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Arithmetical functions with periodic zeros*
by

Ewor. GrosswarDp (Haifa)

1. Intreduction. In [4] D. B. Lehmer and S Selberg studied the
function

g(s) = 2% (@ {n) = Mobius® function)
R

Ga) = D gim),
nsx

and proved that for any constant X, G () —HK changes signs infinitely
often. If we define a “zero” of G{w) —2 a8 an integer n such that[ (m)—2) x
x(G{n—1)--2) < 0, then Lehmer and Selberg verified computationally
that (with only two exceptions) the ratios of consecutive “zeros” are
almost constant. Next, assuming the RH (Riemann hypothesis) they
present a heuristic argnment, whick makes it plausible that at least on
the RH said ratio should stay close to the constant 67" ~ 1,2488968. .
(here y; = 14.1... is the ordinate of the smallest complex zero of Rlemann’
zeta function {(s)). The average of the ratios found computationally for
the first 56 “zeros” (up to # = 2119483) is indeed remarkably elose to
said value.

Their ar gument runs as follows. Assnming the RH and the simplicity
of all complex zeros g, = iy, of C( ) (8 = ¢}, @, T Teal), they prove
the. “explicit formula”: :

- Jdogz —a,) -
—2m“22 cosiylogs ) | 6y)

@) Fla—1)—2 = G+

=]

where '(g,) = R,e.

In general, the domma:nt term will be the first
one, with y; =14.1.. :

.y 80 that

-2 ml.i.‘l

Glo—1) =2 =~ R,

cos (.yllog & — o)

* This paper was written with partial support from the National Seience Foun-
dation, through the Grant N8F-GP-23170 (Amd. 2). :



2 E. Grosswald
and Gz —1)—2 will change sign near those values m, of & for which

T
v logm, —ay = (2n-+1) 3

i.e., for
TRrm i = logwe+n(mfyy), say.
4

1 i

logm, = {(n+§)n+a}fys =

Clearly, @, = 2,e™"" and the ratio of two consecutive values ,/®,_,
u n

ig " ~=1.2488968... _

" Now, gimilar explieit formulae are known for many functions. Some

of them, such as that for M(z) = > u(n) are very similar in structure
N

and the periodicy of the “zeros” (if it existy) s]:mulfi 1?e aven easifaxz to
verify. In fact, this periodicy is less regular and thig is not Sul‘pllelI‘Lg.
Indeed, in the explicit formulas for 4(w) (see, e.g. [9], p. 318) the oll‘dmajtes
y, occur at the first, rather than the second power, §0 thgl‘t the flI‘S'f: Zero
dominates far less the remaining part of the infinite series, than in (.1)"

The main purpose of this paper is to define sets of funetlonffs Gk(m;_ s
depending on an integral valued pa,rameter_ k and on an arithmetical
function. f = f(n) and with properties similar to those of G(a_:). We s]fxall
gtudy In some detail only the case, f(n) = u{n); the furfetlon Gl(w., 73]
is essentially the G(z) of Lebmer and Selberg (more precigely, & (; u)
=G (2 —1)). We sghall also consider briefly the choice f{n) = Ad(n) (= {ogp
if # == p™; = 0 otherwise). It is clear tha.t‘ aumlogous sets ‘of funetmi_ls
G (z; f) can be defined for many other arithmetical functions f(z). In
all these cages we obtain explicit formulae of the general type

-l R

G ) =G0 ) =P f) =@l ) =2 )~ eos(ylogo—w).

e=p+iy
»>0

Here @, (z; f) is (for fixed &) a fixed‘pqunomial n @ and logw, while
op(; £) = O(z™Y), is holomorphic in a nelghborh(.)c{fi of # = oo and Inlm‘{
be neglected for the purpose on hand. The qua.nmt_les B, v and w depelfl.
{besidez on f) mainly on the specific zero p = f iy arnd’ shoult}l prope{ly
be written as K,, 7,, ®,. However, to keep the. notations simple, 1;]1@-
subscript will usually be omitted here, as well as for § and ¢ themselves.
R may also depend weakly (as a logarithm) on o, = on &, aqd » on bonth.
Their exact definitions are given in Section 3 Theorem 4 and in Section .10
' By increaging k, we enhance the dominance of the first zero for
“small” values of x. Nevertheless, it is elear that if the RE does not_ hold,
then eventually the zeros ¢ with larger real parts will become dominant.
The periodicity of successive zeros of Gy(z; f} will then be governgd b.y
the ratio ¢"7e. It is known [7] that y, > 10°; hence, ¢™e o~ 1+x/y, I8
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much closer to unity than the 1.2488... furnished by a dominant firgt
zero. One concludes that if the RH does not hold, we may expect to
find the following behavior of the ratios Bp.1/®y, Of suceessive zeros of
Gr{%; f), for appropriatedly selected k. At the beginning (for small )
this ratio will stay close to 1.2488... because the first zero g, = 4
+4(14.14...) dominates in the expansion of G (w; ). When x is sufficiently
large, so that some zeros ‘with larger # become important, the pariodicity
will become rather irregular. Fipally, for still larger @, the term with
largest # and smallest (for that g) y, say, +* (if sach a term exists) will
dominate the behavior of @(@; ). Now the periodicity of consecutive
zeros will become again very accurate, but with the muech shortened
period 1--m/y*. Obviously, one cannot hope to prove the RH by this
approach. However, if one suspects the existence of a zero ¢ = f+iy,
B> %, it is conceivable that irregularities in the periodicity of the zeros
of some G (w; f) in certain ranges of @, followed by a considerable shorten-
ing of the period for still larger 2 will point strongly towards the existence
of sneh a zero. This wonld bresumably involve less numerical work than
the actual determination of such a zero. Indeed at least for f = u, the
values of the G\ (z; f) can be computed rather easily by one of two methods,
one direct, the other iterative {(Theorems 5 and 6).

