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1. Introduction. Let S be a set of ¢ distinet non-zero elements in
a group G (written additively).

Recently Szemerédi [4] proved the conjecture of Erdos and Heilbronm
that if @ is an abelian group of order n and s> en'” (¢ iz an absolute
constant), then the zero element has a representation as a yum 0 = @, 4-...

..+ @ of distinet elements a; in §. Tarlier Frdés and Heilbronn [1]

had shown that if & is the group of prime order p and s> e¢p*?, then

every element in & occurs ag & sum of distinet elements in S. The constant
¢ =3V6 given by Brdds and Heilbronn was reduced to & == 2 by the
present anthor [3].

In this paper we investigate similar questmns for an arbitrary group.
‘We prove that if @ has finite order » and s = 3»%%, then zero oceurs as
2 smmn of distinet elements in 8. This will follow from the stronger result
that (for any group @) there is an arrangement &,, ..., 6, of the elements
of § such that either the sums e,0,+... +5¢, (& = 0 or 1) represent
at leagt ¢s? elements, or no element is represented exactly once. We show
also that if G has finite order 2, s > 3V2n'?, and not too many of the
elements of. 8§ belong to a proper subgroup, then every g in @ oceurs ag
a sum of digtinet elements in &§.

2. Notatiom and preliminarvies. If § is a subset of the group &, we
shall denote by |8| the cardinality of §, by § the complement of & in G,
and by ¢8> the subgroup generated by 8. If 4,,..., 4, are subsets of &,
let A, --...+ 4, denote the set of all sums ¢y +...+6,, where aed,.
Tinally, if A is & subset of & and » is a positive integer, let nd = 4 .. +A _
{n times).

THEoREM 2.1 (Kemp_erman, Wehn). Let A and B be finite non-ampt/y :

subsels of G and let

|A+B| = |4i+ B~k
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Then every element ce A B has at least & representalions ag & sum ¢ ==
with acd, beB. '

Theorem 2.1 goes back to results of L. Moger and P. Scherk in the
case of abelian groups, and was proved for nom-abelian groups by
J. H. B, Kemperman and (independently} D. F. Wehn., For proof see
Kemperman’s paper [2]. We shall use this theorem in the proof of the
following result which appears to be new. .

&b

TumoreM 2.2. If A is a findle subset of &, 0c A, ond n is o positive
integer, then either nd = (4> or
, lnd| = LA+ (2 —1)[R(4] +1)].
(Here [m] denctes the greatest integer in m.)
‘ ,Proo_f. It suffices’ to show that

(1) A 1) A +314],

agsuming n>1 and nd # (4. Since 0c4, we have nd < (n--1)4
Moreover, n.d must be a proper subset of (n--1) 4 Lo, otherwise, nd == md
for all m > n which implies nd = (4}, since nd is o finite set. Choose
we(n+1)A, a;mA Hence ¢ = a0+y where aneA and yend. Now defme
k by

(2) : mAd| = [(n
Bince yend =

~w_1),,4| + 4] —F.

(n—1)d -4, y has, 'by Theoremn 2.1, at least % rep.re

senmmons as a Sum y =z-+a, with ze(n—1)A4, aeA Heneo the get -
= {aecd| y—ae(n—1)A} is not empty and has size |4*| = k. Since

y—4A" < (n-—1)4, we have,
#—A" =g, 4+y—A* < agt(n-—1)A < A,
Thus nd 2 (n—1)4 U (3—4%). Bub the sets (n—1)4 and g—A* are

disjoint since #¢nd. Hence

Al 2 [(n—1) 4]+ 1z~ A*s = |(n—1)A]-+ 4%,

and so
(3) _ nd} = (n-1)4|+%.
The inequality (1) follows from. (2) and (3).

We remark that equality may hold in Theorem 2.2. Tor exampe,
suppose H is o finite subgroup of ¢-and (assuming H is properly inclnded
in its normalizer in @) let @+H = H -+ for some wel, weH, Take 4
=H U (z+H). (learly, for each. po&tlve integer n, either nd = (A> or
mA| = (n+1)|H| = §(n+1)|4]. '

3. Main theorems. The results in this soction depend on the fullowmg '

lexnma whose proof we postpone until the next gection.
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T awhere O(slogs) = A(8)<C
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Lemma 3.1, Let B be a non-empty pwper subset of a group G such
that cither B or its complement B in G is finite, and let k = min{|B],1B[}.
Lt thyy ..y Oy D w distinet non-zero elements of G Assume that the subgf.b oup
H == {8y, ..., 4,> generaied by a,, ..., @, has size \H| > 2k Then

(B +a,) N B|>mn{ik+1), w-+2)}
for ot least one inder 1 << v < w.

