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On sets of integers containing no % elements
in arithmetic progression

by

E. SzemmrEDY (Budapest)

Dedicaled to the memary
of Yu. V. Linnik

1. Introduetion. In 1926 van der Waerden [15] proved the following
gtartling theorem: If the set of integers is arbitrayily partitioned into two
classes then at least one class contains arbitrarily long arithmelic progres-
sions. It is well known and obvious that neither class must confain an
intinite arithmetic progression. In fact, it is easy to see that for any se-
guence a, there is another sequence b,, with b, > #,, which contains no
arithroetic progression of three terms, but which intersects every infinite
arithmetfic progression. The finite form of van der Waerden’s theorem

* goes as follows: For each positive integer n, there exists o least integer f(n)

with the property that if the integers from 1 to f{n) are arbitrarily partitioned
indo twe (1) classes, then af least one class contains an arithmetic progression
of n terms. (For a short proof, see the note of Graham and Rothschild [71.)
However, the best upper bound on f(n) known at present is extremely
poor. The best lower bound known, due to Berlekamp [3], asserts that
f(n) > n2" which improves previcus results of Erdds, Rado and W.
Sehmidt.

More than 40 years ago, Brdos and Turén [4] considered the quantity
rp{n), defined to be the greatest integer | for which there is a sequence
of integers 0 < @y < @y << ... < ;=< n which does not contain an arith-
metic progresgion of % terms. They were led to the investigation of ri{n)
by several things. First of all the problem of sstimating r,(n) is clearly
interesting in itself. Secondly, #4(n) < 2/2 would imply f(k)<mn, ie.,
they hoped to improve the poor upper bound on f(k) by mvestlgatmg
75 (n). Tinally, an old question ih number theory asks if there are arbitra-

Yy In faet, van der Waerden proved this for partitions inte r classes for any
positive integer r.
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rily long arithmetic progressions of prime numbers. From #(n) < m(n)
this would follow immediately. The hope was that this problem on primes
could be attacked not by using special properties of the primes but by
only using the fact that they are numerous, a method which is often sue-
cessful. ‘

Erdos and Turén ohserved.

_ 1 (A 9) vy (m) vy ()
from which it follows by a simple argument that

lim ﬂ—)— = ¢

nco B
exists. Erdds and Turdn conjectured that ¢, = 0 for all k. A few yearé
later Behrend {1] proved that either ¢, — 0 for every &, orlim ¢, = 1.

Foro0

Brdds and Turdn also conjectured ryin) < #'~%, which was shown to
be false by Salem and Spencer [13] who proved

g (%) = %1—-01‘101;]03':1,'

~ In 1946 Bebrend [2] proved
74(n) > pl—e/108n

which is the best lower bound for ry(n) currently known. In [8], L. Moser
constructed an infinite sequence which containg no arithmetic progression
of three terms and which satisfies Behrend’s inequality for overy .
Behrend’s corresponding inequalities for & > 4 were improved by Rankin
in [9]. ) -

The first satisfactory upper bound for #4(n) was due to Roth [10]
who proved '

&1

Fa(n) < — .
log logn

In 1967, I proved that r,(n) = o{n). The proof used the general theorem
of van der Waerden. Roth [11], [12] later gave an analytic proof that

74(n) = o(n) which did not make use of van der Waerden's theorem

(in fact, he proved » much more general theorem) and his method prob-
ably gives

ks
ru(1) <

- logn
where 1 is a large fixed integer and log, denotes the I-fold iterated loga-
rithm.
In this paper we now prove the general conjecture of Hrdds and
Turin: ' '

& =0 for all k.

icm
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Unfortunately, we again have to use the theorem of van der Waerden
and go, cannot fulfill the original desiderafa of HErdds and Turdn. T hope
that the proof can be modilied by Roth’s method so that a weak though
not entirely ridiculous upper bound for r,(n) will be obtained. However,
r(n) < @w(n) still seems hopeless at present.

T. Gallai gave the following generalization of van der Waerden’s
theorem: FLet 8 be o finite subset of Ly, the set of integer lattice points of
E-dimensional space. If L, is arbitvarily partitioned into two classes, then
ot least one class contains a set which is similar (2) fo 8 by franslation.

Erdos now coujectured: Let 8 be o finite subset of L. Suppose B < Iy
such that for some &> 0, B contwins ot least en® lattice poinis all of whose
coordinates are between O and n (where n > ny(e)). Then B confains a set
which is similar to S8 by translation.

Unfortunately I e¢annot prove this cenjecture. M. Ajtai and I esn
prova it in the gpecial cage that 8 is a square. Our proof nses r,(n) = o(n).

Before presenting the proof that #,(n) = e(n}, which, although using
only elementary eombinatorial arguments, is rather long and complicated,
weo first make a few remarks rvegarding notation. Unless otherwise speei-
fied, lower cage Greek letters a, fi, ..., will denote real numbers strictly
between 0 and 1, lower case Roman letters a, b, ..., will denote non-
negative integers and upper ease Roman letters 4, B, ..., will usnally
denoto sets. Thus, the union [J X; will denote | X;. As usmal, (X!

i t=i<m
denotes the cardinality of X and [#] denotes the greatest integer nok
exceeding #. Finally, [a, b) will denote tharset of integers {w: a < ® < b}.
2. A lemma on bipartite graphs. The first result we prove concerns

bipartite graphs. It says essentially that any large bipartite graph can
be decomposed inko nearly regular bipartite subgraphs. First, we need
gome mnotation.

(i) 4 and B will denote digjoint sets with 4] =m, |B| =n.

(ii) T'or X = 4, ¥ = B, '

(X, ¥]= {{m,9}: @eX,ye¥}.

(iii) The letter I will denote & fixed subset of [4, B]
(iv) Bp(X, ¥) = R(X, Y) =X, Y]nIl
(v) For weAUB,

Tp(w) = k(u) = weAUB: ‘{u, o}el}.

(vi) (X, ¥) = (X, T) XX

(2) The corresponding queé.t;ions for eongruence instead of similarify are in-
vestigated in the papers of Erdos, ef. al. [5], [6].
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The disgram represents an approximate flow chart for the accompanying proot
of Bremerédi’s theorem. The various symbols have the following meanings: F, = Factk,
Ly = Lemmak, T = Theorem, C = Corollary, D = Definitions of B, §, P, a, f, ete.,
tyy = Definition ef #, vdW = van der Waerden’s theorem, Py = “If f: BT —=R* is

f)

subaddifive then lim ~—— exists®.
© oo W &

We require two preliminary facts.

Facr 1. For all &, &,, & and for all I # @, there exist X < A Y<B
and v >0 such that:

{ag) r<< < 1/6;

(b1) [X| > €[ |A], |¥| > &|B;

(e,) For all 8= X, T ¥ with |8] > &, | K|, IT| > &,17], we have

BS:T) > B, T)—s.

- Proof. By the hypothesis that 0 < é<C 1, there exists a positive
131:6591" T s&tlsfmng (a1). Also, by taking & = A Y =B, we can find
X, Y satisfying (b,). Suppose X < A, Y =B do not satlsfy {¢;). Then
there mmsb exist X' X, ¥F'e ¥ w113h | X' > e, | X}, |¥'| >2,|¥| such
that 8(X', ¥') < B(X, T)— 8. We now define sequences X; and ¥, by
mduetmn on t ag foilows

icm
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R

For i 0, X,,, =X, ¥,,, = ¥;, provided X,c 4, Y,s; B, and
they do not satisfy (cl)
Thus,

XY > e K] > 1K ] > > d X = |41,

1Yol > & ¥y 4] > 1Tl > .. = 831 ¥o| = |Bl.
But ; ,
0< Xy, X)) < By, Yyy)— 0
< B(Kyopy ¥yg}—28

........................

< P(Xyy Yo)— 16 = (A, B)—té <1—18.

Thus, t<L 1/6. However, if for all s<{1/4, X, and ¥, are defined and
do not satisfy {c;), then X,,; and ¥,,; are also defined and, since [1/d]3-
-1 > 1[4, this would contradict < 1/d.

Hence, for some index < 1/d, X, and Y, are defined and sabizfy
(¢,). Thus, letting X = X,, ¥ = ¥,, we have

IXI - [Xrl > 81' ‘Ai} I?[ = erl >S’;iB§

and 80 (a,), (b,) and (c;) hold. This proves Fact 1. ®

Facr 2, For all &y, 0 <2 8, << 1/2, &y, 8, there ewist integers M, N such
that for all I with |4] =m > M, [B| =n >N there evist X = A, Y= B
and r > 0 such that:

() 7 < 1/8;
{(by) |X| > 7141, [¥] > £|Bl;
{eg) For all S X, TS Y with |8 > 26 |X}, |T] > el Y|, we have
B(S, Ty > X, 1)~ 8;
(d,) For all mek,
k(2)n Y| < (B(X, T)+ 817

Proof. By Fact 1, there exist X = 4, ¥ = B and r>> 0 such that

(a)), (by) and (¢,) hold. Let g = 8(X,¥) and
= {we X [B{a)NY] > ( ﬁ—i—é }ix ).

We olaim |Z] < %]X! For suppose not, fe, suppose |Z| > %|X|. Then
there exists 2’ = Z such that :

X< 7)< BXIHT
Now, B o 3
WX, T) = E, T)+ X -2, T)

i
i
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so that
kX, T) iZ[ Wz, Y \X-7) MX-Z,7)
XY X 1z T X X2y’
ie.,
B=ap(Z, V) +(1—a)f(X -5, T)
where ¢ = Ti% By the definition of Z, &(Z', ¥) > (8 + 8)|%'||1¥]| and so

BZ, ¥) = p4+ 4.
| < ${X|+1, then
X212 §|1X|—1 > &)X
provided (3—&)1X]| =1, Le., provided | X| > (3—2,)" . Since
1T > o141 > &9 4] > 21,
then for M > (8¥(3—¢,))™ we have X —Z'| > |X. Thus, by (¢)
HE~Z,T)> g—8.

?

Algo, since |Z

Hence,
B2 a(f+0)H(l—a)f—0) = f+(2a—1)4.
But
[Zi 1
TR

so that §> § which is impossible.- Hence, we must have |Z]<C £ X1
Let X = X7, ¥ =¥. Thus,

X} = |X-Z| >
By the definition of Z,
aeX = k(@)Y < (B 8)iY|
50 that (d,) is satisfied. Finally,_ to see that (¢,) holds, note that S = X
with |8] > 26,1 X} implies § = X with |8] > 26,]1X| > & X] so that (c)
implies (c,). &
We are now ready for the first lemma.

3X > 114].