Next, generalizing the results of f4], which states that for every
constant K, G(#) — K changes signg infinitely often, it will be shown
that for any £> 0 and O > 0, arbitrarily large, and with § — sup{o}
{(o+-1it) = 0} the two inequalities :

® Gulas ) > Ca™1 G (g ) < — Cat¥ioree

hold, each on a (naturally different) infinite set, say TG <<,
and o <@ < .. < o <.. respectively, with lima), ~= ma) = co.

T TE->00

Such infinite increaging sets of positive mumbers without finite limit
point will be called (for want of a better name; see also [1] and [27]) simply
X-pets. If a function satisties two inequalities like (2) on X-sets we ghall
deseribe the sifuation simply by stating that each of the inequalifies.
G (w5 1) 2 4+ Ca®H*1¢ holdy on an X-get.

If there exists a zero o = 0 +iy, then we may take ¢ = 0 in {2),
provided € is not too large (see Theorem 7). In particnlar, and without
any unproven hypothesis, each of the inequalities Grlm; p)= L OtV
holds on an X-sets. For % = 1 this shows that the function G(r) of EY
satisties each of the inequalities @(a)z 4+ Cz' on X-sets, a shatement
stronger than and implying that of [4]. :

. We shall also consider briefly the case f(n) = A(n). This choice of b
has certain advantages, but also certain disadvantages in comparison.
with f(n) = u(n). '

’ .
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The present paper has benefited greatly from eritical remarks by
H. Montgomery and L. Richards to whom I herewith express my gratitude.

2. Notations. Given any arithmetical function gim) the symbol

SVg(m) stands for 3 g(m) if » is not an inbeger and for 3 ¢(m) + 3g(n),
ML l<im<g lsm<n
if @ = m i3 a positive integer. [#] stands for the greatest integer function.

a1
The symbol [F(s)ds means lim [ F(s)ds whenever this limit
exigts. . " (o) Tsoo odil .
For natural integer % we denote by ¥ (upper index nsually ornitted)

the (absolute values of the) Stirling numbers of the first kind, i.c. the

7th elementary symupetric funcfion on the integers 1,2,...,%5—1. In
particulax,
8y = gk(k—l), Sy= k(-1 (k—=2)Bk—1), ..., 81 =(F-=1)L
For convenicnce we also. set &, =1, for every k.
In what follows occur also certain constants defined by:
S andl ft—1-—2n
i 1
b S NTL
i
. '17’ Ct : 1 C-u
b, = ?(29% —{—1)—]——-&-— (2%+1) —10g2n = —'"2”"&',—( m2ﬂ),

= nji”bm _dn Ea’n_bn

and B,,, the Bernoulli numbers in the even subscript notation.
It ¢ = f+ 4y is a complex zero of order r of {(s), then the coefficients
a; = a;{p) are defined by

= (S—Q)TZO:J .S'w«
j=0

3. Main results
DEpvmroN 1. For integral r =

Mg = j‘w”a

— ds.
2med & sf{s—r) ¢

—1 and ¢ > r--1, we define MN.()
by

DEFINI'.lION 2. F01 integral k> 0 the functions G, (z) = G.(®; %)

are defined by

]

i) =72 D=1y () o1,y

icm
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ToEoREM 1.

My(@) = D' mFp(m)
. My
THEOREM 2.

1 wer-i-k—l
4, =
) =5 J (=151 (s kT

(o> 1).

TumoREM 3. Gh,(2) is o cwdfmal spline function. Specificially, @,{x)
is a polynomial of ewact degree k on amy interval without square free integers.
At the abseissae & = m, n sguare-free integer, G & () i3 differentiable if B> 2,
and has k—1 continuous derivatives, while G(’“)(m) has the d@scommmty
mwn)jn ot & = n.

