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- Class numbers o.f: elliptic funetion fields
and the distribation of prime numbers

hy

LAWRENCE WARIINGTON (Princeton, N. J.)*

An interesting problem in number theorjf is the determination of
vhich integers occur as class numbers of algebraid number fields, In this
wte we consider the corresponding question for function fields over

inite fields and relate it to 4 classical problem in the distribution of prime-

wmbers; namely, is there at least one prime between »? and (n-4-1)2 for
oll positive integers n? .

TueorEM 1. (a) Suppose that for every positive integer n theve is @ prime
retween n® and (n--1)2 Then, for each positive integer m, there exists & prime
) and an elliptic funclion field B over F, {the finite field with p elements)
uch that the class number (i.e., the number of divisor classes of degree 0)
f B equals m. :

(b) Conversely, suppose thai each positive integer ocours as the cless

wimber of some elliptic function field over some T, (p prime). Then for
el positive integer n there is a prime between n® and (n - 2)2

- TuEorREM 2. Let H(w) be the number of positive integers less than or
qual to @ which do not vecur as class nwmbers of elliptic function fields over.

my F,. Then -
Hi{z) = O(—w—-——) 08 | B-ro0,
logx
o perticular, the sel of integers which are class numbers has asympiotic
lensity 1. . N .

: Before proceeding with the proofs, we first need some preliminary
emarks. Let F be an elliptic function. field over F, and let & be its class
wber. Then the- zeta-function of K hag the form

Plu)

7= ma
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where P(u) = pu*+eu+1 for some integer a, and F{1)
(see [4], p. 130). By the Hasse—Weil theorem (i.e., the Riemann hypothesis
for function fields), P(u) = (1—aw)(l—='u) with |z| = || = p"% which
is equivalent to (¢! << 2p'”®. Therefore,

() Cop— LS bl p ot
Now, it follows from some results of Deuring on cndornmphism rings of
elliptic curves that, for p 3> 5, each value of ¢ with |a| < 29" occurs for
some E over I, (see [2], pp. 276-279). Therefore each integer & satislying
(%) is a class number. ‘ .

The proof of Theorem 1 i3 now immediate. Let m be an arbitravy
integer = 4. Choose % such that #2 < m < (n--1)% and lot p be a prime
(> 5) satisfying #® < p < (#n4-1)% Then '

p—=2p"P 41 < {04102 — Z{n+41) +1 = n* 5 m,

and '

_' 24297 41 > mrt 2 1= (LR > .,

Therefore m satisfies (+), hence is a clags vumber. The integers 2 and 3
satisty (#) for # =5 and consequently are also class numbers. The curve
Y = X3 — X —1 over F, {s easily geen to give an example of /i = 1. There-
fore every integer m 18 & elasy number.

To prove (b}, suppose there is no prime between #n? and (n--2)%
Let p be any prime less than #2 and let ¢ be any prime greater than
(#-2)2 The maximom class number for elliptic function fields owver
F,is [p+29"+1]< (n--1)2 The minimum class number for elliptic
function fields over F, ia [g—2¢" +1]4+1 > (n+1)2+1. Therefore (n --1)2
cannot be a class number, which is a contradiction.

‘We note that the assumption of part (b) could be replaced, for example,
by the weaker assumption that all perfect squares are clags numbers.

In order to prove Theorem 2, we meed the following.

LmmA, Let q(x) equal the number of positive inbegers m < @ such that

there 1s mo prime befween n® and (n-+-1)% Then
g(®) = 0(~m~--) . a8 @00,
loge .

Proof. A. Belberg has proved the following result ([37, p. 104):
Let f(#) > 0 be increasing and f(»)/z decreasing for # > 0 and suppose
fl@)fe—~0 and liminf(log f(z)/logw) > 19/77 for w—oce. Then there exista
a st 8 < (0, oc) such that

(i) m(8,) 20(
=8 n(0, ®];

w - -
logm)’ where m is Lebesgue measure and 8,

icm

e p '*’* (1] "l"l =7 h .

Ry, 1
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(i) {4 f(@) —r(z) = L -+o( )
logz log?x
7 () is the number of primes less than or equal to .

In partienlar, we may take f(z) = &', By {(ii), (4 72) — m(z) > 0
tor large « ¢ 8, and by sunitably modifying § we may assume this inequality
holdg for all x¢8.

Now, suppose there iz mo prime between %2 and (n--1)%. Then
a(z+a'®) —a(x) = 0 for me[n?, n2}a], 30 (0, n2+n]c 8. Fix an 2 > 0
and let #y, ..., #,, be the set of such » satistying $0'* < »n < 2" — . Bach
< 1< m, contributes an Interval of length «; to 8,. Therefore

) as m—>oco, @¢8, where

%mlﬂ(q(wlﬁ _%)‘_q(%mlﬂ)) < Vq/.»i < m(Sz:) =0 (‘lozm)ﬂ

=1

from which it follows that

Yy

2 1
logy ¥

q(y)—q(3y) <

for some constant O. Now fix y and let & be the integer such that

2-k=ly <yt < 27%y, Then -
q) < ¢~ 4G9 +9Q3) — 93y +... + (@ y)
Sy 9ok,

logy log 3y IOg‘-’ Fy

2 ky

tlogy

Y

logy

— g2 )y g (™)

+yl/2

o)

- ,ylp‘..

+ot 0

===

3 logy

S 40— 4yt g 50
lo g’y

for large y.
This completes the proof of the lemma,. ,

It should be noted that Cramér [1] has proved that 11’ the Riemann
hypothesis is true, then g(z) = 0(z**logdz).

The proof of Theorem 2 is now straightforward. The proof of Theorem
1(a) shows that if m is not a class number and »® < m < (n+1)% then
there is no prime between n® and (n--1)%. There are g(2**) such n with
n? < & and each » can contribute at most 2n -1 different integers m < &
which are not class numbers. Therefore,

H(m) < g(mlfz)(2fr}1’2+1) =0 (T@)

which completes the proof.
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Bounds on the number of integer valued monotone
functions of k integer arguments®

by

AZAD BorLovr (Berkeley, Calif.)

1. Introduction. Consider the set
(1) (0,8 —1F = {{wy, 2, ..., @), 2 integer, and 0 <z, < n—1}
together with the partial order < given by:

L yen <y Vi, 1<i<Ek.

We say an integer valued function f is monotone an {0, » —1)* if:

@ < y=fl@) < fly).

The problem we shall be concerned with is to count the number {denoted
by L, (N, 2)} of monotone fanctions f: (0, »~-1)*->(0,1, 2, ..., N), to which
we refer as N-restricted aF-partitions (of any infeger).

In one dimension (k =1) the problem is trivial, I, (¥, n) = (N:n).
The problem for planes and higher dimensional solids was first studied
by MeMahon [2]. He generalized the concept of partitioning an integer
into a linear array, and defined plane partitions and partitions “in solido,”
as two or more dimensional arrays of integers non-decreasing in each
direction and sumining up to a given integer m. He also considered par-
titions with restricted part magnitudes. MeMahon was sucecessful in
obtaining generating functions for a wide variety. of plane partitions (not
neeessarily rectangular). R. Stanley [3] gives a survey of many of the
known results about plane partitions and some of the proofs involved.
These proofs appeal to the theory of symmetrie functions and the rep-
resentation theory of symmetric groups. They are quite involved and

apparently not frivially generalizable to higher cdimensional lattices

(except for somwe particularly simple 3-dimensional figuves). Carlitz- [1]
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