Lmva 1. For all ¢, ¢4, 8, 0, 0, there emist my, ng, M, N, such thai.

J_‘or all T with |A] =m> M, |B| =n> N, there exist disjoint C, < A,
1< My, and, for each i< mg, disjoint Ci; € B, j<< 0y, such thai:
(@) [A— U G < gm, |[B— UG”|<rm Jor amy 4 < my;

i<my F<ngy
(b) For all 4<<my, j<<my, SO, T C’“, with 18] >SIIC’I, |
> e910; 4], we have

ﬂ(si )/ B(Cy, Oc',j)— 3

icm
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(¢y For all i< my, j<In, and me'Oi,
Ek( )hG”| (ﬁ(gingij)—}‘é) -;:jl

Proof. Let r = 2[1/8]+1. Choose n, so that (1—e)* < o. Define
the sequence s(t) for 0 < i< ny,+1 as follows:

£(0) = &, (41} zsle (if:_.')_)r, 0Lt m,.
) ’

Choose my 50 that .
(1 —&(n,+1))" < o.
TWe claim that the following fact holds.

Taor 3. There exist M, N such that if m > M, n >N and A' < A
with [A' = gm then there exist 0= A', U; < B for j< m, such that |C
> g(itg+1) |4 and O and the C;, << ny, mmsfy the requirements of Lemma 1.
if we choose Op = O and Cy; =0y, §< .

Proof of Fact 3. Define the sequences C; < B, Z; < A’ for —1
< j < g, by induction as follows:

Z,=A, C_,=0.
Assume for some j < n, that Z, and &, have been defined for —1 < » <.

There are two possibilities: )
(1) It |B—J0C,| < on, set Z; = Z;_,, C; =0;

welf
(if) Suppose |B—{J C,l= on. Apply Fact 2 with & —ﬁs(ﬂn s
g
Gy =8s, 8 =6/2, A=14%,., and B =B—JC,. It will be clear that

v<j

(Z,_;| can be made arbitrarily large by choosing M sufficiently large.
By the hypothesis in (ii), |B-1J. 0, is arbitrarily large if N is suffi-

[ ]
ciently large. Thus, the- hypotheses of Fact 2 are satisfied. Therefore,
there exist X €%, ,, ¥ < B— UO and 7> 0 which satisfy the ocon-

clugiong of Fact 2. Set Z; = X C', Y. By (2.,
FL < [2/8]41 =7,
=Ny
L " ) ‘Zj—llt

(1

Tl > 1B—U0, > 41B~-UG;

velf r<f

Also, we have

0 17> (5 ot ;))

(c;) For all 8 ¢ Z;, T = 0 with 8] > e(ny—]
hm_'e

B8, 1) > ﬁ(Zjnaj)'—aﬁi

il 1T >32E5ﬂ, we

i % it ety £
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{dy) For all weZy,
k()N Gyl < (B(Z;, Cy) + 6/2) 15

Once we are foreed to use (i) in defining Z; and 5 then we must always
use this case until Z,, and ¢, are defmed Let j, be the largest index
J<my for which (ii) is used to define Z; and C;. By (by) we have:

ICol > 1Bl
B—Cyl < (L—£})|B,
[C1 > & |B—Cy,
1B—0,—Cil < 1 —e)iB—Col < (1 —¢5)%B] sgince O,nC; =@,

................................

IB— UG, < (1—e) B,
v<JD
i | = £y IB U G ol s
. v<fy -
B~ U Cl< (1—&) Bl
»<jgl
Therefore, .
B—UCI<IB—UGI< a — &)t B
R )] LES T
If 3, = ny—1 then
|B— U G < (1— &)™ |B| < on.
v<ﬂo_

If jo< ne—1 then (i) was used so that
B—UJ0< on.

‘ »<aig
Hence, in either case we have
1B—UCG|< on.
r <ty

Also, it follows that

0 is
|Zn0l > (i(4—)) lZnDull'

.
R e (mg— )\ T eV

- [T (2= ] (2
v=f+1 =0

icm
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by using either (b;) or Z; = Z;_, when (i) is uged. Therefore, by the defi-
nition of &(n,—73),

&1 |Z«n.0] > &(ng—J)1Z;],
Take C = Z, . Then

—1 < §<C ny.

0] = |Z,} > s(ng+1) 4.

Now, suppose we have 8 =0, T=(; for some j, 0<j< ng, with |8
> £ 10, |T] > &|C;|. Then
is‘i > & [Znni = E(W’D"J)lzjl
Therefore, by (€5) N
B8, T) > (4, Gy~ b2,
& Z;, we have
B(C, C) < 2y, O) + 62,

By (ds), since € = Z,,

Thus,
' B8, T)> (0, 0C))~0

which is just (b) of Lemma 1 with C; = C and C;, = 0. Since
|y > (1o —]) 124]
then by (¢;) with § =%, =C, T = (;, we have
. ﬁ(Oaéj)>5(Zj76j)”6/2-
Thus, by (ds), for all zeC = Zna
(w5l < (8(Z;, O; +6/2)|G|<(ﬁ(0 Cy)+ 81041

This is just (¢) of Lemma 1 and the proof of Fact 3 is completed. =
We now apply Fact 3 recursively to prove Lerma 1.
We begin by setfing 4, =4 so that {4, = m > ¢m. By Fact 3,
there existy ¢, = A, with |Cy] > e(n,-+1) |4, such that the conclusions
of Pact 3 hold. Let 4, = 4,-—-C,. Then

14,1 << (1_5(”0 'l“l)) | Ayl
Now, if |4, < gm, then we gtop; otherwise, [4,| > gm and we can con-
tinue, obtaining ¢, = A, with |04 > s{n,+1){4,l so that the conclu-
sions of Fact 3 hold. Let 4, =A4,—C,. Then
|| << (L —&(ng+1))|4,] < (L—a(n+1))| 4], ete.

By the time we get _AmO, we would have Apy = Apy_1—Cpyy and

| A g) < (L —8{my+1)"0 14, < gm.

Thus, we have o define C; only for j < m,. This eompletes the proof
of Lemma 1. @
. By applying Lemma 1 to I =[4, B]—I we obtain

R R v 5 T, P et T B0 P PO

i
3
!
i
H
H
;
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Leyma 17, For all &, 2., 8, 0,0, there exist My, ng, M, N such that
for all I with |4 =m> M, |B| = n > N, there exist disjoint C; = A,
i< My, ond, for each i< my,, disjoint (7“, < B, j<< 0y, such that:

@ Ad— U Gl < om, |1B—1J0 ;< on for any 1< my;

_ i<my f<ng

(b) For all i< my, j<mny, SO Tel;, with |8 >0}, |T)
> &3]0y 51, we have B

BIS, 1) < B(Ts, Or) 4 6
(¢) For all §< my,, §< ny and 0],
\k(m)ﬁéi,ji 2 (5(@':0{,;)— 5) @»:,H-

3. Configurations. We next define certain subsets of integers, called
configurations, which will be fundamental for remainder of the paper.
For each choice of positive integers i, ..., 1, (where possibly m = 0),
# set B(ly, ..., ,) of configurations iy defined as follows: B(@) = {{n}:
e TV} where N denotes the set of natural numbers. For m 2 1, B(1y, ..., 1)

={Xc N: X = U X, where for some ¥eB(l,...,l,_,) and some

4> 0 we have X lﬂi Ytdi for 0e<ly and Xo< < << X, )
Of course, ¥ J-di dencles {y--di: ye¥Y} and X < X’ denotes << &" for
ek, p'eX’. It XeB(l,, ..., 1,) then the meaning of X, is explained by
the definition just given. For example, the elements of B(l,) are exactly
the arithmetic progressions of positive integers of length I,. The elements
X of B(l,,1,) are just the sets of I, equally spaced nonoverlapping arith-
metic progressions X, of length I, ete. Thus, in this case, X can be thought
of a8 a “progression of progressions”. The eleménts of B(I,,...,1,) are
called configurations of order m. In general, if XeB(l,,...,1,) then |X|
=1y... L,. We say that two configurations X, YeB(ly,...,1,) are con-
gruent if for some . d (possibly negative), X = Y+d. It iy clear that for
XeB(ly, ..., 1,), the X, = X, i< 1,, are congruent configurations which
belong to B(ll, A A
We assume now that we are given an arbitrary but fixed set R of
positive upper density, i.e., such that -

lim R {1, ..., n}| > 0.

A—00

Our eventual gdal is to show that F contains arbitrarily long arithmetic
progressions. Our immediate task, however, will be to define a certain

Requence tl, tay oey by on, certain sets S(f, ..., 8,) S B(ty, ...y by,) and
Pllgy .o ty) s Blty, . m) as well as a numbar of other aux:ha,ry sequen-
ces of integers and fune‘mons The elements of 81y, ... t,) and P(fy, ..., &)

will be called saturated and perfect conflgu,ra.tmns of order m, respec-
tively. ‘

® .
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We set
8(@) = B(@) = {{n}: neN}, PO = {{n}: neR}.

I XeB(ty ooy by, Uy and S(t, ..., %,_)) and P(ty, ..., %, ,) have already
been defined then we define _

XY = i< U XpeS(4, R S IR
?m(X) = |{7‘< I XiEP(tlr XS] t‘m-l)}l'

Bet
fill) = max{|XnR: XeB(},

= max{p'(X): XeB()},

gy = Fim 2 fim 220 e = lim fl(z)— =

[ o0

An easy argument, based on the obvious subadditivity of f,, shows that

the limit exists. The assumption that R has positive upper density forees

the limit a; to be positive. Furthermore put

{1
& (1) = a1~fl( ) .

Next, we assume that we are algo given an arbitrary but fized in-
teger K (this will play a role throughout the rest of the proof). Define
1, 4n such a way that ¢, is sufficiently large depending on K and so that
e (%) is sufficiently small. 'We shall explain precigely what is meaunt by
thig later; it plays no role in the structure of the current definitions.

So . far, we have defined §(&), P(O), fi(l), @y, &(1), and (in prin-
¢iple) %, It would now be reasonable to assume thabt S(&, ..., f,_1),
Py, .. —1)y Jal8)s @, &5,(1), and 1, have been defined, and then to
define the eorlespondmg quantities with the indices m replaced by m 1.
However, the case m = 1 does not reflect the situation in its full gen-
erality and so it will be useful to describe the case m = 2 as well,

Detine

S(t) = {XEB(H): (LX) > (al_sl(tl)m)ﬁ}:

: AL 5:0)
go(l) = max{s*(X): XeB(n, ), m—,ﬂ“% mm:m—%ﬂ.
Note that the corresponding qunantities
¢ (1) = max{s'(z): XB(1)} =1,
R l . l
1= lim g}u =1 and ,Llnl(l) - ﬁl'"* qll( ) ’ =0
eson '

14 — Acta Arithmetica XXVII.
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and are thus degenerate. We also point out that it will in fact be shown
later that u.(l) — 0 and 8, is very close to 1.