Tumores 4. Let & = [k[2] and ¥ = [(k—1)]2] and set

2 o
Dy(a) = Oplw; p) = L—{M e Z(k) P g

=1

R
" b (2'{;)2“ 1 2R—1
Mg(fl) (2»n—,t~1) (2%)1 C(QW—I—I} ;L (10gm-|-o )}

and
o =2 —1 N\ 1) (2’”’ k) 2W 911..
(@) = 20 Z}( ® e DI tEs T T ;
then
glth-1
{3) Q) = Dy (m) + (2} -2 —r—— cos{yloge — w).
{loga) : ra
Here B = By(z) = ————[L+g,(x)|, with g,(z) = 3 »(logz)™,
(r—1)jag] o(2) = 2

where # is the multiplicity of the zero o of Z(s) and a, was defined
i]} Section 2; also, the »/s are numerical constants depending: {(for.
fixed 7::]) only on o T A =arg(lde,), A< p =arge,, and
4 ’ ’
- [ EERL
m=0 L4

Cororrany 1.

), 7> 0, d real, then w = §-+yp—A-+m(k+1)/2.

o' B
G0y —2 = A\Jm——-—ces(*ylogw p—0+ A+ 0@
¥yt y
CoROLLARY 2 (see [4)). If we assume the BH and the samphmy of
the zeros ¢ = §4-iy of [(s), let @ = a, = argl’(p); then

Y cos (yloge —a)

S @ I (o) +0).

G1(m)—2 =
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.

CoROLLARY 3. If 8> } and if o* = 0 4-4t, is the zero of lowest ordinade
with the abscissa 0, then, for sufficiently lorge ®, the function Gy (z) — D, (2)
vanishes at o set of abscissae {w,}, appmmmatmely periodic and with

Foit o pq 0 B
T, _‘4 tl
The values of the Gy () may be computed with the help of the fol-
lowing two theorems. .
THROREM B. '

In order to state Theorem 6 we need the following definition.

DyriNrrioN 3. Letb
m]_ ( ) . My
u{m 1
6Om) = PEZ @my) = D' @m,),

me=l m1==1
and, in general it @"~V(m,) is already defined, then G (m,.,, is defined by

oy

@) = D G m,).

Mp=1

THEOREM 6. The Gk(fn) may be computed reouwrsively, if the Gy_.(n)
(r = 1) are-already known, by

Buln) = (o — 1"*2(’”
=1

with the G®(n —1) of Definition 3 amd the 8, defined in Section 2.

The oscillatiory propertles of @, (#) are condensed in the following
.theorem.

TrmoreEM 7. Fach of the following wnequalities holds on an X-sef,
under the stated conditions: _

(2) Gy(@)s +- 02" 1%, unconditionally, for &> 0, arbitrarily small
and C > 0, arbitrarily large;

(b) Gp(z)s £ 02", assuming thai theve ewists af least one zero
g = O-+iy and thot if p 18 simple

N8, Gy (n),

1
O < max - ;
e=04iy [0 —1)ele-+1)...(e +k—1)¢ (o)’
(€) Gyl@)s 4= 0xF2, with arbitrarily large O, asswming either that the
RH does not hold or, if the RH does hold, that there exists at least one multiple
2610 g =} +iy;

icm
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() Gy(m)S £C2*2, holds unmconditionally for
1
¢ < max -
e le—T)o...(o+Ek—1) (o)l

(only the case of REH with all complew zeros simple is of inferest here;
otherwise (a), (b), (¢) yield stronger resulis).

CoROLLARY 4. Under the conditions of (&), both inequalitios G () + O

hold on X-sets for C < max —«»—EL;—
e e (o)l |
4. Some lemmas. In the proofs of the theorems we shall need several

lemmas of which some are known, but all are listed here, for ease of
reference,

Limyya 1. Por integral, positive & and arbitrary, compler s not equal
to an integer <1,

E(_Dr(zﬁﬂ) L (h+1)!
£t "] s4r—1 (s—1)s(s+1)...(s+%k)

LemMa 2. For integral, positive k and n,
n—1

Z 2 y lm——(n m)(n-—m-{-l)...(nl—m—}-k-l).

my==m 1n2wm1 k=’mk_

Levma 3. Tor integral, jﬁos'im‘w k and n,

n—1 M1 1
Z 1= -]-G—!—{(n—m)"

D
M=y

My = ms';*:ﬁml

+ (e —mf 8 o+ (- m) By}

LemyaA 4. For integral, positive & and n
n—1

2’“‘”"’) 2 Z 1= Zﬂsk_,-e,(n)._

H =t Mp=ME-u1 r=}

Luvwma 5. For positive, indegral v,
{—29) = (—1)4@m)"*(20)15 (29 - 1),

&' (—2) = (—17(2m) "™ (201 22y + 1) {10;;27:— —J]; (v +1) — %(21; -1-1)}.