Remark. In the lemma, the subgroup H may be infinite, in which
case the condition |H| = 2k is satistied.

I @, ..., is & sequence of group elements let X' == X{ay,..
denote the sum seb ‘

T = {0, 410, ag}+ ...+ {0, 4.
Wote that if ¢ is not abelian, then X depends on the order in which the
a; ave listed. If ge X, then by the number of representations of g in X we
shall mean the number of i-tuples (g, - s,,), g =0 or l, such that .
G == el 6.

THI]OI{-FM ‘3.1, Let 8 be o set of s 3 distinct non-zero clements of G
such that (8> = G. Then there is on arrangement Gy, .. s & OF the elements
of 8 and an index 2 < g<<s such that either Z(ay, .. vy Oy_1) =@ or the
following hold.

(i) For all 2

(4) Xy r )l =4

"3 a’t)

P q
+3[(s—2)(s +3)
s“/TZ

(i) If g<<s, then H = {tyyys .-
G and |H|< 2min{|Z}, |X|}, where Z = Z{aq, .
plement of X in .

Proof. We first give the arrangement of the a; for which the theorem
holds. Cheose a,¢8 arbitrarily and, having chosen &, ...; .1, choose
a; trom dmong the rest so as to maXirize the size of X (al, ey ) Assumeu
now that Z{ag, ..., a,_,) # G

For each 2 <t s, lot
have o, = 4 (le. ay # —ay).

Tix mn index 2 <1< and let B = Z(ay, ...,

D@y ey ) =B Y [(B+a) N B,

—(s—1) {81 40)] —A(s)s

o Gy 18 @ fimite proper subgroup of
oy @) and X is the com-

g = |Z(ayy ...y @)|. Since s3>3 we mush

a;_,). Clearly

and hence _
0 = O+ (B +a) N Bl

We now use Lemma 3.1. Let & = mm{[B I, 1B} and Hy = {@; .- @)
Agsume, for the moment, that [Hy > 9%. Then, by Lemma 3.1, thele. is
an index =< v s such that :

() (B+ay) N Bl zmin{d(k-+1), s —+3)
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By the way the a; were arranged, equation (5) holds with » == #, therefore

(6) oy 2 oy +min {3k +1), s —t+3)}.

We show next that the inequality (6) remains valid if % is replaced by

|B| = o,_,. Suppose not. Then k¥ = |B| < |B| and also s —£-+3 > 2(k4-1),

Henee ¢ 18 o finite group and s —¢+1 > 2k > |Bj. But the set ¢ = {0, a,} +
-.+10, @,._,} has size || > s—1t -1 > |5, hence ’ ‘

(7) . |B] +1CL > |B|+|B] = |¢{.

It follows from (7) that B+ ¢ = @. Therefore Z(a,, ...
to our assumption. Thus

(8) o=
provided [H,) = 2 :

‘We now let ¢ be the smallest index (2 < ¢q) such that .
(9) |<%+1; .

where X' = X(ay, ..., o). (Take ¢ = s if (9) never oceurs.) Fence statenent
-(ii) holds, and the 1nequa]ity (8) holds for all 2 <t q.
The rest of the proof is a computation based on (8). Define numbers

? a’s—-l) = G, COIltI‘B.-I‘y

Oy +Min{$ (g, +1), i(s‘»~t—,!~3)},

. @] < 2min{ %], [T},

Y2y -+ ¥, by the recursion g, = 4 and (for 2 < £ < s)

{10} Y= ?/t-1+min{%"f?lt—1 +1), $(s—1-3)}.
Smce a2z y, for all 2 <1< g, it suffices to show

(11) 3!.:24+%[(8~2)(8+3)—(S—t)(8.~3+5}]——d(8),

where O(slogs) = 4(s) < $2/72,
If 5 < 10, equation (10) reduces to 4, = u;_, + }(s —1-+3), fmd a simple
computation shows that equality holds in (11) with A(s) =

For s2>11, let » = u(s) be the I'Lrgest m‘reger in the interval
3 < u<Cs—1 such that

Uua+1) < ${s—u ~l--3),.

Hence
(12) . o 2y tu—l<s,
Bquation (10) becomes o f '
I R{CTRESY it 3<Eu,
Yoib R —F43) i w<i<s,
Hexce S
(13) - Lo =BRTe1l (for 2 < i< u).
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From (12) and (13) we get -

(14) 108" fu—3 < s.