Consider now two configurafions X, Y eB(t). We shall say that X
and Y ave R-equivalent if for any two elements xe X, ¥« Y in corresponding
positions we have weR if and only if yeR. Now, let X = () X;eB (4, ).

i<

_ Then the R-equivalence relation partitions the set of X;e8() equivalence
classes, in faet, into at most 21 equivalenee classes. Denote by 72(X)
the cardinality of the largest equivalence class. Define

 foll) =max{P*(X): XeB(t, 1) and sz(X} (B~ us(l) )1},

S g V)

FEN-YY Z

Thus, there is a sequence I, such that

Fu(l
Hm fz; n) = a,
. n—so0 n
Therefore, there exist X™eB(3,1,) for which
‘ . AL
s2(X™) > (B~ Vpa(ln))l, and lim PET) = ay.
. oo i3

Now, for infinitely many n, the same R-equivalence elass oceurs im Ghe
definition of 7*(X™). Let us choose szeh an Rmequiva.lence class and denote
it by P(ty). Clearly P (#,) < S(#,). Set

fa(l) = max {p(X): XcB(4, 1) and £2(X) 2 (8, ~V (D)1},

A
& (1) = az—le( )_‘.
As we shall prove later, we have
A
ga{1) _ lim fz() ~ a,.
100 l R -

We now choose 7, in sueh a way that it is sufficiently large depending
on ay, fs, I, and #;, and so that e(f,) and uy(f,) are sufficiently small.
Assume now that fqr Some m =1 the quantities

Pt ooyt € Sl ey ts) € Bty ey by,

In D)y T (D) @y By emll)y pim (D), and 1,, have been defined in such a way
that we have ' ' : : '

gm(l) = max{sm( XEB(tl} ey by Z)}

On seis of inlegers 23
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l—soo l ?
Tu(l) = ma.x{pm(_X): XeB(tyyeny by, 1) and §(X) = (ﬁm_'yfﬂ'm(l))l}’
ful) il
(A Z ki

Uy = hm_: Em(z) =
Tesocy

() = | —

i, is sufficiently large depending on e, 8., K, and ¢, ,, and &,{%,)
and u,(f,) arve suifwlently small. We give the next step in the definition.
Let

Sty ey tn) = {X‘EBUH e tm)V: 'Sm(X) = (ﬁn;“VﬂnL tm))t
and » {X (am“]/v’sm m) ‘l']' ( ))t }7
I (1) = max {&"HX): XeBllrs..., b, )}

Define
b = T U
Faor 4. For dall 1 and m,
B < gm? @

Proof. For m = § the assertion holds gince g,(7) = I for all 1. Suppose
for some m = 0, the assertion holds for all values less than or equal to m.
‘We prove it for m-+-1. Let & > 0 and 1 be arbitrary. Then by the defini-
tion. of 8,,.,, there exists a large integer L such that

'_ gm—i-l (L)
L

Thus, there exists ¥ eB({,...,1,, L} such that
FTHEY = gyr (L) > (Brsr — 8} L

> Pprr—e

Tlence, if
Y= UYi: YiEB(tn -'-ftm)!

. i<k :
denotes the canonieal decomposition of ¥ into I subconfigurations of
order m, then at leagt g, (L) of the ¥, belong to S(i, ..., ). Write
L = I+ where 0<I<CI. Then at least g,.,(L)— of the configura-
tions ¥4, ¥y, ..., ¥, belong to S(%, ..., 1,). But of course all » of the
configurations | J ¥y, 1< belong to Bly, ..., b, ). Thus, at least

<1

one of these elements of B(ty, ..., &, 1) mmst have at least — (g.)rm+1 (L) ~l)
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of its 1Xs in S{ty, ..., 4,). This implies

1

- 1 ' _
Gmpr (D) = _v—(gm-]—l (L) —l) = ::((ﬁm.,_l — S)L—l) >

((ﬁm+1 —e)ly— l)

v

8o that

0 . 1
gm-(-ll( ) S .
b
Bince ¢ > 0 was arbitrary and » can be made arbitrarily large (by taking
L to be sufficiently large) then we must have :
Gy (1)
_1’}_"&:[:1* = ﬂm—kl
and Fact 4 i8 proved. ®
An immediate corollary of Fact 4 is

-

Facr 5.

Bonss i Imer )

I=co

We now eontinune with the definitions. Set

(D]
l-"m+l(l) = _ﬁm+1 ﬁ*”’q‘m_—,-ll—‘
.
= g’";’( ) ~ B by Fact 4.

As before, define an equivalence relation (called R-equivalence) on.
B{tyy ...y 1p) by calling X, YeB(ty,...,4,) R-equivalent if for any welX
and y<¥ in corresponding positions, zeR if and only if yeR.

Faor 6. We may assume 8, < 1 for m > 2.

Proof. Suppose for some m = 2 we have B, = 1. One of the con-
ditions on the choice of ¢, will be that when Bm = 0, it ix chosen so large
that g, —Vp,, (4,) > 0. (As we shall see, it 1s always the case that g, > 0.)
Thus, it follows by induction that if X'ed (biy...y ), L<Sr<m, then
I X'NR|>0. By Fact & we have g,,(1) =14, — I and so

_ Fu(l) =1 for all 1.
Thus, there exists

X = XieBlty; enny sy )
i<z
gnch that Xie8(4, ... b, ) for all i< 1. The R-equivalence relation

partitions 8(1,,...,%, ) into at most 24%-m-1 R.gquivalence oclasses.

This induces & partition of the integers 0,1, ..., 1—1 into at most 22 fm-1

classes where 4 and j are in the samie class if and only if X; and X; are
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R-equivalent. By the finite form of van der Waerden’s theoram, if 1 is
sufficiently large, some class contains an arithmetic progression of length
k, say, a, a+d, ..., a+(k—1)d. This implies that X, Korar ooy Xorpona
are all R-equivalent. Since [X,NR|> 0 then by the definitions of X
and E-equivalence,. R contains an arithmetie progression of length F.
Sinee & was arbitrary, then we are done. ®

Lot X = UJ X;eB(ty, ..., t,). The R-equivalence relation partitions

)
the set of X;e8(t, ..., 1,) into at most 242 'm equivalence classes. Let
P"tH{X) denote the cardinality of the largest equivalence class. Define

Fria(B) = max{P™(X): XeB(h, ..., 1,, 1) and
XY 2 (Bia =V B (D)1

—F 11
Oppyy = lim Imath .

I=oa l
Note that " (X) = ¢"(X)2~ "% 'm for every X eB(t,, .
fore, taking YeB(t,...,4,,1) with s"(¥) = Ony{l), we have (by
Fact 4)

sTHY) = G (1) 2 Fopial
g0 that )
fm-}—l(l) = ﬁmH{ Nz gm-:-l(l)z_tlizmzm
and ‘

SO
Oppry 2 ﬁm+12 T,

As before, there must exist an E-equivalence class Plty, ..., t,) such
that if we define

Fmga(l) = max{p™*(X): XeB(ly, ..., 4, 1) and

X)) = (JBmJ.-l'“"i Pt (l))l}
then
g 0

00 l

Faor 7.
fm-{-l (l)

Oy = 51111
. 00

Proof. Let &> 0. Choose a Iarge.integer l. By the definition of
Om 1, there exists a very large integer I, such, that

L
fusld) e

oy by I There-

v
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Thus, there exists X eB(t;, ..., t,, L) such that
PHE) > (g —e)

and
S"(E) = (Brnsr —V s (1)) L.
Write [ =Iv+I where 0721 Let
X = U X’U X;eB(ty, "‘7tm)7
i< L . .

he the canonical decomposition of X into its I gubconfigurations of order

m. For 0 i<y, lat
Y:‘ = Ule+jEB(t1? crey by 1)
gl

and let
X = UX; =Y.
j<wl i<y
Let '
I = {j<r: ST < (Brss—V bnaa (D)7}

and let 1T} = ov. For all j, we have

m+1 Y) (ﬁm+1+”m+1(l))
by the definition of g,

Thus
2 gl ( Ir

Z.sm+1(y Z m—'-l( .j)

Jr Jel Jer”

é (ﬁ1n+! —]/,Lzm+1(l))lav + (ﬁm—H +Ju‘m+1(l)}l(l - a) Y.

But
V) = ) > S X) -1 (ﬁm+l Vit (L) L—L.
i<r
Therefore,
(ﬁm-{—: . lyum—i-l (.L))-L —tx (ﬁm-{wl —l/:um-{—l(l) ) tay +‘ (ﬁmw}-l + |”‘-:n+1(l))l(1 - (1) ¥
Hence, ,

o 1 '
ﬁm+1 —]’/[u'm+1(L)_ — (ﬁm-i—l ]/nu'm-J-l(I ) (ﬁm+1 -+ r”m+1( ))

= ﬁm+1+.”'m+1“’ (]/!"'w1+1 () F B (1 ))

and

) &Vttt 31(0) S pimya D+ +1/f£»m+1(m
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There are now, two possibilities.
(i) Buppose p,. () =0 for all sufficiently large I’ Then by the
definition of u,.,, '

Gy (1
'_—5_ = JBrn+1

for all sufficiently large V. But since g,,.,(1") is an inbeger between 0 and
I’ then we immust have either 5, , = 0 or 8,,,, = 1. By Fact 6, we may
rule out the sesond possibility and so conclnde that £,,, = 0.

(ii) Suppose p,,.(¥) >0 for infinitely many . We may assume
that | was then chosen so that u,.,(I) > 0. Assoming that ease (ii) helds,
it follows from (1) that by choosing I sufficiently large, we have

alV P () s (1) << 2t (),
and 8o :
© 2 (1 —_—
e < "_ﬂ_ri( ) < 2lrfﬂ’m+1 (l)'
‘/#mﬂ(l) +.um+1(l)
Theretore, we have .
(2) - o < 2Vt (1)

where we note that (2) holds in ecase (i) as well, since in this case, a =% 0.
Suppose, now, that for all j< v, we have either = :

§FUE,) < (Bngr—V pimaa (D)7
or
pm—}-l( Yj) “g- (aﬂH—l '”“23”'

There are just ov indices j such that

(ﬂm+1 - ;/Au'm+ l(l) )

by the definition of a. Therefore at least (1 — a)» indices j satisiy pm“(Y }
< (g —2e)1. However, the otker indices j, i.e., the jeT, must each
satisfy

) <

PN < (ﬁ,,m Vit (D)1
since P(tla g rtm) = S(tla oy Bl
Thus,
Z‘pmﬂ ) << a”(ﬁmﬂ 14 a2 { )ZWL —a)p{a, 28]l
Jw

On the other hand,

anwl

FE

H! 1(Y{) ; pm+1(x)"”“‘l > (amJJ ——&)Lwl,
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Therefore,

(opy1— g) L—1< W(ﬁm-;-l _“]’/#mﬂ(l) )I'i' (1—a)r{ay., —28)i

and
i I
(3) Oy — € ;< a (ﬁm—}—l - ]/num.-l-l(l)) 4 (1—a) (am+} — 2e).