Lemma 6. For integral & and m,

AP B5I y

m=1 myp=mo g=mp_g
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Lmvova, 7. IF F(é) = [flz)z~*dx converges for o> a but mot for
’ 1

g>a—s¢ (&> 0) and represents ¢ fumction I'(s) holomorphic in o> q,
but not in any lavger half-plane, then, if F(s) is holomorphic ai § = u, it
Jellows that f(wm) changes signs on an X-sei.

Lmnva 8. If F(s) is defined as in Lemma 1, is holomorphic for o > q,
but in mo half-plane o > a—s (e > 0) and s == o is a singular point of F(s),
8¢ that Im I (o) = +oo, then one can still assert that f(x) changes signs

T=it

on an X-sel, provided that there emists a t %= 0 such that

iﬁ E(O‘"@t)ﬂ" .

o—ret

=1,

Levwa 9 (H. Montgomery [B]). Tor any given &> 0 there exists o
Ty = Ty(c) suoch that for T =T, the following holds: Retween T and 27
there ewists a ¥, for which |f{oA-if)]" < OF for 0 € o<1, and with an
absolute constant C > 0. _

Liyma 10 (A, Selberg [8]). There ewisis an absolute constant 4 > 0
and an infinite set of veal numbers T,, UmT, = +oco, such that for any

positive infeger m, the mequality
o .
_E(S) < Alog*m
holds on the eontour o> —2m—1, t = +T,; 0 = —2m—1, [{{< T

5. Proofs of the lemmas

Lemma 1 is the classical decompomtlon into partial fractions (see
also [6], Prob. 5, p. 29).

Lemma 2 seems well known and may be proved by double induction
on k and »—m (no exact reference comes to mind, but see the related
formula in [6], p. 183).

Lemma 3 i3 an immediate corollary of Lemma 2.

Lemma 4 ig used only in the proof of Theorem 6; its proof requires
Theorem & and is postponed to Section 8.

Proof of Lemma 5. One differentiates the functional equation
' - s
E(l—s5) = 2973 gos 1‘2-- I(8)2(s)
and sets s = 142+ In all terms but one the cosine vanishes and one

obtains the first statement. If one differentiates the equation twice, collects
terms and gets § = 14 2v, one obtaing the second statement.

icm
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my

Proof of Liemma 6. By definition, % m) = 2;& (m)fm, and

ity niy .

ZG(O) 2 2 e {m) >‘”T I m) j 1

=1 My=1 m=1 my=1m

Gm {1my)

50 that the lemma holds for % =0 and % = 1. To complete the proof
by induction, wo agjume the lemma already proved for & — r—1, ie.

that
M
6~ m,) 2 S\
my=m Wp ] =My_3
Then
Mypy Mpyy My [ .
N - Y (m -
G(r)(mrH) _ Z Palts B (1m,) E’ > i) ) §T 1
d PV s
Hip=1 Tgp==1 =1 My =11 W =W _g
Mp i1 Myl My My
S EE Y Y
m te o
= Tibg =1t My =0, iy =Mep_o

Wpp1 b L Ty

e FR LS
D

Wiy =T Nty Mge=ty [ C———

Myl Mgl Mgl My 1 My

2 : f(m) >—1 y 1
m ..._.f ZJ ] Z
Wy = gy Moy 3=Wp_ g Mop==top_g M1 =Ty
Myl e e S B Mgy g1 Myppq

m -l
R R Y Z .
=l Wy =Mmg=my My 2=mr 37":-« =M Wy =Ty
and the formula holds for % = r, hence, for all %.

Lemma 7 is a classical theorem of Landau (see [3]).
Lemma & iz Theorem C in [2], or Theorem 1 in 1]
Lemma 9 is due to H. Montgomery [5].
Lemma 10 is due to A. Selberg (see [8]).
6. Proofs of Theorems 1, 2 and 3
6.1. Proof of Theorem 1. For o> 71,

1 -~ = wim)
L(s—r) Li mr?
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so that
1 raf ﬂ(m)}
_— | — : das
M, (@) o7ti :! s = s m
o 1 @/m)
= gu(m)m*- f (ofm)” g, - Emmm},
2
) (5} meex

the interchange of integration and summation being easily justified for
czr+1-+:s (s> 0). This proves Theorem 1.
6.2. Proof of Theorem 2. By Definitions 1 and 2, and with ¢, > »,

Gy () = —1—2 (1) (f) M,y (@)
=0

It

i k A 1 ot
- —1y by, e (18
k! 2( Y (’f) v afs{(s~v+1)

k s+r—-1
L (@ gor. (2T g
ﬂk!Z(_l) (f)m 21-:4, f(s—]—r—- YZ(8)
= ()

U

_ (o) =0, —r-1>1)
: I
L a1 Sk‘ v () }d ‘(' L2 1)
= — ——  —— — 8 a $0r>~ .
2 (E£ £(8) 'l’a!{;:b:( )s+¢ 1
It