For 2 < t< s we have

7 —4+Zi w+3)~m2ﬂs—7+3)+2 (Hy_1 +1),

=
where # = min{u, t} Hence

u

o2 4+Zé8-ﬂ+3)—2 (s—i+3) +2 (951 +1)

Fe=3 J=3 I=3

= A+ 3[(s—2) (s +3) (s =) (s —t +5)] — 4 (s),

where
A(s) = 2 (#1+1) +Z (s—j+3)
]=
_ == —'t/u+4+ i[5 —=2)(s +3) — (s —m){s —u+3)].
Thus (11} holds wfoh
(15) A(s) = §{8s(u—2)+u(d —u)+26 —8y,}.

By (14) %.= O (logs), hence by (13) A{s} = O(slogs). If » =10,
then by (14) &> 18(u—2), and so by (15) A{s) < Ls{u—2) < s3/72.
By computing the value of y, from (13) for each « in the range 3 = u << 9,

it is easy to verify from (15) that A(s) < §%/72. This completes the proof.

TaROREM 3.2. Let 8 be a scb of ¢ distinet non-zero elements of &. Then
there is an errangement a., ..., &, of the elements of § such that either

(A) every clement in £ = Z(ay, ..., a;) has at least two representations
in X, or : ' :

(B) 12| > 1+ e¢s?, where ¢ = §—0(logsfs) > ;

Proof. The proof is by inducticn on.s. Statement (B) holds trivially
for small ¢ (with ¢ = 3}), so assame s3> 6. Our induction hypothesis is
that, for smaller s, the theorem is true in the weaker form with ¢ = 3
We may aggume without loss of generality that (8> = ¢ Nowlet ay, ..., a,
be the arrangement and 2 < g5 5 the index given by Theorem 3.1. We
may assume that X(a,, ..., 8,_;) # G, since otherwise statement (A)
holds. Hence, by Theorem 3.1, -t ' |

(16) [ Z(tyy +nny @)| > 34087 }(s—t)(s—t+5)

holds for all 2 <t # < ¢, where ¢'=}—0 logs/s) .# ¢ = & we are done.
Agsume ¢ << s. Thuq H = (s« @ I8 & proper subgroup of &. Now
let 1< v g be the largest index smch that a,¢Z. We now apply our
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induction hypothesis to the set of s —v elements Ooyp1y
relabelling these elements, either

(17) ST
or every element in X(a,,;, ..., 6;) has at least two representations. But
the latter possibility implies that every element of Z(a,, ..., a,) has at least
two representations, We may assume, therefore, that (17) holds. Rince
a, 41 =g Gge and a, ¢ H, the set Z(a,, @,,, ..., &,) containg twice as many
elements as (@, ..., 6,). Hence

(18) | D@y -oey )] > 2 4-2(s— )2,

We may assume that » > 3 since, if ¢ =1 or 2 and s = 6, the right hand.
side of (18) exceeds 1 +4s% Put A = Z(ay, ..., #,_;) and B = X{a,,...,a,).
Clearly

. as)l > 1"]"%(3_'7))2?

a) = A B.

We may assume that at Ieast one element of £ hag a unique representation
as A s ¢ ++b, aed, beB, for otherwise every element of X has at least
two representations in 2. Hence, by Theoremn 2.1, ‘

2= 2ty i,y

(19) X 2= 4]+ |Bl -1,
Taking t = v—1 in (16) we gat
(20) A>3 +est (s —v L) (s —v4-6).

Tlence, by (18), (19) and (20},
12 > 4+ 052+ 2(s—0)2— (8 0 -+1) (s — 0+ 6) > 1 - o5,

This proves the theorem.

Taking ¢ = § in Theorem 3.2, we get as a direct consequence the

following result for a finite group. _

CoroLrary 3.2.1. If 8 is a set of s distingt non-zere elements in o finite
group of order n and s = 30'%, then there is an arrangement 4y, ..., o, of
the: elements of 8 sueh thai every element in X = Zlagyny a,) has ot least
two representations in X. In particular, 0 oceurs non-trivielly in .