The right-hand gide of (3) iz a convex combination of F,,. —Vu,, (1)

and amJ_l——2s Sinece ¢ < °‘/Mm +1(1) then the coefficient 1 — a is arbitrarily

close to 1 for I sutficiently large. Fmally, sinee B, — l/ym+1 ) is bounded

then by chooging I (and L) sufficiently large, (3) is coniradicted.
Hence, there must exist an index j-< » swch that

SHED 2 Buys—V (D) and ™I > (@1 —2e)1.
Therefore,

T (0)
l

> Oy — 28

for all sufficiently large I. Since £> 0 was arbitrary then the proof of
Fact 7 is completed. ®

Finally, we choose t,,,; sufficiently large depending on a1, fppry K,
and t, and so that g, (f,.;) and g, (t,,,) are sufficiently small {to
be made precise later). This completes the inductive step in the defini-
tions.

The following inequality will be essentlal in what follows.
Lemva 2. For all m 21,

(4) B 2 1= 20V i () =V Ve () ~+7 g (e} -

Proof. Denote the right-hand side of (4) by ¢(f,.). Note that if ¢, = 1
then for any &> 0,

i) =max{| XN R|: XeB{D)] > (1—e)l

for all sufficiently large I. This implies immediately that & contains ar-
bitrarily long arithmetic progressions. Hence, we may assume a; < 1.
Of course, we have already noted that «; > 0. Exactly a8 in the proof
of Fact 7, it then follows that we cannot have g,(1) = 0 for all sufficiently
large L. Henee, 'we shall also specify {later) that ¢, is chosen so that s, (§;) > 0.

By the definition of e, and a,, for all 1 there exists X eB(, ...
ceey by 1) sueh thatb -

)2 (B ol )l 500 D)t — e (D)) b
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Write
X= U Xy XieBlly oo bny)
T m

in the usual way and for all j < !, set

Y= U Xy ie Bty ooy )

=ty

Let us write X as ¥ when considered as an element of B(t, ... 1,10
‘We shall show that

) 2 plta)l

for 1 suificiently large. This will suffice to pi’ove Lemms 2 since in this
caze we have '

g‘m+1(l) 2 sm+I(Y) ; (p(tm)li

g'm.-{-l(l) : ) P
T> o(t,) for I sufficiently large,
s0 that -
o Gmia(F)
}lm m‘!.ll = ﬁm.@.] ; & (tm.)

ag required. The augument will be esgentiaﬂly the argument of Fact 7
nsed twice, once for & and once for p™, where the second time cruder
approximations will be employed.

TLets

Ty =<l ) < (B () )
Tor all j < I, the definition of s, implies

Sm(Yj) = (ﬁm + Mm(im))tm

!Tli = al.

Therefore, _
D) < A=V i () Vi 6+ (B 1 ) (1 — 031
But -~
28 = M) 2 (B Y st (D) -
Thus, - '

(B — Vo) ol < (B — Vi () m)t al - (B ol (1 — )T,
. igm"— ]/J“m(tml) B ﬁm"’“ a']'/r”m (ta) +(1—a) Mm(tm):

©and’

(5) alV ) - ) < i)+ (o) -

SR e

R
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T m =1 so that u,(1) = p () =0 for all ¥, then since §1(¥;) =1,
for all § <1, we have T; =0, ie., a = 0. Therefore the inequality

(6) a< 2V iy (ty)

holds trivially.

Suppose m > 1. T g, (V) = 0 for all sufﬁclenﬂy large U', then the
argument in the proof of Fact 7 shows that we must have ﬁm = 0. The
definition of 7, now implies 4 = 0 go that again (6) holds. On the other
hand, if w4, (1) > 0 for infinitely many I', then we shall specify that 1, is
chosen so that g, (%) > 0. In this case, for [ suificiently large, 'we have
from. {5) ‘

-‘.‘um(tm)

@<
’/Jum m. “T'num(i )

< 2V ()
Henee, in all cases, (6) holds.
Now, let _
Ti’« = {‘? <l Sm(Yi} 2 (ﬁm_l num(tm.) }tm

<. (am _l/l 8 (T ) 'l'}/f”'m(tm))tm}y
|Ty] = bl

and " (T;)

Of course, for j¢ T, .
' .’pm(yg) g (am'l"‘?m(tm))tm‘

Therefore,
Zw J&ME+ZWWM-ZPWD
J<i Jel'y Jelly JuTy

< a’ltm +(a'm_‘/1/sm(tm) +# .um(tm) )tmbl+
. +(1_a'_b)l(am"i—sm(tm))tm

<2im11/,um(tm (am ]’/}/S,JL

+]/t”m(tm )tmbz +
+ (l - b) (am + sm( m)) ml
Cfor 1 sufficiently large. But

DT =p(X) > (o

§=i

— &, (tml))t I
Thus, '

@y~ el ) <

Therefore,

W () -+ By he) — (VY () +V i () + 1 (1)

(1) BV et +V tmiton) + () < 2V tons () 8 (B) - Eun D)
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If m = 1 then by the choice of ,, &, (f,,) > 0, 30 that Ve, (£,,)+¥ sty {fy) > 0.
It m > 1 then by induection {for a suitably large choice of 1,) and Fact
6, 0 < B, << 1. Thid in turn implies that {,, can be chosen so that p,,(1,,) > 0.

Hence, in all cases
l sm +] m,(tm} = 0

Thus, since for I sufficiently large,

£m(tﬂll) B7!!". m) l/e?il.(t
then by (7) we have

b < W Ve () +V () -
But for j¢ T,T,,
YeS(, ..y tm).
Therefore, .
§(T) 2 (1—a—B)1 3> ¢ (1)1
and Lemma 2 is proved. ®
We need some further definitions. Define

Cltyy ooy in, 1) = {X B, ..
Thus, if

mi l) S1n+l(X) = E}

X U X EG(tlJ Lrey m:‘ I)

i<l
then for all i< l, X, eS8(f, ...y tu)

Faor 8. If By > 111 then C(ty, ... ¢, 1) 0.
Proof. By Fact 4, if §,.,, > 1—1/l then

gm«-l-l(l) = Zﬁm-l—l => Z(l _1/1) =1-1
so that g, () =!I Thus, there exists

XeB(tl, ces by, ) with o XY =1,
Tharefore,
-XEG(tH vy Es }5’5@ H

Note that by Lemma 2 and the faet that a,,, > By 270", S, .00, 1)
and P(t, ..., t,) are nonempty for all » (provided ¢, is suitable chosen).

For X = U XieB(y ...,
i<l

X, ) = [{i <1t ieC and X;eS(t, ---,tmml)}J,

m(X G {L<l teC and X, G-P(tu . im——l)}!'

Q2

to_1a 1) and C < [0,1), define

e PR L7 VT P
2 e

s
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Temws 3. For all § and z, there emists T such that if

X oo U XieCltny oy by D)y

i<l

C<[0,t,) with |Ct

and 1, i sufficiently lorge depending on I, then f.hefr;e ewists am ¢ such that
&y, O) > (ay,— 8} O]

and there exists an i' such that
P (X, O) < (an+ 0}OI.

Proof. The proof will be similar to that of Lemma 2. By Fact 6
and Lemma 2, we know there must exist arbitrarily large s for which
i) > 0. Assume that we have chosen such an I. Write

X‘i = U 'Xi,j fOI‘ ’i< Z
Ity
and put
Y}' —_ U Xi,_‘i fOl‘ j< t’lll'
i<l N
Thus, ¥;eB({, ..
we have X;e8(1, ..

oy b 1,1) Since SeC{ty, ...,
1,). Therefore,

tns 1) then for all i<,

s'"(zé) > (ﬁm*m-(tm))tm' and  p™(Xy) > (ty—VV e ()
for all + < 1. Thus,

DIy = D) =

i<l J<ty,

(B —V s () m))

Let
T = {j < t: TN < (B VW), T3 = .
By the .c'iéﬁnitio'n of u,, we have
| (L)) < (Bt i (D)
for all j< t,. Thus,

vgm ZSM(Y +Zsm

J<!m ﬂT

< (ﬁm—mn(z))tma’z+(ﬁm+nm(l)) (1—a'),1.
Hence,

o=V o)} bl < (B — 2o (D)t @' T (Bt (D)L —a’y 8,1

AVt (b))
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and so

@ (o (1) Y 10 (D) < 21 (D) HV i (8) -
Since p,(f) > 0 then ‘

o < 2V ()

provided that t,, iy sufﬁcieﬁ"tly large depending on 1.
Now, let

T, = {j <ty S = (ﬁm—l/,u,m(l))l and
P(Y;) < (ot —V Ve () +Vun (D)1},
|Z;] = bt
For j¢T;, we have by the definition of z,,
P™(Y3) < [ < o+ 5 (D)1
Therafore, -

2T = DT+ Y,

3<t

2 ™)

:rei"l JET JiT uT

< @t 1+ (g —V Vo (B -V el D) B 1,1+
+(1—a"—b) o, + &n (D)
<2,V (1) -+ (an—V Ver (0 ¥ (D) )b b1+
(1 —a" =) [+ Em (D)l
for 1, sufficiently lan."ge depending on I. But

DT = Y M) = (=Y Ve (b)Y () )]

I<lyp i<l

Thus,

Oy, *l/.!/am (t'm. 'Jf']/nu"m. tm

< 2V (1) + i+ 6 (D) — ' [V Ve (1) 41 ymm +enld),

and

O (Vo (0 -Vt D) + (D) < 2V i (1 4 00) +V Ve () +V i (1)

Thus, for %, sufficiently large depending on I, we obtain _ '

b < 2V Ven () +V el
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Hence,

(8) 1[0, %) T 1]

= {5 < tat ™D = (B =V (D)T 30 §™(F) 2 (s —V Ve () +¥ 2, (1) 1)
> (L a6t = (1= 2V () V-V Vo () Y i (0)) -

But for j 5[0, 1] —T,, the definition of &, fmplies

(9 I < (e (D)L

Therefore, for I sufficiently large depending on d and 7 (and t, sufficiently
large depending on 1) we have by (8) and (9),

{j< T’m: (am'_g)l<pm(yj) < (am_,_ g) l}l > (1"" jfh)tm'

Now, suppose

P Xy, O) < (ay—9) |0
for all i< l. Then S

DIPME, 0) = Y™ < (a,— 8011

i<l i
On the other hand, we have

PR AT SN E 5

e : -
FO—(T,UT)

> (a0 020 > (a0 i 161~ 1)

a .
((1 - "2—) (IG] 4: ) = (a'rn_ 6) ICli

é ' &\ =d zd
PR ) I

which contradicts the assumption |7 2
of the lemmz.