RIS 1 . 80
By Lemma 1, thp Inner sum equals (s—l)s(3+1)...(s+k—1)’
1 f ms+7c—1
= ds
Gk(m) (3+k_1)

2wl E(s){s—1)s...
ag claimed. ‘ , .
6.3. Proof of Theorem 3. This follows immediately from Definition

2..On the intervals hetween squarefree integers, all My (») are constants -

80 that ¢ (2) is a polynomial in e, with highest coefficient M, (24-0)
and where 2 is the largest squarefree integer less than #. By differentiation
on these intervalg,

RO

A (@) = S-‘(:—l)”(k)(k——aﬂ)(k-—ﬁ*——l)...(k—a*-—m»}—i)M,,_

= ! ! i bl Jo—r—m
_‘ET.Z (U =y Mrale)e

icm
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Hexnce, the assertions concerning the continuity will be proved, it we
verify the continuity of @,(x) at all integers. Now

lim G (@) ~11m{_21f_1(a" & — M, (%)} =1im{w M{ﬁ(b—)— — 2 y(m)}
zn T ) =2\ a1 ™ magn—1
=n E ”i::b) — Zﬂ(fm)
mgh—1 mgh—1
=0 S B XY st )
Mmgn—1 mgni-
- 2———#;) — > u(m) Wlllll{ ,u(m Zﬂ(m}
MmN msn msn msn
ﬁhnl (@M _, (%) — My(2)} =li]:r5r Gy ()

and Gy(2) is continnous at all integers @ = n.
Finally, for all natural integers &k, G (x) =G, (2) =
= 2 p(m)fm, so that G (n+)—GP () = uin)/n as claimed.

ML

M_y (=)

7. Proof of Theorem 4. We use the representation of Gy, (#) given by
Theorem 2 and estimate the integral by Cauchy’s Theorem on residues.
‘We apply it to the rectangle of vertices oy 47T (g, = 1--1 floga), ~ U L£iT,
and where U— oo through odd integers and 7'— oo through & sequence
of values I' =1,, hmt = oo and with [{(o4it) " < ot for 0 <o 1.

The existence of such a sequence is guaranteed by Lemima 9.

We must:
T Ul —TUHiT oy —il’
(i) show that the integrals [ , [ and i
a —|-1,T P s —U—i“.’l’
arbitrarily small in absolute value, when U and T increage in previously
stated manner;

(ii) compute the sum of the residues and take the limit of that gum,
a8 U—o0, T,

can be ma.de

Then if we denote the integral along the rectangular confour by [,

we shall he able to conclude that ¥
oy il goHE=1
4 = i ds
) G"(m) forss 27 o E s R =1 i)
’ YV ES Vi — 0 —iT a‘l—iﬂ'
-=1i1_11{11m——(f— f f - f )}
oo | U—oo &

— U+ -~ U—ir
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{i) The estimation of the last three integrals while somewhat lengthy
is routine. If U = 1 —2XN (N natural integer, ¥N— cc), then the functional
equation of the zeta function and the Stirling formula for the I™function
(for T' arbitrarily large, but constant, and 0 < ¥—co) yield that

T\ SN =18
N ) g2 (Gnm + g—““""‘) (1 -0 (1)) :

(L — 2N +if)| = (}}}?

From this follows that

| Ui R l— —2N Ak 2N —1j2 'y
' S ds’g R ()(13?) Qi f o~ 3
g (V)8 (s 1)) QN + 1% TN "
. %‘C(.‘! AN -~1/2 @ k1 "
ki 5 - 0
<GI(N50) (2N+1) v
for N-+oo,
Algo,
— U4 m8+10—1 ay mu'-l-k—l
. ‘HT (s—=1)s...(8+Ek—1)L(s) E TR (o 4T
} g1 o1 141leaw o
—l T
= f TTG+11C(U’+@T)] do 711}5+1 {__‘c[ "!"J‘ + } |€ g l-q,_T)i ,
crl—iT
say, and eclearly, also | |< I
—U— T
On 1< o< 1+1logm,
1
————— = Q(logT)
|&{o +2T)) 5=
go -that
: 1-+1floge
¢ logT
Mﬁmﬁ_do‘ = O( Gg )
[4CERVI logw
Next, '
o e/ 11
j 44 cr-|—v..’[’ f iz ma—g-@f[')l

and, by the funetional equation,

sin% (—a -H?T)I |P 4o —4T)| [E(L - o —iT)].
i

G{—o+il)| =27"=7""1

Arithmelioal funclions with periodic zevos 13
Here
. o ) . :
5111?(“0'—}—11’)’ = 3™ (140(1))

and |

1 _ O(logT) for O0<o<T-1,

E@ o~ | o) tor o> T-—1.
By Stirling’s formula for the I funetion
O e R for o< T-1,

(140 —iT) >'{ ( o+l

a1/2
8 W) for o>7T-1.

