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1. Introduction. Let U* be the k-dimensional unit cube 0 < v < 1,
., 0< 4 <1, and let py, Py, ..., Py be points in U*. There are many
ways to measure the “irregularity” of the distribution of these N points.
Given a Lebesgue measurable subset 4 of U* with measure p(4),

write #(A) for the number of the given N points which lis in 4, and put

D(A) = 2(A)—Nu(4).
It 9f is 2 non-empty class of measurable sets in T, write
D(A) = suplD(4)],

where the supremum is over all 4 e 2. Further put

One eould eall A () the discrepancy with respect to U of the given N points.
Tt is clear that 0 < A(UA) << 1.

By a boz we shall understand a set of the type @, < #, < by, ..oy
@, < m, < by,. Let J be the class of boxes in U*, 95 the class of closed eubes
in T* with sides parallel to the coordinate axes, B the class of closed balls
in T*, and © the class of eonvex subsets of U*. '

Tt is known that A(3)> e (k)N (log¥)®* (KF. Roth [4])
that A(3) > e, N-logN if k=2 (W. M. Schmidt (6]), that A(B)
> (%, ) NGDREED-1=¢ fop s> 0 (W. M. Schmidt [B], Corollary to
Theorem 3A), and that 4(C) 3 ¢,(k) N~¢#t0EH (8. K. Zaremba [8]). We shall
improve the lagt one of these estimates: -

TemoREM 1. 4(E) = o5(F)N—2E+D,

* Written ‘with partial support from NSF grant NSF-GP-33026X. The paper
may be read independently of the preceding papers of this series. )
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385 W. M. fehmidt

Since A c implies A(W) < AW, we have

AW < AZ < AHE), A(B)< 4(€).
On the other hand, according to E. Hlawka [2] (see also [1]), we have
(1) : G < o (k) A,
o) A(€) < ¢, (Ir) A@B) I,

(3) A(B) < gyl Nlog A (B) oo,

A wide generalization of (1) was given by R. Milck and W. Philipp [31.
Tt was shown by 8. K. Zaremba [9] that the exponent 1 [k in (1) is best
possible. J. W. 8. Cassels (unpublighed) showed that 4 () < 0y (K) A{BYHEFD,
and (.J. Smyth [7] generalized this to

{4} A(®) < oy (k) A(BEY,

which is an improvement over (3). He also showed [8] that

A(T) < (£ 4(B) 1Jk(l—}— logﬁ(ﬂa){)claﬁﬁ)
We shall improve (2) and {4). Write expz = €".
THROREM 2
A(€) < 0, (R) A (L)Y,
THECREM 3.

A(€) < ey5(k) 4(B) exp (2 (log2)"* &~ [log 4 (B) ).
In particular, it follows that

M) < ﬂm(k &) A(ByH—*
for ¢ > 0.

2, Proof of Theorem 1. We may suppose & >1. Let B be the ball

of radius } contained in T®, and let S be the surface of B. Let ¢ be aclosed '

spherical cap on & with spherical radius ¢. (With the radivs normalized such
that a half sphere has radius =/2.) The convex hull 0 of (' is a solid spheri-
cal cap. For 0 < g<< =/2, p(C) i8 a continuous function of p with(?)

{5) e 0" < u(0) < 6"

If N is sufficiently large, there is & number p, such that a cap ¢ of spherical
radius g, has
1

#(0) =aN-

(1} We start the numbering of constarts e, o,
in the last one. These constants may depend on the dlmensmn k.

. anew in eaclh section, except
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In view of (5), 0 < gy << ¢, N "Y1, We now pick as many pairwise disjoint
caps with rading g, as possible; say €, ..., €. For large ¥ and hence
small g, we have M > ¢, gy * ", whence

(6) M 2 o NE-DED,

Given @ sequence of numbers o), ..., o5y, With each o, either -1
or —1, let B{oy, ..., o) congist of all @e B which do not lie in a cap O
with o; = —1. In other words, B(oy, ..., 03} is obtained from B by remov-
ing the solid caps 0; for which o; = —1. ‘
Now the function D (A4) is additive, 1.e. it satisfies

