^5(1-\zeta_m)^{-1}$.

In particular, if m is prime, then (2) does not have solutions with $q \ge 2$. This fact was stated as a conjecture by Newman [4] and was first proved by the author [1]. A very elegant proof of a more general result was given by Loxton [3]. The proof given by Newman [5] is incorrect. (The formula for $\eta^n - \zeta$ on p. 87 is wrong.) In the general case Theorem B has been proved by the author [2].

Using the ideas of Newman we shall prove Theorem A directly without leaning on Theorem B. It is possible that the new method will cause a simplification in the proof of Theorem B which is extremely complicated.

2. Proof of Theorem A. We assume that (1) has a solution, where α is nonzero and not a root of unity, and deduce a contradiction. Without loss of generality, we may assume that q=4 or that q is an odd prime. By extending the field K_m if necessary, we may also assume that q|m. We use the following well-known fact: If γ is any unit in K_m , then there