Tor the group of prime order p it is known (see [37]) that every eloment
of the group can he written ag a sum of distinet elements from w set
8 provided |8| > 2p™, We next use Theorem 3.1 to prove o similar result
for an arbitrary finite group. _

TrmorEM 3.8. Let S be a set of s distinol non-eere eloments in o finite
group G of order n, where s = on'* and ¢ = V2. Assume that no proper
subgroup H of G contdins more than ¢ |H " of the elements in 8. Then there
8 am arrangement a,, ..., a, of the dlements of § such that Z(ay, ..., a,) = @,

and every element of G has at least iwo representadions in X(ay, ..., 4,).

ooy &y, Thus after
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(28) 62<'9(
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Remark. The proof iy such that the bound ¢ > 3¥2 can be improved
if the smallest prime divisor of n is greater than 2. In fact, we shall prove
the theorem assuming _

. o3 8p — 2\

¢
(21) > ( by 9) '
where p is the sinallest prime divisor of %.

Proof. Our hypothesis implies (8 = @, so we may apply Thecrem
3.1. Let ¢ (2 < g<6) be the index and @, ..., a, the arrangement given
in Theorem 3.1. It suffices to show that X(ay, ..., a,.,) = &. Suppose not.
Then
(22) 1@ s @) 2 4RI —2) 8 +8) — (s — ) (s —t+B)] —s/72

> 1450 s—1pP—f(s 1),

for all 2 <7< ¢q. We must have ¢<< 8--1, since otherwise (22} implies
|2ty ey @y )] > %82 > 1y
whicli is impossible. Now let & = X{a,, ..., a;) and let H = {Ogg1s ey )

H is a non-frivial proper subgroup of & satisfying |H| < 2]Z| = 2(n—|Z|).
Hence

(23) : n(gigl)> 1=,

where |H| = a/d. By .(22) we have

(24) 121> 352 -3 — g1~ H(s —q).
Henee, by (23) and (24),

(25) n( et (L S T}

Clearly Z(ay, ..., ¢,..;) = Z-+C, where ¢ = {0, ag }+...+{0, o _,}.
The inequality [Z]4-|0)> n implies X+ 0 =&, contrary to agsumption.
Therefore X4 |0 < n. Since 10/ = 5—-9g, we have n > {X]--(s=¢), and
therefore, by (24),

(26) n > jet~L{s—q)2--Es—q).

Adding the inequalities (25) and (26), we geb

ﬂ( “ Ml) > 3si—(s— ).

(27)

4a
Now 52 en'® and, since H contains at most ¢(n/d)'? of the elements
in 8, s—g<e{n/d)*. Hence, by (27),

3d—2

8dm9)'
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Since d > p, where p is the wmallest prime divisor of », the inequality
(28) contradicts the bound on ¢ given in (21). Thus Z(a, ..., 1) = G
and the theorem ig proved.

Assuming s 3= ¢n'?, we may now strengthen the conelusion of Corollary
3.2.1. Again agsume ¢ satisties (21), where p is the smallest prime divisor
of L2

CoROLTARY 3.3.1. Let § be a set of non-zero elemenis from a finite
group & of order n of size |S| 3 en'®. Then @ contains o subgroup H, and
S contains & disjinct elements a,, ..., a;, such that Nty vy @) = H,
itz ec[HM, and every element of H Tms b least fwo repr esematwm "
Z(ayy oy ).

Proof Simply let H be & subgroup of ¢ such that |8 N H| 2 ¢[H|?,

“but |8 N K| < e[ KM for all proper subgroups K of . Then apply Theorem
3.3 to the set 8 n H.

Note that each theorem in this section agserts that there 1§ a1 arrat-
gement a,, .
Z(ay, ..
E_' (@ ..

4. Proof of Lemma 3.1. To prove Lemma 3.1 we shall use Theotem
2.2 and 5 modification of the averaging process due to Brdos and IHeil-
bronn [17.

First, we may assume without loss of generality that .Tc = |B| < |B|.
This is beca.use, for ge@, -

s ds). We leave open the question of what cap be said about
. a s) Tor an arbitrary arrangement a,, ..., Ay

- (29) I(B+g) A.B| = |(B+g) n Bl
To prove (29) assume first that B is finite. Hence
(B+g) N Bl = |B+g|—[(B+g) N Bl
=[B—gl—IB n(B-—g)| =|(B~g) n B =[Bn (B-+g)l.

By symmetry (29) holds it B is finite.
. Next, define s mapping 7 from & to the non-negative integers by
AMg) = |(B+g) n Bl '

The mapping A is “sub- addmvu” i.e.

(30) ' A +y) < M) -+ A),

as shown by the simple caleulation.: '

Ma+y) = (Btoty) N Bl = [(B4o)  (Boy)|
= [(B+a) " (B-y) nB|+|(B+a) n (B
S(B+2) 0B+ (B~y) nB| =B
= 2(z) + Ay).