An easy estimate now leads to

i —0 T
fIC(UT'&T)l 7 =0,
g0 that
I zht logT '
S [ - o) o
-0 1
for T—oo.

It is only in order to cross the critieal strip that we have to take
T =1, and use Lernma 9. With this choice we obtain

1
. mﬂ' . &* .
J worar = olag )

/ z°
I=O(
loga

80 that

Ta—k 1)

and vanishes for T—oo.
We have ghown that

Gy () = 2 Residues.

oo oy

It has to be observed, however, that for k = 0, the sun that appears
in (3), and which corresponds to the swm of the residues of the complex
zero of {(s), may not converge in the usual sense (and certainly does not
converge uniformly — otherwise &, (») would be continuous, whieh it is
not), but only by grouping the terms as dictated by

- B | .
lim ( 2 Residues).
POyl h, —oo<o<o;
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For % 3> 1, the convergence may well be absolute and uniferm in #, because
ZI?I"”‘ converges for m > 2 and @.(#) i3 continuous, but we have no
information about the way in which B = R, varies and neither the absolute
convergence of the series, nor its uniform (in z) convergence are proved.

(ii) The residnes. The integrand in (4) is holomorphic at s =1
and actually for o> 6. It has the following poles, with corregponding
regidues:

(a) ¢ = 0; simple pole with residue ()’c——ﬁfa}k_l
(b) 8 =1~2v, 1< 2»—1< k—1; simple poles with residues
(E(L—29)( —20)(L—29)...(—1)-1-2-...-(h—2p)} 0™
B, - 2 1 (Y .
[ v ! . ¥ f—2v ]..»-zsl.
{ 2 () 1k 21;).} - T ( )m
(¢} § = —2», 0< 2»< k—1; double peles Wlth residues

i grei 7]

1/ & i : 1
%y (2v+1) (=) (Iogm—a—a,—g? ( —2?’));:
"with @, a8 defined in Section 2.
This computation is somewhat lengthy, but routine, and will not

be reproduced here. One may DOW use Lemma 3, in order to replace
£'(—2v%) and ' (—2v») by more convenient funetions.

{d) 8 = —2n, 2n >k, simple poles with residues
(2n—k)! ot
_ 21! T(—2n)
here £'(—2n) is to be replaced by its value from Lemma b.

(8) § == f+iy, the complex zeros of {(s); the order of these zeros

is unknown, but at least the first 3500000 are known (see [7]) to he simple

~and with g = 3. To find the residue at an r-fold zero g, we consider the
expansion of the integrand J around s = g, 86t y =s—p and obtain:

3

ms+ic-1
J = :
(6‘—1)3(S+l)...(3—}-76—1)&"(8)
goti—1 guloga 3'11 ; -
 wFe—Dyte)..(y+ IH—Q Ly (Zaﬂ/)

’-a.

=0

ﬁ mi:;_l Z (ylogm)j { ” (ty 4+ ~1 -+-m) 1 [ ( + ‘Q--:_-Ar[—--;?:)x
o S

Jud

icm

Avithmetical funclions with periodic zeros | 15

$E'|‘]G—~l i .
- ‘_——'c_u* 1. 1 _ X . 4
agd” (iy)*+ ve [ ‘f“./(ogm n;:@ij_l %) .
. (l()gm)"—" (logw Pz % )
_I_y? 1J ( “'j ‘ 1 al
k
- lo’g—m‘ (( —E 3 1 Op_g
b Mm=0 (Q —}—lm,._l)r»-z a +.) -+

i — 1yt | 1
~(—=1) 4
I U
20

+similar sums involving also the (aj/aﬂ)’s)}-{—...].
Hence, if » = arga,, the coefficient of 3"~* iy of the form

(log0)~
T o)

r—1

mjz,‘ v(loge)™ = O(lflogz) and with coefficients w; that

depend. (for tixed k) only on p (which determines » as well ag all the 2;’8).
It follows that the residue of the pole s = ¢ of J equals

with g, ()

mk“!"é?"‘ (logm)rml ‘1 +¢g(m)l
Y fay| (r — 1)1

exp{i(-%(_k+1)-a—w+z)}

with A = arg(1 +@, (). If we pair together the residues eorrespondin.g
to compliex conjugate zeros, their sum is .

mﬁ-l-kml(logw}r—-l al +979(m)]
Y la,| (r—1)!

cos(ylogw —w) -

- with @ == 8-y —A-4m(k-++1)/2. It is clear that, for given %, 60 as y—>oo
and A->0 for -»oo, while » depends only on g and =(k+1)/2 is constant.
If we set also

1 r—1 .
R~ Rfa) = (loga)™ | 1+q,(x)
{(r—1)! ag
the sum of all residues corresponding to the cormplex zeros p with 0 < y < f,
equals |
A fi-1
ol
2 .W—;— cos (vlogw — w) .