D(AuA’)y = D(A)+D(A"
if AnA’ = @. Tt follows easily that

D(B(ay, ... o D(CY).

s

s 0) —D(B(— 0y, ory — ) =

d=1

We have
D(Cy) ==(Cy) —

Hence for every 1, either D(@)=}or D(O) <
o, D{0) = % (1 <4< M) Then v

. D(B(oyy «ery a2)) —D(B(— 015 ...,
y Oag) 0T A = B0y,

Nu(l) =20 —%.
—4. Choose ¢; such that

~ay) > A M,

and either 4 = B(oy, ... .., —0y) has | D(4) = 1t M.

Thus by (6),

A(€) > 1M |N > o N0,

Theorem 1 is proven.

The following ig of interest in this connection. Let Q be the class of
subsets @ of U* such that if (yy, ..., ¥;)<§, then every (o, ..., %;) with
, k) also lies in (. Then

(7) A(Q) = o, N~VE

For let @ consist of points in TU* with #,+ ... +#, <1, and H of
points with @ --... +ap, =1. Tet 0< 6< 1/k and let & = (&, ..., #)
be @ point on H with (k—1)d <@, <1—68{i ='1,..., k). Let @ (@) consist
of points y = (3, ..., ¥) with

ﬂ';',:—}-a

Then Q () lies in T* and has volume u4(Q (@) = (2k)*/k!. If N is sufticiently
large, we may choose & such that this volume equals 1/(2N). Then
S ol —lk,

Yot oo Ty =1 and Y < (i=1,..., k).
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Pick a3 many pairwise digjoint sets @ (=) as possible; say @, ..., Q.
Clearly M = ¢,6~% ", whence

For any sequence ¢, ..., oy of +1 and —1 signs, let Q(oy, ..., o5 be the

union of @ with the “blisters” @; for which o; == 1. The seb Q (o, ..., oy)
belengs to Q. We have

M
D(Q(GI: vary UM))_D(Q(“UU ---;-_GM)) = Zgi-D(Qi)'

_ 0
By an argument used in the proof of Theorem 1, we obtain a set A<Q
with

AN = LM [N = ¢, NV%,

3. Proof of Theorem 2. Let B(e, p) be the closed ball with center
¢ and radius o. Given a subset 8 of U¥; let 8(p) consist of points a for
which B{a, o) = 8. Let 8 consigt of & U* which are not in §.

For each o > 0, let S(o) be the class of subsets § of U* having

(8) wl8(e)) = w8 () = p(8} — o

for every p > 0. _
LEandA 1. There is a constont ¢, = e,(k) such that

€= S(ey).

The proof may be left to the reader. Incidentally, it may be shown
that U = S(ey). It is now clear that Theorem 2 is a eonsequence of
THEOREM 28, ' '

u(8)—ea,

A(B(a)} < ek, o) A(TBE.

Proof. Let S[g] consist of points @« U* which have a distance < o
from the boundary of 8. Every xe 8[p] ig either in § but mot in S(g),
or is in 8’ bub not in 8 (p). Hence for S« & (o),

#(S[el) < 2go.

Nowif k¥ = 1 and if 2, ..., #3y are on the boundary of 8 and in the interior
of U, thern for small g, S[e] contains the M open intervals with centers
Zyy ...y 2y and of length 2g. Hence for small p, p(S[p]) = 20M, and we
got M < o. Thus § hay at most o2 boundary points, and is therefore
the union a bounded number of points and intervals. Hence Theorem 2a
is true for k = 1.