The second assertion iz more direct. Suppose

P(Xy, €)= (- 3)10]

Thus,

Tty . This proves the first assertion

for all 4« 1. Then

2 PMEL0) = P p™(T) > (ant+ 0011,

i< je!
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But by (9)

{7 <t 2™(F) > (ot enD)Y] < |
Thus,

ZPM(YJ) s Z Pm(fj)_}— Z 2:’?71‘{1}) \<~ 21/.”7:1(1)tml+(amji' Sm(l)) lc"ﬂ

jeti Fe(, ('\T JeC=1"

T:JL] = a'ty, < 2]//“?%“”?71.{

1

Therefore, comparing the two inequalities for 2p™(X;), we have
_JeL

(g O ICIT < 2V iy (D L+ { + £ (D} C1T,
and ' :

2¥ .“m(l)
Em(l)

which is impossible for I sufficiently large. This completes the proof of
the lemma. &

0l <

¢

" 4. Further definitions. Define for ¢ <. K the guantities
—Di(tlr ree2 mrK)
= {XeO(ty, ...rtpy, )2 X = UX; and X;eP(iy, ..., t,) for all j< i,

j<E

DMty ooy by )

{XeB(il,.. tpa K): X = ) X; and X;eP{Ly, ...,

jeK

t,) for all j < i}.

Clearly
Do(tlﬁ e m:K) - G(tll R m: K)?

—D*D(ti: ---3tm5E) = Bty .-y m:K)r

and D'< D* for all i< K.

The bagsic ides of the proof will be to fix K arbitrarily and show by
induction on 4 that Di(i, ..., 1, K) # @ for any value of m provided
i, satisfies certain conditions. This will obviously show that R contains
arbitrarily long arithmetic progressions (e.g., by choosing ¢ = K—1 and
m = {0).

For X = | J X;eB(ty, n,

1<K
X, = UX”eB(tl, vy by where - & eB(hy ..oy poi)-

i<ty

tmy £}, wTitE

Define
B, K.) = {(Juoy eeey 1) Gyt for all 4 K

and g, ..., jz_, fovms an arithmetic progression}.

o N P Nt el o
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Tt is allowed in the definition of H(¢, K) for jy = j; = .
Go > iy > > g a8 well as fo<ji < ... <Jg_-
Fact 9. With the notation defined above, we have

(10} (Jor -y Jmor) e By, K iff .Q_Xi,;‘,;eB(tn vy bpogy K.
R

eo =fg  oOT

Proof. The proof is immediate. If (jo, ..., g_1)cE{f,, K) then
certa,1n1vu X”ieB(tl, vouy by_qy K). On the other hand, if U X1 ceB{t,...

,tm_l, ) then 4y, ..., jg_, paust form an a.mthmetlc progressmn of
Iength K with all j;<t,, ie, (Jo - -1 Jga)eB(l,, K). =
For i< K, j <t detine :
Bz, K,j,i) = {(jm "':jK—l)EE(t:K): Js =.7}1
e(t, K,§,1) = |B(t, K, j,1)|.

Faer 10. With the notation defined above, we have =
(11) olt, K35, 1) <t
and for tiA<<j<3t/4, K =2 and t > 4,

(11) 6(t, K, j,1) = 1/K*
‘ Proof. If (4o, ..., 0x 1) e B(1, K, J, 1) then all j, <t and j; = j. Thus,
if A >1 then the choice of j§,,, (or j;_, if i = K —1) determines the rest
of the arithinetic progression. But there are at most ¢ choices for j;., (or
Jiy it 4 = H—1) so that for K > 1, e(t, K, j, 1)< 1t. Of course, if £ =1
then e{t, K,j,4) = 1<t. This proves {11). -

“To prove (11°}, we note that the worst case occurs when j = [§/2]
and ¢ = K—1. Clearly, (a, a+d,...,a+(K—-1)d}<E(t, K, [1/2], K—1)
Whenever =0, d=0 a,nd. a+(2’c- Yd = [1/2], i.e., whenever 0<d
7 B2

Smce

1 [i] L
E-1l2]" K*
for 222 and ¢4 then (11} is proved. &
We shall also need the following result.
Facr 11, Suppose t > B > 1 and L < [0, 1) with |L| > (L—=L/1)t. Then
L coniaing an arithmetic progression of length 1.
Proof. Write t =#1+ with ¢ <7< 1 and let I; denote [§I, (j-+1)])
for j < t'. Sinee |L| > (1—1/1)t then

0, )-Li<tl<t+1,  Le, [[0,H)—Li<1

icm
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Thus, each I; must have |[;n L} =1—1. For, if ]Ijn 1] = I then we would
be done Whﬂe it [I;nL]<l—2 then for some j’ <1, e L] =1 and
again, we are done. Let &, +jl be the unique slement of I; not in L. Then
we have k; = k;,, since otherwme 1,01, contains a block of 1 consecutive
integers. But now the sequence '

I>kh2..2k=0

(which is defined since ' 2= P’) must have at least I conseemtive terins
which are equal. The corresponding I,’s clearly contain an ::u'lthmetw
progression of length I. m

We next define another subelass of O(Z,, ...
and XeO(ty, ..., 1,, ), let

F(X,j,4,s)
= {(jo; "-:jK—l)eE(tmz K:j; S):iUKXi’,j‘-rE—D*i(tla ARRS ] tmuls K)}
‘<
and let

y b K). For 4 < s<K

: f(X,j,i,S) = ]F(-X:jr’i:s)]-

Define (1, ...,4,, K) to be the set

{X 08, .oy by, H): for every s with ¢ < s << K, the condition
(@) o J(X, 3,4, 8) < 2t
fails for at most 246X (1—g,)¢, indices j< 1, and the condition

. .. 1
(b) . f(XsJ’ 1y 8) 2= K’ 91 mtm

fails for at most 2éak(1-—8,)%, indices j such that 4 < § < 8%, 4.

The elements of G*(4;, ..., 1,, K) will be called homogeneous K-tuples
of type (m, ). The elements of Dt ...,1%,, K) will be called simply
K-tuples of #ype (m, ). The existence of such K-tuples will be proved
by a simultaneous induction. Note that by Faet 10,

Go(tli ---:tm’K) = O(ilf '-':tm!K)-

Now let XeB(t,...,1,, H) be arbitmrjr and let 0<igs< K.
We shall define a bipartite graph I(X, 4, s) which will eventually connect

Lemimna 1 with the rest of the proof. The vertex sets 4 and B of I(X, 1, 5)-

will both have cardinality f,. Even though A and B are to be disjoint,

we shall use the set [0,t,) both for A and B (this should cause no con-

fusion). The pair {j,j'}, jed, j'eB, is an edge of I(X,4,3) if (fo, ...
vy ig)eF(X, 4, 4,8 and j, =j§. It is recommended that the reader

study this definition carefully since an understanding of the graph 1 (X, 1, s) -

15 - Acta Arithmetica XXViL
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will be erucial in the remainder of the proof. A ugeful way to- picture
I(X,i,s) is the following. Write XeB{t, ..oy ty, Ky a8 X =) X,

=<K
o i = X i< K, 1
X,eB(l, ..., 1,), in the usual way. Also, write X; jgm &y $<< 5

the ususl way. We can display these X ; in the following way.

A o

w m—1l *°* b=l 7t

The set A corresponds to the set of indices j of the X, ;, j<< 1,. The
ot B correzponds to the set of indices j* of the X, §' < t,. The p.a,ir
{i,4} is an edge of I(X,4,s) if and only if Fhe zf.rithmetiG. progression
Jos iy --y jg-y defined by letting j; = j’ alsnd Ja=1 has all its terms in
[0,8,) and Xy eP{t, ..., 0, ) Tor all &' <4 : .

We remark that if XeG(f, veey by K) then the graph I(X,1,s)
satisfles strong valency constraiﬂts.

5. The cheiee of 1,,. In this section we gpecify how the choice of ¢,
is to be made. We have begun with an arbitrary but fixed Sequence &
of positive density and an arbitrary but fixed integer K = 2. Assum&_a
now that in the inductive definitions of Section 3, for some wm = 1 the
quantities S(t, ooy ety Pl ooy tny)y Gl Fulldy ey Buy en(l) and
i (1) have already been defined.

5.1. Choose the constants &, &™, ¢, o™, o™ a5 follows:

(1) 6™ = ap(1—Fu)

(i) g™ = %:
1 &5

omy m B
(11i) .5 10 KR
(iv) o™ = af (1~ B,),
: 1 o

m) . T ™
) o™ = 5 g

5.2. Let us denote by m{™, u{™, M™, N*™) the numbers given by
Lemma 1 for the corresponding constants chosen in 5.1.

(A) Let t, >2M™, ¢, > N™,
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{m)

5.3. Let ™ :Z(m) and let %, be a large number for which
(]

the statement of Lemma 3§ is satistied with § = 6™, t = +™ provided
by is sufficiently large depending on I,. Also choose I, > 1, ..

(B) Let %,, be 50 large that 5.3 is valid.

5.4. By van der Waerden’s theorem, for integers ¢ and j, there exighs
& least integer w(7,7) such that for any partition of [0, w(s, j)) into j
clagses, at least one class contains an arithmetic progression of length 3.
Choose I, so that 2 is an integer exceeding w(l,, 1Em™af™), Thus,

1
. _ Vi _ﬁm+1
provided %, is sufficiently large (by Lemma 2).

(C) Let 1, be so large that 5.4 holds (this also guarantees that g, > 0
for m > 1).

(D} Let %,> 4 (this guarantees that Fact 10 holds with =1,
() Let ¢, > 48, , for m > 2.

(F) Let ¢, be so large that Vu,(t,) < min{f,, 1~p,} (which is
possible sinece we may assume 0 < §,, << 1).

2R <

5.3. As noted in the proof of Lemma, 2, there exist arbitrarily large
vilues of I such that £ () > 0. Using Lemma 2 induetively, we also ses
that for m > 1, there exist arbitrarily large values of ! such that L (1) > 0.