0<ypiy,
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By adding up the residunes and by using the definitions of @, (w)
and of g, (#), we obtain (3), hence Theorem 4. Corollary 1 follows if we
set & == 1 in (3). If we also assume that 2ll complex zeros are simple then
(@) =4 =0 and o, = {'(p); assuming algo (with % = 1} the RH, then

Ca— ] i) ( e 14 1
N " 24y 2@}: - 4y
and, Corollary 2 is proved (ebserve an error of sign in (7) of [4]). Corollary 3

follows from Theorem 4 if we observe that ®,(w) +a,(@) = 0(@*Y) and
that (at least for sufficiently large %),

Fp0—1

i B

Gﬁ:{m) ~ :!: ik+1 “_'0_'7
1

TC"

a8 w—»co through values for which the cosine equals ii; hence, Gy(2),

and more aceurately still ék(m), vanishes only close to values .where
cos (f,logw — %) = 0, o that with @, = @*+ 5 — g g,

8. Proofs of Theorems 5, 6 and of Lemma 4 ‘
8.1. Proof of Theorem 5. By Definition 2 and Theorem 1

o . m%— 1y (Ta) (@) = ;i_;j 1y (f) wk-rZ'mw—lM(m)

r=0 TIRL
=i2 () ot Z’"‘”( — )
k! m T
ML r=0 M
1~ p(m) %
= — &
k! L2 m { )
M=
as claimed.

Remark, This theorem puts well into evidence the continuity of
Gy (z) and of its first k-1 derivatives at all integers. Indeed, il # is an
mteger then for m =z, the last term in the sum vanishes, so that Y,

, 2, stand all for the same sum. m<a
m%w mesm

8.2, Proof of Tiemma 4. By Lemma 3

N () plm) 1
2 2 D A= PR Yamy s
m=1 My = Mp=t. .1 Rl : el
i -l
1 \g () ,
BT Ly D 2, ()
=1 M=l

Avithaetical functions with periodio zeros 17

By Theorem. b, the coetficient of §;,_, equals »!G,.(n) and the lemma is
proved.

8.3. Proof of Theorem 6. From Lemma 4 it follows that

1 H=1 n—1 k-1

1
Z ’3—’ . 2 1?7‘;!—2(75—?')!ST'G;5_?.(%).

m=1 mls-m-m W= =0

By Lemma 6, the first wember equals % (n—1), so that
Fe1

B p—1) = G(n)+ ;T Z (-8, G p(n)

r=1

and Theorem 6 iy proved.
9, Proofl of Theorem 7. By Theorem 2,

1 b

W(&[ (s—1)s(s1)...(s+k—1)7(s)

By Mellin’s inversion theorem, it follows that

. 1
(s—D)s{s-+1)...(8-+k—1)(5)
Consequently, for any real congstants C and o,

1f(Gk(aﬁ)——Gnr:"‘)-'lz‘“s“"ad’“‘“.— (5—1)%.. (st k—1)2(s) s+k—a—1

a’IIMkG]c (w) =

ds (o> 1).

- = [ Glmpa o e = [ Gula)o~ " do.
1 1 .

=F(s),

say. For ¢ > a+1-—% > 1, #(s) is holomorphic and the integral converges.
One verifies that if « = %, then F(s) is holomorphic also at § = 1 and
has poles at § =0, ~1, —2,..., —k--1; at § = a-+1—k; and at the
complex zeros p of [(s). If a< 0--k—1, then F(s) is holomorphic for
& > 0, but not holomorphic in any hali-plane o 2= 8 —z (¢ > 0). However,
F(s) is holomorphic at ¢ = 6, so that Lemma 7 (Landan’s Theorem) is
applieable and it follows that, for e< 0+k—1, Gylz)— Ca® changes
signs infinitely often, regardless of the size, or sign of C. In pﬂurtleula.r,
for ax"bltrznr]ly large, positive ¢, G(w) —0z* > 0 on & set Ty, Dy - ,m,,,
s (=005 (md algo with 0, = —0, G (#)—0;2" < 0 holds for @y @y
,ar,n’, , & —»c0; i other words Gy(») > 0a" and Gy(e)< —Ca® both
hold on _TL’ sets. This proves (a).
If ¢ = 6-+k—1 and p = 0418 a zero of £(s), then, by Lemma 8,
the same conclusion holds, provided that
(5) fimp, | Lot 20 I$a>1.

g

2w Acta Ariilimetica XXVIIL1
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If o is a multiple zero of £(s), then (5) holds trivially. It g I3 a simple
zero, then

8 1
Pl ey wd e e e ot (@ —0)
g0 that . ‘ _
lim (o +it) _ 1 -1
wor| Fl@) | C lle—1)g...(e+k—1)E (o)l

and (5) becomes
< ! ;
le—Le...(c+b—1)" (el

this proves (b).