We may henceforth assume that % > 1. Pick a point @ = (@, ..., %)
such that for each of the given points p; {1 =1, ..., N), each coordinate
of p,—a is irrational. For a positive integer n, let MW(n) be the class of
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cubes

Uy ; +1
g+~ <y < A+ i
K k%

with integers ., ..., #;. Let B{n) be the seb of cubes of IMW(n) which are
contained in §. Since a cube of W(xn) has diameter k**/n, it follows that the
oubes of B(n) cover S(k/n), and their number »(n) satisfios

(9 n*u(8) = n® (S (E n)) = nF u(8) —n ok,
For each positive integer 4, the union of the cubes of B(2") containg
the union of the cubes of B(2" ). Put B, = B(21), and for 4 = 2, let B,

consist of the eubes of B(2%) which are not econtained in a cube of B(2"1).
Tt »; is the number of eubes in B;, then », = »(2), and for ¢ > 2 we have

27y 127 (257 < u(8),

v(n) =

whence by (9},
v < 211;”(51) __2;'67}(215“-1) < O,]{;1,’2 21:(}5—1)+1'

: Since any two distinet cubes in any of the sets B,, B,, ... are disjoint
except possibly for their boundaries, and since by our choice of & none
of the given N points lie on such a boundary, we have for every positive

~ integer .M,
. M M
28 = Y Y a(W)z Y N (Nu(W)—NA(m)
i=1 Wedy; i=1 WWeB;
M
=N([ 3 ) —awm 3

ngg(zll.’f)
M
=N (.u (8K 220) — A(9) (2rc + ok 2 2i(kw1)+1))
Q=2
= Nu (8} —Ney(k, o) (Z_M—{-A(QB)EMU‘:-U),
since % > 1. Now if we choose M such that 2%~ < 4(W)~* < 2™, then

2(8)— Nu(8) = — Neg(h, o) A(MW)*(1 +251) = — Ney(k, o) A(T)*.

This inequality remaing true if we replace § by §'. Hence

2(8) — Nu(8)| < (DB,

and Theorem 2a follows.

Ney(k, o)

4. Successive sweeping. Given a set 4, let 74 +y e the set of points
ra-+-y with ae A. Let %(A) be the elass of sets 7.4 +y with r > 0 which are
contained in U®, In view of Lemma 1, Theorem 3 is a consequénce of
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THEOREM 3a. Suppose AeS(z) for some 7, and suppose p(d)> 0.

Then for every o> 0, _
A{B(0)) < ey(4, 0) (U (A))Pexp (2 {log2)"* I~ |log 4 (9I(A))|”2).
Denote the distance of points %, y by
fx—yl.

Now let ry, s, ..., De positive reals with

{10} Yo S 31 (i =1,2,...},

and set s; = kY, The set 7,4 has diameter <s;.
For & set T, let x(T'|x) be the characteristic function of 7. Let 8 be
a set belonging to ©(o). .
We are going to construet functions f, (), ¢,(z), b, (2) (v = 0,1, 2,
...). ‘We begin by setting ’
Jol®) = 0.

T a eontinuous function f,{x) is given, write
gv(aj) = I(S —fv(m
h{®) = min g,(y),

|r— 2|8y
Fraa () = f(@) + (plryy A7 200 d +y i)k (y) dy

LeMma 2. We have

(i V<fa@<fim<SE) (r=1,2,..),

(iia) L@ —f@) < oA e—w]  (r=1,2,..),

“and in particular f,{x) 18 continuous.

(1ib) I, () —fo (@) < 27 Fep(A)r @ |

f 1<i<r—1 and if fx—x'|<s, and @, 2 8(3(s ... 8}
gma.)‘ fle)y =1 if  xe8{28) (»=1,2,...),

(iiib) | @) 212 o (4) (s,/59)

if 1<i<y—1 and xe §(6s,,;).

Our construetion may be interpreted as follows. We first sweep S
with a broom of the size and shape of r;.4. We can sweep the middle
of 8, more precisely S(2s,), very well. But we cannot sweep the border
areas of § very well. We then take a smaller broom of the gize and shape
of r,4. And 5o on. We obfain a better and better sweeping of § which is

icm
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expressed by (i) and (iiib). But it would have been inefficient to sweep
right away with a very small broom of the size and shape of r, A.

Proof. We proceed by induction on ». Assume that either » = 0
or that the lemma is true for a partieular value of » > 0. We have 0
< fu(®) < x(F|®), whenee 0 < g,() < x(Six). Now if @er, ;4 +y, then
®—Ye?, A, whence [y—»(<s,,,, whence % (y)<ig(x). We obtain

0< [ 2P d Fy Ok, () dy < g.4) [ 2(r,,. A +ylx)dy = g, (@) p(r,4, 4),
and

Jol®) < T (®)

Hence (i') is true for » 1.
Now it is elear that I, ,(x) = f, (@)

— f,(%) has

Ty () Ty () = (1, O] [ (1001 A +y 1) — (7,4, 4 +y 120} b, () .