(G)_ Let the #,, be chosen so that £,(#;) > 0 and for m > 1, T () = 0.
In what follows, ¢, denctes o fized number satisfying each of the con-

_ditions (A)-(G).

6. Well-saturated K-tuples. Suppose Xe¢@(ly, ..., 1, K) with 0.<4
< H—1. For i+1 < s < K, loti the sets €,(X, 5), p < m{™, and 0,,(X, ),
u<<m{™, v << nf™, satisty Lemma 1 with the choice of constants given
in 5.1, where the vertex sets 4 and B of Lemma 1 are defined by

A = A" = {j %tm<j< %tm ?
B =B™ = {j: j<t,} —[0,4,),
and the bipartite graph 7 of Lemma 1 is defined by
I=I(X,i,s).
Similarly, for i+1<s< K, let the sets 0,(X,s), u < m{™, and

— 7 ?
Cin( X, 8), u<<m{™, » < nf™, satisfy Lemma 1’ with the choice of con-

stants given in 5.1, where the vertex sets 4 and B of Lemma 1’ are defined
by

A = A™ —<[0,1,), B =B" =10,1,),
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and the bipartite graph I of Lemma 1" is defined by
I =I(X,i5).

As we have previously noted, the common indexing of the disjoint vertex

sets 4 and B should canse no confusion.
Asgsume m = 1 and write X in the usual way as

X = U-Xi'eei(tl:'“;tm:K)v b

<K

i :UXi',jEB(tlﬁ"':tm)ﬁ i< IC.

PR

Wo shall say that X is well-saturated if for all ¢ with {+1 <5 < K,
5™ (Xsy O (X, 9) — 2, [C (X, 8| < 6716, (X, 5)]|

and

|57(Eey Cs (X, ) — 0 [0 (X, 8)I| < 671G, (X, 51

whenever )
0l X, ) 2 7™y 10X, 9] 2 7™,

where p< m{™, v < ad".
LevMA 4. If X' (i, ..., 1y, K) is well-saturated with i+1 < K then

X€G2+1(t11-' H m)K)

Proof. Choose a fixed s with ¢+}1 << 8 < K. We must show:
(a) (X, 7,8+1,8) < 2 alt, fails for at most 2(i+1)ak(1—B,,) %

indices § << %,,,
1 .
(b) f{X,§,1-+1,8) = N are arle, fails for at most 2(i+1)x

X aE (1 —f,)4,, indices j with I, < j<< 3.
We first prove (b). For the sake of brevity, seb
Co =0 X,8), U =0(X,9),
C,=CuX,s), C,, =0,(X,9),
» I=1I(X,4,s).
Let Z = A™ be defined by

Z:{j: o <J< and je U O, and

,u<m(""')

Kz 2

oo 1 i+1 . 1 i
f(X:Ja'L+1:S)<' (‘aﬂi) by, a,nd f(Xy.T:":fs-).Z“ﬁ(a_m) tm}'
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(i) Assume'|Z| < ¢ (1 —Bn)ty. By Lemma 1 (which applies by con-
dition {A) in the choice of %) we know

AT 1) 0,1 < o™ 1AM < ¢, = oK (1 B}t

;ﬂ<m(’“)

Also, by the definition of &*(%,, ..., %, K), there are at most 2iak (1 — .},

1 Jen\
indices j " with fX,5,4,8 < — e (—é—)t Thus
I{J Et <j<it1n andf(X j,?:—f—l S) ( ) }
< o (1= Bt oin (1 — Bty + i (1~ Bralt = 2(8+1) i (1 — B) e

which is just (b).
(i) dssume |Z{ > o (1—pB)tn

1Z0 0, < of(1—8,)10,] for all p< m{™

then

2| =]Zn U O] = Y 1210, since the C, are disjoint

(m)

H<my F<m(nm)
<afE1—f,) Y 10/ <o (l— o)A < o (1~ Fo)tn
#<m§"")

which is a confradiction.
Thus, for some u-~< m{™

Z0C,l > an(1—B,) [0, = &7 |0,
Let 2" = Zn(,. We first show that k(Z', B™) is not very large.
Let
X = B(M)_ U Oy,v = [0? tm)"" U G,u,v'

w<ng"") ,,<.,,_§)m)

By Lemma 1, [X| < o™4,,. Also, by Lemma 1, for #¢0,, we have

k(@) O, ] < (B(C,) € )+ 67)10,,1

and so,
k(ZJJ Gp!,v) ‘<- (ﬁ(oyl G,u,v) + 6(1?2)) 1011,,1' IZ’E -

g
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Therefore,

(12) ®(Z, By = Z EZ,0,,)+kZ, X)

¥ <ngm-)

< D (BUO,, €0+ 8™ 10, IZ |+ 121X

(m)
Py

< D B0, ) 10,1121+ 3 00, (12| + ot 2},

EAs ngm) vz n{[’m)

< D) B(Chy O 10,12+ (87 + 0™ 171,

n,
ﬂ<'ﬂ.8 /

Next, lot _
={j: i<, and X, ;eP(t, ..., 1, ,}}.

Thus, for all j e A _

(13) k()L = f(X,§,4+1,5)

since any edge from j to & vertex j'«B" alveady has j, — j and j; =7’

for some arithmetbic progression jy, 41y ..., jz_; such that the sets X,
y Xi 1, , 8l belong to P, ..

Xi = Xi,h also belongs to P(t,,

g "

mm) Oonsequenﬁy, if j'el then
s buy) and so

{Jos “'1jK—1) e (X, §,44+1, 9).

Bince by hypothesis X is well-saturated then for |0, |> ™1, we
have
|Lﬂ0 I (a *‘“a(m)HOyvl
. : K
>3m0 | sinee o . ffm )T 2
2 i 10\ 2

e
<)

= g™ 10,1

But we have alveady seen that |Z'] > ™ 1G,]. Thus, we may apply Lemma
1, obtaining

B, EAC,,) > B0y, ) — o

for those v such that |0,,|> r(’”’]tm.
Therefore, -

2,0z 3 k7, 0,,0L) = 3 p(Z,0,,nL)C,,nLiZ

[ ﬂ(emJ l(<n'(]m')

icm

- 3 = 3
13<'?l(m) lv<ﬂ(m)

)
(Gl ol My 10, <Py

= D' (B0, C,,) — 8™)iC, o LIz | —

u<ng”‘)
- 2

v<ﬂ(m)
10, ol <y,

= D B0 €10, N INZ | —

(B(C,, Cpy) — 8™NC, N L||Z]

w<ngm)
—amiz 3 e,,nLi- 3 110,,nLIZ]
» <ﬂ(m) v<‘n(m)
W <'t(1n)t

gn

M0, N LNE Y — 8™ Z 1y — nf? <211,

> > B,

v<n(m)
3 B0, G0, N INZ | — 26712 I,
v<'n-gm)
(m)
(2
i (my __ 7
pInce v = %gm) .

But
LN 0,1 =™ Xy, 0,,)
so that X being well-saturated implies
1L G, 2 a0, 0™ 10,
provided |G,,] = ™1,

Thus,
> B0 O )0, NI Z = > B(C, OGN Lz
»ng) vy (m)
|c'u,,|~>z( i1
> D ﬁ(G#,GM,)<a — 6|0, 12—
v<nu(m}
— D B(C, O ey — 310,11
s
i, A<, ‘
> o D B0 G0, 121267 21k,
. p<ﬂ{)ﬂ’t) o
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as in the préceding inequality. Substituting this inequalty for the cor-
regponding term in the preceding inequality for %(Z', L) we obtain

L)z ay D B, 0,

v (ncml

(14) 1z IO, 12— 46 17| 1,,.

Since o™ = §", we may multiply (12) by a, to obtain

(2, B™) Ky 3 B4 0, |G, |2 +26M 0, 2|1y,
y<ni™

Thus, by (14) we have
k(Z', L) > a,k(Z', B™) —68™1Z"|¢,.
But, by the definifion of Z’, for each jeZ’,

. 1 {e,\
f(-X:Jrq’sS)>“E'2‘(l)tm
and

2

1 41
f(X .??7'+1 ) f(am) tm'
Hence, by {13}
1 a,, i+1
F(’?ﬁ) IZrltm;?’ Zf(x

Je&'
> a, k(2" B™)— 68" 17'|1,

=t ) f(X, 4,4, 8)— 660278,
jeZ’

7j7 i+1: 5') = YG(er E)

2 (2% i ' my gz
S Ar) |Z |4y, ~ 68" | Z | 2,,.

l i+1
‘f(?m‘) < 6™

which contradicts the definition of 6™ since by 5.1
PR WA
- 10 K*
This proves (b).
Next we prove (a). The proof will be qulte similar to the proof of
(b). Bet

Z'=.{J=_'ie U C,and f(X,§,i+1,s) =

on)
#mf

Therefore,

L2 L ()T £ it1< K
5 E\2 or 1< K.

21-,-1 1+1_t

and f(X,j,1, '5') < 2iafntm}‘
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As befom, if 12| < a%(1— B¢, then we would be done. Hence, we may
assume \Z) > af(L—pB,)t,. Again as before, for some u< m{™,
we have

200, f > e (1—B,310,) = ™10,

We let Z' = Zn 0, so that 12} > £™|0,|. By Lemma 1’, for each ®eZ,
‘we have

k(@ynC, 1 = (8(C,, Cp)— 6™)1C, ..

Therefore,
B(Z',C) = N k(@)nC,,0 = (B(C,, C,,) — 6™) 10,1 12
=
and so
(15) k&, B™z > BZ,0,,)= (ﬁ(op,oﬂ,) &™) (0, ) 12]
: v » nam’
> > B0, 0010, 15— 6™\ 2,
v<7’l(um’
Also
(ae)  WZ,Ly= D k(Z, C#,,nL) (2", (B™ — L()’)GW)nL)
s<nf™ rng™

< > WZ,0,,0nL)+d™ |7, by Lemma 1

n)
L g

= 2 ﬁ(Z' 15 ﬁL)]GHﬂ(\_EE iztl_,rg(m)szltm

By

v{‘n{.'m)
5
= Z + 2 + ™2\, .
v<7zg”') v<'ngm

Itz iy, <™,

But, by hypothesis, X is well-saturated so that

(t ) D) < 1T D] (o + 87 0

provided [T, ! > ™1, Sinee

ay— §™ > ‘;m ()

= &
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then we can apply Lemma 1 to the first summand in (16) and
obtain ‘

(B(C,y Coud +8"N1C, AL} %+

k7, Iy <

¥ ﬂ:]m)

+ 7N |2 | + 0 2|1,

< D) BOLGICLNINZ

(mny
v<n0

10, 1= My,

+ > B(0,,0,)10,0 L1 12430 2|4,
v<nf 7
|Eﬂ,1,|<r(m)zm

< ) B(0u G (@0 +8™)(C,,, 12|+

p<
+nf™ |2 |4, 382 8,

Sam Y B0, Co) 0, 2]+ 2,
w<ng}m) :

Thus, by (15), we obfain
K(Z', D) < ap k(Z', B™) + 6824,
By the definition of Z’, for each jeZ’,

X, 5,4,8) < 2ia;;atm

and
: f(xﬁjyi"f‘lfs)22“1‘1:;?1%-
Hence, ' '
PRGN < Y X, G441, 8) = B(Z, L)
‘ JeZ* s

< an k(2 B™) + 66 (7|4,
L 0 2 6 12 Uy + 66" |2 .