If the RH does not hold, then § > % and (¢) (and more) follows from
(a) for sufficiently small ¢ > 0. If the REL holds, but there exist multiple
zerof8 p = % -+, then (5) holds for arbitrarily large ¢ > 0. Finally, if
the RH holds and all eomplex zeros of £(s) are simple, one obtains (d)
from (b) with 6 = %. Corollary 4 follows immediately from Theorem 7
for & =1, and the remark that |e—1| = {§+it—1| = lol.

10. The case f(n} == A(n). This section is due to a remark of Professor
- Tan Richards. _

The case f = A is easier to handle than f = g, because now all complex
zeros of £(s) lead to poles of the firgt order.

We now set for integral » > —1 and o> r--1,

1 ! E“’_ . ! .
- f?(o‘w«a’) . ds = 2 A{n)n

(o) T

I,(2) = -

and define
%k

' 1
Gyl A) :«E'_Z(-—l
=0

(learly, as before,

r(f) B e

1 v A= ®
k'.}..-' Lon.
nex

hlz; A) =

It follows, a8 in the proof of Theorem 3, that Gy(e; A) is a gpline function,
namely & polynomial of exact degree % in the intervals between prime
powers, while at @ = p™, Gy(w; A} and its first &k ~1 derivatives, are con-
tinuous, but , : ,

G (p" 05 A) G (9™ —0; ) = p~"logp.

From the integra.l representation of I,(x) it follows that
ma+k—1

(6)  Gylw; 4) = — 75— f&' .'.(s—i—k-l).ds

(¢ >1).

icm
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‘We can use (6) in order to obtain an explicit formula for &, (z; A4), the
crossing of the critical strip being now justified by Lemma 10.
The details of the computations may be suppressed; indeed, they
are analogous fo those for Gy{x; x) of Section 7, only simpler (the poles
at § = p are now all simple).
With k', k"', v and 6 defined asin Theorem 4 and with » = 6 + (& +1)x/2,
the result reads as follows:

THEOREM 8. Set

®
BV Dy (w5 A) = aloge |1 — |y + mY) log ™ e) + % (log 25) 2t —
g i
=1

I

TN R

ne=]

_ (2n —%)!
Blgyla; 4) = (—1F 2(2 T

$—(2n+1—]s)5
then
Fre-1
(o5 4) = Oyl 4)+ (o M-2 3 e cos(yloga—w),
>0

each term of the sum being. counted according to the multiplicily of the res-
pective zero p = f-4iy.

The chscussmn of Section 1 apphes, of course, as well fo

Gk(fv“; A} = Gylw; A) —Dp(w; A) — {25 A)
B~-1/2
- ! @
= gt 2 ey cos (ylog o — )
y>0
a8 to
Gl 1) = Gy(w; 1) — Byl ) — (5 1)
ﬁ 1,'2R
—ogr V' E ——-cos(ylogw o).

- The proof of an exact analog of Theorem 7 does not go through,
because § =1, the singularity of largest real part of the integrand in (6)
ig itself real. In fact, it follows from (6) (by proceeding as in the proof
2*loga
k!
monotonically for sufficiently ]arge @. The correct oscillation theorem is

of the prime number theorem) that G‘k(m AY o=

and  Increases
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TarorEM 9. Set
1 1
H{x) =Gk(m;A)w—m"logm+m"(y+l+—§ —|—...—|—-ic— ;

them boih imequalities
’ H‘(m)% ic{mk—]—ﬁs-l—-s

hold on X-cets, for arbitrarily large 0 > 0 and arbitrarily smoll & > 0 (or
with & =0 for O > 0 sufficiently small, if there ewisis a zero g = 0-+dy).
The proof follows from the fact that ‘

Cr H;:(snl)) ) m&;-l-.’a—l
(s 1)

-H () "_“_‘— f(“( )+ 1 $.. (s +T—1) ds

Pl

and ity details may be suppressed.

The proofs are simpler for f = A, then for f = g, and at first glance
one may also hope to be able to compute the Gy (x; 4)’s easier than the
@, (; p)’s, because it is easier to check whether n = p™, or n 7 p™, than
to factor » completely into primes. In fact, in order to compute &y (z; A)
one hag to add logarithms, instead of making sums of the form 1--14-
+...+1, tollowed by sums of £1/m (see Lemmas 2, 3, 4 and 6}, as needed
for Gy (@; u). Also, Gy(a; p) is asymptotically equal to the oscillating sum,
which is the relevant element of the explicit foxmula, while for f = 4
only the more complicated function H () is asymptotically equal to thatb
gum. Finally, @, (z; 4} is much more difficult to compute than @ (2; u),
especially for large k. Actually, already for % = 2 Dy (o 1) = 20 —6,
while

- a S
By (13 4) a%(mgwwg}w—S/Z)+(m+1/2)log2w+%f"(2)+3n”2é"(2).

For these reasons mo analogues to Theorems 5 and 6 will be given.
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