Since 0 < h,(y) < 1, we obtain

by () = by (@) < (70 A)) 2 (0,

where ', consists of ¥ for which —y lies In 7, +1A —xbutnotiny, A4 —2".
Now .

}"‘(01) = i‘"ic+1ﬂ(02),

" where €, consists of y which are in 4 —r,,+1(w —a') but not in 4. Now if
“yel, lies in U¥, then ye A" and y¢ 4" (3, Im—m]) Hence by virtue of

A e &(7), the interseetion C,nTU" hag volume < 7,7, |2 —® | On the other
hand if ye 0, lles outgide of U*, then it has distance < 7; +1 |e—a'| from
%, a.nd. it 7 le—2'| < 1, then the part of C, outside ik has volume
< 8%} lo—a'|. Thus if [e—a'| is small, then u(Cy) < (v +3%)r le—a'1,

_ and therefore

‘ Iv+1("'c)—lv+](m’) S
with ¢y(4) = 2p(4 )‘l(r +3%. It follows that for every =, ',
(11) Gy {m)—5 (&) <

Now if » = 0, we have f,., (#) = fi(x) = (@), and the case v = 1 of (iia)
follows. If » > 0, we nse our inductive assumption, ( 10), {11) and the rela-
tion fv+1( ) fi‘(w) +lv+1( ) to Ob'tv&ln

Fogr (@) —fopp (@) << ( (
Thus (iia) is true for » 1.

%GE(A) v+1 !'T"”m {

%GE(A)T,,_H Ja '],

Yyt dea (A)rl) loe —a'| < op (A e —a'i.
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Before taking up the proof of (iib) we observe the following. Suppose
that either
{12} i=v» and
or thatb
(13) 1<i<r=1,

2,2 ¢ 8(8 1)

g—2<s and .
+5,) +Sv+1)‘

Now h (z) equals g,(w) for some w with |[w—#[< 8. Since h L(27) 18
defined as the minimum of g,{u) for ju—=2'| <s, ., and since w0’ = = W+
12—z has |w —#'|< 8, we geb & () < g,(w"}, whence

z, & e 8350t -

(14) h:'(zr) - hu(‘z) < gv(wl) _g:r('u’) .

Our hypotheses on 2, 2’ imply that w, w’e §, whence y{S]w) = z(§{w")
== 1 and

(15) ga'(w,) '—gv(w) = fv (’u)) _"fv(w,) . )
Now if (12) holds, apply (iia) to w0, w'. On the other hand, if (13) holds,
then hw—w'| = jg—#'| <5, and w, w eS(S(s,H—r +s,)) In thig case we

apply (ifh) to =, 2w’'. We may do so, since (iib) is true for our particular
value of » by induetion. In either case, we get

!fv(w) *-“f,,(’MJ’)i = :2”_{62 (A)’fl

 Combining this with (14) and (13), we may conclude that both (12) or
(13} implies

lw —w'| =2 ey (AR —#|.

Ry(2) — By (2) < 2P ea(A)rp R — 71

Now suppose that 1

<i<v, that le—x'|<s,,, and that =, %
53(3(8{'.;_1—‘"...

+8,.1)}- We have

lv-+1 (33) - lv+1(wf) = (;u’ }rv+1A) _1 f X(9DN+IA —+ y}m,) (hv(y 'l'w ""“(E,) - hv(y)) dy .

The integrand is zerp unless |y —x'1 < s, 1 hence is zero unless y sS( (8401 +
. +8,)(% +2s,,,). But then y+uo—x eS( (85,0 + o +8)+8,). We
a.pply the remark made above fto # =¥y, &' = y-+x—o, a.nd we obtain

o (y 10— ) — D ()] < 2oy (A) e 2w
Hence '

g () =Ly (@) < 2oy (A)ri e —a].