Therefore,

2t L 660

which contradicts the definition of &™), This proves Lemma 4. ®m
Lamawa B, Suppose, for some i, 0 < i< K1, that

XOe@ 4y, .1, K), fﬁl, where l;l;",:K.
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Assume thal
X = U ng)ec(tlﬂ P l)

<1
and, further, that for each j< i, X and X are R-equivalent for all &,
n <l Then there ewists =<1 such thai
XMe G4, ooy Ty, K.
Proof. The assumption that X and X are R-equivalent implies
T(X®, 4, 8) = (X", 4,5) for i<s< K, E,5<],

gince the edges of I{X, i, s) are completely specified by the R-equivalence
classes of the X; for j < 4. Hence, we may assume

Gy("X(S): S) = O(,u(X(n)) 'S') = Cﬂ(s)?
. . Oﬂ,v ('X(E)’ 8) = Gﬂ,y(‘X(ﬁ)j S) - GM,,(S),
with a similar assumption holding for the C,{s) and {,,(s) as well.

By Lemma 4, it will be enough to show that for some =< I, X™ is
well-saturated. Suppose this Is not the case. Then for each &<, there
exist p, v, and s such that either

(i) [Cpp(8) = o™t amd

2™ (EL, 0,0 (5)) — et |0, ()] > 671, (5)]
or

(ii) 1C,,(s)] = ™1, and :

| P (XP, 0, (8)) — 0[O, (8)]] > 610, (8],

There are actually four possibilities herve, depending upon which way
the inequalities go when the absolute value signs are removed. But by
the choice of [ and 1, (see 5.4), we have

oK '
120 >wly,, 4En™nl™),

Since there are at most m{™ choices for g, at most n{™ choices for » and
at most K choices for s, then by definition of the van der Waerden func-
tion e, there exists an arithmetic progression of length I, in [0,1) such
that the relevant inequalities in (i) and (ii) involve the same g, » and s
and so that the inequalities go the same way. Let &, ..., 51, . denote

this arithmetic progression and suppose for the sake of definiteness that

(17 PEED, O, (8)) = 0y [0 (8)] > 6901C,,(5)]

for all j< 1,. Since, by hypothesis, _
U X@ea(tu ooy by £)

<l

U A e e,
R R
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then
X(if)ﬁs(tly ) t'm)

for all £< I But |0,,{s) > ™1, for the special choice of u,», and s

above so that we can apply Lemma 3 to | X% (by 5.3) and obtain,
i<, .

for some j < I,

PMEE, O, ()} < (g + 8™) [0, (8)].

This easily contradicts (17). The other cases (for the other choices corre-
sponding to (17)) are freated in exactly the same way. This proves
Lemma 5. m ' '
‘We coms to the last lemma needed for the proof of the main theorem.
CLevms 6. Let 1>0, m= 0 and ¢ with 0<<i<< K be fimed integers
and assume that '
X Y X(f}EG‘_'L(
'K
Jor &< 1<, Further, assume that for all j<i, & n<l, X and X
are R-equivalent. Write, as wsual,"
X = U x¢ for V< K.
<y
Then there ewists a sequence of 1, arvithwmetic progressions (19, ..., 52 )
By, K)y £ < Uy, such that i, ..., %= forms an arithmetic progression
of length 1, and such that for all &< 1 and <1,

_‘L{{ Xg:‘aa .7‘(;:)- G-Di(tu ceoerty K.
< it

+3 tars K)

Proof. By the R-equivalence assumption‘s we have
. F(X(E):jzi: 5) '—W‘F(XM);jr?;) 8)
for all & n<l, <8< hy j< by,
For the sake of brevity write
-Fl(X(E):ja i,8) = F(j, 4, s), f(X(£)7j5 iy 8) = f(j, 4, 8).

By the definition of G'(4,...;¢,,,, K), there exist for each s, ¢ < s < K,
sets Zg, Z, < [0, #,,,) such that

EZSE = 21i.am+l (1 - -Bm+1)tm+1: Ezs! = 2KG§+1 (1 - ﬁm-{-l) t'm.+11
and '

{a) J,1 3} = 2iaiz+1tm+1 I j¢Z,, i< bnyis

i V¢ = ’
B)  fliir0)> Kz( ) s 17 B <5 Hr
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Define Z by

7 ={j: Mo < J << #,,,, and there is no (4y, ..., Jz_J e P, i, 1) such
that U X eD(ty, ..., 4y, K) holds for all £< I},
<K
Sets
P_——QFU;?::Q:! P=!P|-

eZ
Expressed in different terms, Z is the set of all indices j with 3t,,., < j

<7 $lppyr Such that for eaeh (4, ..., Jg_1)eF (], ¢, 4), there exists at least
one &< I so that

{18) U X8, D, 1ty K-

i< E
Note that by the definition of #(j, ¢, ¢} we have
_ XL Pl ey ty) € Sk, .ony 1)
whenever i’ << 4. Therefore, (18) implies
X8t ey B

for some i’ with ¢ 4" << K.
By (b) we have

PR 1 /e 4 ‘ . .5 .
.f(.’l'ﬂ': 7') 2?( n; 1) tm+1 if J?:Zi! i'tm+1<j < %tm-kl‘
Thus, for each j<Z—2Z,,

- 1 f g
f(j,'i'; Il) iF(jii' ’i,)l> Kz (a2+1) tm-i—l'

Sinee #{(j, 14, 3) and F(j', i,1) are disjoint for j # j° and
[Z;! = 2K‘11;Kz+1(1 Ry |

fhen
(19)
o i
p = U —P .79 ? 'L)! = ([ZI—DK l ﬁm+1)am+1tm+1) ( W;H) t‘m{-l'
_'er

On the.other hand, by the definition of P, it i3 elear that
P U U U

GSSK 6L JSiyy
XS g tn)
= UJ Ul U  Fgisw U
sk &< F<ttn 1 I<ip
XSttt XSt yned m)
<2, : iz

F(j,i,s)

F(j,i,9)
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80 that
P = Pl < Kl ZKam-.-l(l ﬁmn{-l) 'm1 t'm.—'—l T
1 (max]¥,1,8|)
(domain of ) (domain of & 3|

+ ki 2£am+1 m+1n]3£X[{j (é)‘#'g( by ooy ) and J¢Z}

8

< KI@KG&-)—lﬂ‘"ﬁmﬂ)ﬁml +
L EL-2F K b max (i X8 (0, ., ta)}.
8,4
But, by hypothesis, for all &<, : .
X(f)fgi(tis el tm-}-l: K} S C(tlf ey b K)

Thus, for all s < K, &< 1, we have X{Pe8(1y, ..., t01). Therefore,

3m+1(X.(gf)) = (ﬂm+1“]/r”‘m+1(tm+1) )t1n+1
so that

= (1 — B+ ‘H/m )tm+1
< 2{1 — fpta)tmaa
by the cholee of t,,, (see (¥)). Hence, by (20}

P Kol 81 (1= Brp) (2H + 2571,

Combining the two inequa.lities for » we obtain

ma;xl{j: Xg?és(tlr sy )
s, \

Z ) 1 aH’b t
(1 — 2K (1~ B Y ng) 5 (ua_ﬂ) s
;"Zam-!-ltm-l-l (1~ .Bm+1) (2K -+ 2K+1) ,

l l = 2K(1 ﬁm+1) am+1tm+1 _}"Ka 1’21’ _i (1 - ﬂm+1) (2K + 2K—(hl)t'm.—kl
S (@ —Pmir) 2K312“K3m+1 (1= Bonsr) 2B 1 25 S VI—Brgrlng
provided
1

B/l A
T2V By

The last inequality easily holds, _however’,'by the choice of ¢, ., (see 5.4).

Now, sinte X®ecC(ty, ..., tpyq, K) then X e8(ty, ...y tpy,). Thus,

§HIO) 2 (B —V st (Bt) Ve

icn
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and 80
sm—i—l(x(iﬂ)’ {$lmsts a1 _Z)
(ﬁmJ—l _]’ Pmta (tm-,-l) )f’m+1 - %tm+l } E_Enii }tﬂH-I
> (Brpr—3—2V1— By 1),,, by the choice of ¢,,, (see (F))
> 1=t
provided

Brer— 3 —2V1— B, 0 > 1LY,

This last inequality, however, follows easily from the choice of Z,., (see
(C)). Thus, by (E) and Fact 11, (1,,,., 3,..)—7 contains an arithmetic
o J% Y of length 1,,. Therefore by the definition
of Z, for each C < l,, there exists some arithmetic progTessmn (5, ..
,j@’_ ye B (§©, 1, 4) such that »,U X, () e Dty vy by, K Tor all &< L.

This is exactly the conelusion of Lemma 6 and the proof is completed. m

7. The main theorem. We are now almost ready to prove the main result
of the paper. However, we first need some notation. For m < m’, suppose

XeB(ty, .- by, K), YeB(ty, .oy ty, K).

We write Y|X if for all 4 < K, Y, is & subeonfiguration of X; of order
m. It Y[ X and Y'|X’, we shall say the position of ¥ in X is the. same
as the position of ¥ in X', if for each i < K, there is a j; such that ¥, is
the j,th subconfiguration of X, and ¥, is the j;th subconfignration of Xj.
Facr 12, For efueay m > 0 and every ¢ with 0 <Li<< K, there exisis

h{m, 1) such that if m = him,1) and
XOeD (b, ..ty K), E<ISB

w2

then there exist

Yﬁ)EG (i17 . m H K)? §< l’

such that YP| X® and for all & n<1, the position of I in X is the

same as the position of ¥ in X7,

Proof. The proof will proceed by induction on 4.
© = 0: We have already seen that

.D“(tl, m: ) = O(t;l: ---:tm: K):'
GOty o on by K} == Ollyy oy by K)
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We show that we can choose k(m,0) =m. Thus, we start with
X9eC(ty, .y by, ) with £ I, and m' > m. We want to show
that there exist ¥'@eC(t, ..., &, K}, £<l, such that FO[X® and for
each &< I, the pesition of Y® in X® iy the same.