—y) N B

+@) N B|+|(B+y) n B

-y & of the elements of § such that something is true for
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Now let a = max{i(a)| 1 <4< wh We divide the proof into two cases.
Case 1: w =2k —1, Let O = {6y ..., 6y 1}. Thus

(31) D Mo

eel)
On the other hand
D o) = S B +a) n Bl = Y IBI—|B+e) n By

celf [115] cel}

= 0{1BI - Y (B +0) n B >

et

—B|(1B{-1).

< (2 —1)a

(1Bl — 3 |(B+2) N Bl
Eel¥

=0
= |C||B]
Hence

(32) D Ale) = ke

ce(!

By (31) and (32), a = k*/(2k—1) > k/2. Hence a > +(k--1) and the lemma

is proved in this case.

Case 2: w2k —2. As in Case 1 wo ghall construct a set ¢ of size
|C] =2k —1. Form the set A = {0, ay, ..., a,} and let
Fw+2) if
$(w+1)y it
‘We now use Theorem 2.2. Since, by hypothesis, the group <(4> has order

at least 2k, we conclude from Theorem 2.2 that inAd|> 2k or |nd |
2 (w+1) - (n—1)n, for each positive integer n. Define integers r and.¢ by

FE—2u+q, 0<

_ w is even,
w = [§(l4]+1)] = w is odd

(33) 2k = (w+1) q<u.
Note that 7> 2 because w < 2k —2. Hence jrd| 2k and
mA| = (w1 +n—-1u (1A<n<r—1).

Therefore 7.4 has & subset ¢ of non-zero elements of size lO’l = 2k —1
such that
md N0 =

2w-t+m-—Du (1<n < r—1).

If cend, then A{o) < na by {80). Hence

Zk(c) s wat+ula+ .. Fulr—Letgra = a(w—u—{—%rﬂfw#—%m-f-rq).

ce(
1, we have’ %m> 744 —1, henee

< a(l+w—2u+3riu—ir+rg)

2 and w2z

2}{0

[0

Since fr =

< a(w@—%rwg) —lar(ru—1+2g).
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Using (33) to eliminate a", we gét

Zl(c 2kwl+2u 0 ) (2 —2 + 2 — w0 --g)
eel?
>2—(2Tcw—1+2u — ) (P —2 + 2u—w).
Hence
——(2k+10){2k) if  w is even,
<"t
o (2R (@E—1) it w is odd.
. 2
Since w < 2k—2, 241 < —k—, henece
. : w-}-2 w-+1
' 4k*a
Ale) << .
%J © w1

On the other hand }'A(e) = &2, exactly as in Case 1, s0 a > }(w+1).

oel)
Hence oz ;(w-2) and the lemma is proved.
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A note on a cyclotomic diophantine equation

by
VEIRkEO BywoLs (Turku)

1. Iniroduction. Let > 3 be a nabural number; £, = exp{2wi/m),
and let K, =@(l,) denote the cyclotomic field over the rationals .
‘We shall prove the following result: :

TuworeM A. If ¢ = 8, B is @ unit in K,,, end the equation
(1) . e = f+1
has a solution aek,,, then a =0 or a is a o0t of unity.

In the special ease when m is a prime > 3 and « is reqnired to be
@ unit in K,,, this result has been recently proved by Newman {5]. His
proof depends on the following theorem (for prime values of m):

TurorEM. B, If m s any infeger >4, 2 << g << m—2, and q> 2, then
the only solution oK, of the equation ‘
@ Lot + o 207 = af
is given by ¢ =2, m =12, g =T, a = £ (1—£,)"%

In partienlar, if m is prime, then (2) does not have solutions with
g == 2. This fact was stated as a conjecture by Newman [4] and was first
provcd by the author [1]. A very elegant proof of a more general result
was given by Loxton [3]. The proof given by Newman [5] is incorrect.
(The formula for 4" —¢ on p. 87 is wrong.) In the general case Theorem
B has boen proved by the author [2]. |

Using the.ideas of Newman we shall prove Theorem A directly
without leaning on Theorem B, It is posgible that the new method will
eause & simplification in the proof of Theorem B which is extremely
complicated.

2, Proof of Theorem A. We assume that (1) has a golution, where
¢ 18 nongere and not a root of unity, and deduce a contradiction. Withoubd

1oss of generality, we may assmne that ¢ = 4 or that g is an odd prime.

By extending the field K, if necessary, we may also assume that g|m.
‘We use the fol]owmg well-known fact: If p is any unit in K,,, then there