=f,(2)+1,. () and singe

lfw (m) _fv(w,

Bince f,.;(®)

< 2 tey Ayt i)

- (%) The empty sum oceurring when ¢ = v is o he interpreted as zero.
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by induction, we oblain

s () —Fyos ()]

Thus (iib) is true for » 4-1.
We have

< 2t (At e —a].

)7 [ (A +y i) by () -

Tf 2e 8(2s,) and if wer, A +y, then |y—x<s; and ye S(sy). Since g,
is the characteristic function of 8, the definition of Re(y) implies that
ho{y) = 1 for ye S(s;). Therefore ae §{2s,) implies that f,(x) = 1. Since
fulm) < f,(2) <1 by (i), we obfain (iita).

There remains (iiib). Suppose 1 L4
‘We have

(16)  fona(®@ = {ulrnpd)) [ 2(rad Ty 1) (£,(2) -1 () dy.

Here &, (y) = ¢,{w) for some w with [wo—y|<s,,,. In particular, if
®er, 1 A+y, we bave [y—x<s,,,, Whence |w— —x| € 28, In particu-
lar we S, so that g,(w) = 1—1,(w) and

fula) +h,(y) = 1+f,(%) —f,{w).

Now either 4 = »; then we estimate f,(®)—f,(w) by (iia). Or i<»—1,
| —&| < 28,,1 < $,, and both @, we8(3(s;1+ .. +5,)}. Then we esti-
mate f,(@)—f,(w) by (iib). In either case we get

() — F, (w)] < 2 Hey (A e —w| < 270 (A){(28,.0[1)
. = 2" ey (A) (8,4 [8:),
say. Thus every y with xer, .4 -+y has
Fol@) +h(y) = 1 -2 6 (A) (8,4:/8),

fi(®) = pu(rd

vand @eS(5{s;+ ... +8g1))-

- and (16) yields

Fora( 12 oy {A){ 8y11/80)-.

Since 8(6s;,,) < S(S(sﬂ_l—l—... +s,+l)) by (10), the lemma is proved.

5. A measure on the space %(A). Let 7, :rz',
in § 4. Let M be an integer greater than 1.
The space Q = A(A) of sets rd+y in U" may be parametrized
by the pair (r, §). We introduce a measure w on £ by the formula

;and g, 8, ... be as

Ai~1

[a(r, y)do = D (s 4)

4] v=0

W J alrn, B3y,

This formula is valid for functions a(7,y) on 2 for which the integrals
on the right are defined. :
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Lumma 3. We have Finally,
{i) [ xrd+ylw)do <g(Sl2), - [ R dy = {u(r. 4)7 [t +ymhdedy = [1,,, (@)da.
3 Thus ’
(i) J.dm<c(A o) (TR 2R+ o 2 e ),
f,u(m )dw' “Z [ 7 iy) dywzfl(a:)da:
(i) [ plrd)de = u(8)—2%¢s(4, 0)7y. _ =0 =
2

= [ful@dn = u(8)— [ gui®)dr = u(8)—2" (4, o)ry
Proof. We begin by observing that

by (19).
-1
fx(rA +ygle)do = 2 (y(r,HA))"lfx(?,,HA oyl k(o) dy .+ 6. Proof of Theorem 3a. We may assume that 4 = A(U(4)) is so
@ >0 ' gmall that
-1 : :
= D Ly (w) = Falm) < g (8 |m). | (20) | log 41/(log2) = 9%*.
=0
Next, : Repeated application of Lemma 3 yields
M1 M1 . .
a7 Jio = 3 () [l dy < 3 (utrn ) [aiy)dy. (21) =(8) = Zx Sip) > It 2 24 +y1py) do — Jotrdrupdo
y=0 =0 A=k fe=1
We have . ' > [(Nu(rd)—FAQLA)do = ¥ ( [ s(rd)do—4 [ do)
(18) [go(w)@y = [ (Sly)dy = (). o : )
[atway = 5 F{p(8)—2¥05(4, 0)rar— doy(4, ) By
For » =1 we write .
with )
fgv(y Sf é{ +Bf + _[7 ) RM — "’;l_k“lr‘zrz_k'f‘l‘I‘ ... +2M-1.TEIA:T‘M_1.
where 8, = 8(6s,), where §; is the complement of S(6s, ;) in .S(6s;) (j Choose the integer M with
=2, 3,...), and where 8} is the complement of §(6s,) in §. By (iiia) (22) : M—1 < [log A" (log2) 2k << M.
of Lemma, 2, 9.(y) = 0 for ®< 8;, so that the integral over 8, is zero. By
(iiib) of Lemma 2 we have Then M 2 3 by (20). Let d be the number with
9.(y) < 27U, (A)(s,[5;_y) ' ' logd = Elﬂgﬁl'[/(l‘ﬂG +1).