() If m' =m we just take Y9 = X9, £ L

(ii) Assume that m' > m and the asserfion holds for m’—I1. The
hypothesis of E-equivalence required in Lemma 6 is vacuous here since
4 = 0. Thus, by Lemmsa 6, there exizst

79 = | X )meoul, ..
K

* m-—l’K)'

Sinee Z¢¥ =X(5’ o then the position of each Z® in X is the same

{and, of emu'se, Z‘“[X‘E)) Now, apply the induction hypothesis to
Z(ﬂeo(tl, o twyy K)y E<< L. By induetion, there exist ¥®eC(t,,

K), £< 1, such that ¥*®[Z® and the position of each I"(&)_ in
70 is the same. Thus, Y®[ X and the position of each ¥* in X® i3
the same. This completes the case 4 = 0.

2> 0: Assume for some 13> 0 that Fact 12 holds. We now prove
it for {41, Let m* = h(m,a)—{—l. We claim we ean choose h(m,i--1)
= h{m*,%). S0, suppose m’' = h{m*, 4) and

X®eDH g, o, B) for E T BTV,

Thus, X®eD'(f,...,1,, K). Since & "V <E then we can apply
. the induetion hvpothesm to obtain configurations Y9G (1, oy by Ay
&< 1, such that Y(E)[Xff’ and the position of each ¥ in X(‘E’ is the same.
Binge XGleDi+ Yiy ooy by B) then XP P4y, ..., 8,) for j<i. Thus,
by the definition’ of P(t, yooer t)y all the X, j < i, are R-equivalent.
Since the position of each Y6 in X® is the same then all the Y\, j <4,
are R-equivalent. Since h{m,d)=m then- I, < thom,yy aDd We  can
apply Lemmsa 6 to the Y%, £< 1. The conclusion of Lemma 6 asserts
that there exists a sequence of arithmetic progressions

(38, TR DBy s K)y,  E< Ly, tys

such that for every £<<I and every < lym,y we have

& i
{:E)Kyi’,)f[s) E.D (tl, aray th(m,i): K)

and such that ..., jfm9=) forms an arithmetic progression of
length I, .. Denote U 1’55’ ) by Y(&,¢). Since h(m,i)>m then

<K

¥{&,¢) is defined for £< 1, 5< el

icm
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Thus, we have

Y (&, 0)eD gy ey by, K)  for  E< 1, i< o,
Note that there are at most
1 1'2'“ (E+1) 12— (41} . lz- {+1) lfn—i,

sueh ¥(£, (). Therefore, we may now apply the induction hypothems
to these ¥(#,{) and obtain a sequence

Z{E, e (1y, ceeyty, K

with Z(&, D] ¥(&,0) tor £<1, ¢ < lfn_(iH). The following picture may
help to illustrate the situation at thig point.

A (§):

/’Z(E: C)u
. 17(5)@ = Y (& )

YO Y = YUE O
ou 7 S8 iy :
(8
11:41,1(]‘?_,
y{*) .
Aot | = Y& O

\Z(‘Ey ‘:)K.wl

x® x@ xR,

By the way in which the Y (Z, () are defined, for fixed ¢, the position

of ¥(&,7) in X (&) is the same as the position of ¥ (%, {) in X{y) for £,
n<< 1. Bince the position of each Z(&, &) in Y(&, ) is the same (by the

mductlon hypothesis), then for fixed £, the position of Z(&, &) in ¥ (&, ()

‘and X (&) is the same as the position of Z(y, ) in ¥(y, ) and X(x) for

E,n<<l, C< i @ We should keep in mind that for j < i, all t&e X

are R- equlva.lent Thus, for j <4, all the Z(&,2), <1, t< & ', are

R-equivalent. Since <13, @y then Z (£, {) is defined for & ¢ < 1. Lek

= J)Z(& 0, &<l

i<l

16 — Acta Arlthmetica XX VIL.

S
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The following diagram indicates the current sitmation.

25,00 45D, Z(5,1-1)

1?&5) .
Yi,jgm 1"{,19} . e ¥ i,jg“ 1)
= ¥ (&, 0} =¥ (§,1) = Y{§1-1),
As part of the conclusion of Lemma 6, we know that j©, ..., jlawmao=)

forms an arithmetic progression of Iength Tgm, - Hlenoe, 3(“’ ey JED
forms an arithmetic progression of length 1. Also, by the induction hy-
‘pothesis, the position of each Z(#, ) in ¥ (&, ) is the same. Therefore,
Z = g Z('fy i)ie-B(f’l: P ).

But each Z(&, el ...y ty, E) 80 that each Z(Z, ()e8(ty, ..., %)
Hence, ZeCltyy ..., by, D). rma,llv since each Y (&, ) e Dty .vsy by, aps K)
then for j< i, (s, $yePtyy oo tam, I)) Thus, for all j< 1 and all
t< %Y, the Y(0, ), are R-equwalent But for £ < 2 Y, the po-
gition of ea.ch Z{0,{) in Y (0, ) iz the same. Therefore, for all j=<< i and
all (<l Ml) the Z(0, ); are R -equivalent. Hence, smce ZZ < l”ﬂ(ﬂ'l)
we may a.pply Iemma 5 to the sequence Z(0, C), L=< I“ . The conclu-
sion of Lemma 5 then asserts that for seme {* << ot

Z(_O? C*)EGiH (Tyy vavy Toyy K)

~ But we have already seen that for all £< I, the position of Z(%, ") in
X® iy the same as the position of Z(0,¢*) in X, Simee all the X,
j=id, £< 1, are R-equivalent (they are all in P(i,,...,1%,)) then, for
each j< i, all the Z(¢, ™), §<l are R-equivalent to Z(0, *);. There-
fore, for < 1,

Z{E, Fye@t e, Lt ).
Finally, since
Z(E, Y, M) XY, E«l,

then the induction step is completed. This proves Faet 12,

icm
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TEEOREM. For m > 0 and 0 i< K,
' Dty eyt B) £ 8.

Proof. The proof will proceed by induction on 4.
7 = 0: We first recall thab

DOty ooyt E) = Oy, .oy By, K).
For m = 0, 0(K) is certainly nonempty since by definition,
C(K) = {XeB(K): s4{X) = K} = B(K).
For m = 1, 1, has been chosen (see (0)) 80 that
1—fna <1/E.

Hence, by Iact S, Clly; -y by, H) 52 0.
Assume now that the assertion holds for a fixed i< K—1 and all
m = 0. We prove that it also holds for -+1 and all m > 0. Let

m' = him-+1, %) and m’ = h{m' +1,4).

Let XcD'(4y, ..., by, H) which by the induetion hy‘pothesis is nonempty.
By the defmltlon of R, there exists Y e@(ty, ..., typ1, K) with ]Z'[X.
‘We now apply Lemma 6 with | = 1, i.e., o0 the “sequenee” consisting
of a single term ¥, where as usual we write

Yo= U ¥, ¢<EK.
F<ty'y1 _ )
By the coneclusion of Lemma 6, there exists a sequence of arithmetic
progressions : '
(j(C) :J{g) )eE(tm:+1, .E), i< 'lm':
such that

U Y. (K)ED (ty oeny by K), £ < by

and sueh that #%, ..., %= forms an &rithmetie progression of length

T U Y-t .

ir<g v .
Thus, TOeDi;, ..., 4y, K), £< 1. Since m+1<m!, then B, <l
and 50 we may apply the definition of h{m-+1, i) = m’ to the sequence
¥ < ?..;. Henee, there exists a sequence Z¥e@(4, .. m+1,K},
£ < B, such that Z®[¥® and the position of each Z* in ¥ s the
same, Since each Z‘DeG‘(tl, cees by K) then ZPeS(ty, .00y ), o< K.

Thus, letting 7 =1 er(; 1), we ha.ve

' U ZgneG(t” ---ytm+13 i)
I<i
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(since ji%, ..., j¥ forms an arithmetic progression). Since Y9 eDi(1,, ...
ooy by Ky £ 1y, then each Y, j< 4, belongs to P(i,...,%,) and
consequently all the ¥, j <4, £< 1., are R-equivalent. Since the posi-
tion of each Z* in ¥® is the same, then for each j << i, Z{ is R-equiv-

alent to Z{¢", ¢, & < L. But i-+1< K so that 1> B 5. Thus, the hy-

¥
potheses of Lemma. 5 are satisfied for the sequence Z*, & < I. Therefore,

by the conclusion of Lemma 5, there exists £ < lsuch that Z%%e ¢#F1 (¢, ...
s boany K ) Finally, we apply Lemmsa 6 to the single eonfiguration
Z¢ (in this case the R-equivalence condition is trivial). The conclusion
of Lemma 6 immediately implies
DUy, o by K £ O

This completes the induction step and the theorem is proved. =

It remains to verify that the theorem does in fact show that R con-
tains arbitrarily long arithmetic progressions. By the theovem, there
must exist X D" '(XK). By the definition of DX~'(K), this just means
that X is an arithmetic progression in which the fivst K -1 terms beiong

to P{@) == K. Since K was chosen arbitrarily at the bheginning of the

proof then B does indeed -contain arbitrarily long avithmetic progressions.

Finally, the following corollary shows that ¢, = 0 for all .

CoroLIA®RY. For all & >0 and k, there ewists N(k, &) such that if
w> Nk, e) and B <= [0, n) with |R] > en then R containg an arithmetic
progression with b terms. :

Proof. Suppose the Corollary is false. Then there exists n, < fi5 << ...
and E; < [0, ;) with |R;] > an;, 4= 1, such that B; contains no k-term
arithmetic progression. Lebt n; < n,<C ... be a subsequence of the n,
satisfying n;,, > 3n; for all 4. Form the infinite seb

R = U (B, +d;)
: >4 ]
where d; = ¥ n;. Thus,
i<t .
fm ENO =N
n—co R

By the Theorem, R’ must contain an arithmetic progression with 3k

terms, say, 4 = {a+d;: 0 <4< 3k}, Let Lsatisty d; < a -+ (8k—1)d < g

Since Rﬂ, -+d; can contain at most k-1 terms of A then we have a--2kd
- : .

< d;. But it follows from the definition of the =, and d; that d; = 3d,_,.
Thus :
a--kd > ta+(3k—1)d) > 3d,= d,_,.
However, this implies

OB, +d) >

—1

~which is émpossible. m

i
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