if ye 8; with 2 < j < ». On the other hand we have u(§;) < 6s;_, 0, becanse Now by (20), (22), | .

8e@(a). Thus for 2 <j< A : ‘
’ jf . llog 41/(3£% 1) log 4] {2{1og 4{*(log2) ™ 1) > §|log 41 *(log2)'" > log2,
7. {y)dy < 603(A )og, 2L

§ . go that d = 2.
=gt (i = 2....). Th
On 8¢ we have g,(y)<1, and since 4(8F) < 6s,0, the mtegra.l over 85 is Pub 7, =47 (1 =1, 2, ) o
= bgs,. Combining cur estimates, we obtain - Ry = a* 12 S QM1 gk~(M~1) o~ 9M dMUc—-lH-lj
(19) f 5 Y < 6oL+ 65 (A))8, (27142 + .. +1) < 05(4, 0) 27, so that

In view of (17) and (18) we obtain pait (i) of the lemma. (23) - 9Mpy o ARy < (2M (1 + AP = 2(2/@)Y

PR —
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by .our choiee of 4. We have
M(logd —log2) = (M)(ME-+1)}|log 4] — Mlog2

> llog A|{(1/k) — (1/k2H)) — M log2

> (1/k) |log A} — (2/k) log A" (log 2)** —1og 2
by (22), so that by (23),

2y + Aryy < 44" exp (2 (log2) P £~ [log A7)
This in conjunction with (21) gives
8) = N{u(S)—o (4, o) 4Fexp(...)).

The same inequality holds with § replaced by 5. Both inequa.ﬁties. to-
gether yisld *

2{8) — Nu(8)] < N(cl (4, o) AHE eﬁp (2 (log2)* &~ llog A ]1’2)) .
Sinee this holds for every Se&(o), Theorem 3 is proved.
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On power residues and exponential congruences
by

A. BouNgeL (Warszawa)

In memory of Yu. V. Linnik

The main aim of this paper is to extend the results of [6] to algebraic

- pumber fields. We shall prove

TEEOREM 1. Let K be an algebraic number field, {, a primitive gth
root of unity and = the greatest integer such that {yr + it e K. Lel My, oovy Mgy 0
be positive infegers, N;|N; ay, ..., O, § be non-zero elements of K. The solubility
of the T congruences o™ = ¢; mod p (1< i<C k) implies the solubility of the
congruence o = i mod p for almost all prime ideals p of K if and only if
at least one of the following four condilions is satisfied for switable rafional
integers 1y, ..., Ty My, oo, My, and switable y, de K:
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(ii) » % 0med 27, Haz‘ = —3& and § Ha”ml""z = —";
2lnyg
(iil) n = 27 mod 2, [] o = — 8 and
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(IV) 7 = 0 mod 21+1 and ﬁ”a""’m’tmz — (é‘ + 1+2)ﬂ.’2yﬂ,.

i=1

If {,e K, the conditions (i), (mi“g (iv) imply (i); of v = 2, (i) implies
(1) for not necessarily the same My, ..., My and y.

Almost all prime ideals means all but for a set of Dirichlet density
zeto or all but finitely many. In this context it comes to the same in
virtue of Frobenius dengity theorem.

COROLLARY 1. If each of the fields K (&g, &, ..., &), where £ = oy
containg at least one n satisfying 4 = B then at least one of the conditions
(i)~(iv) - holds.



