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From (74), (78), (76) it follows that generally ¢, > 0, except merely '

the ease with y(2) = —1 {whence 4 = 5 (mod 8); see [12], I, p. 51),
A, =12 (mod 16) and Ae¢; == 3 (mod 4), in which case f, = 0 and simul-
taneously ¢, = 0. In this exceptional case p,(4) =1, by (55). Therefore
we have either 4 =1 (mod 4) (whenee ¢, = 3, —¢, = A) or 4 = 3 (mod 4)
(whence ¢, =1, —¢; = 4). In both cases —e, is an odd number con-
gruent mod 4 to a norm of some 1dea1 of the class R;. This completes the
proof of the lemma.
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The exceptional set in Goldbach’s problem
by

H. L. MonteoM®ERY (Ann Arbor, Mich.) and R. €. VivceEan {London)

Dedicated with deepest respect
to the memory of
Academician Fu, V. Linnik

1. Introduction. Goldbach stated, in a letter to Euler {c. 1742}, that
every even infeger exceeding 2 can be written as a sum of two primes.
If we let H(X) denote the number of even nunibers not exceeding X which
cannot be written as a sum of two primes, then Goldbach’s con-
jecture can be formulated as the assertion that #(X) =1 for X = 2.
Goldbach’s problem remains unseltled, but Vinogradov’s fundamental

* work {[20], [21]) on three primes inspired others [1], [4], [17] to show that

B(X) = 6(X), so that almost all even numbers can be expregsed as a sum
of two primes. Recently Vaughan [18] sharpened the earlier results by
showing that

F(X) << Xexp(—elog” X).

We improve on this by establishing the following theorem.

Tumorey 1. There is a positive (effectively computable) constant o such
that for oll large X '

B(X) < X',

Hardy and Lititlewood [8] infroduced the approach by -which one
shows that most even integers are sums of two primes; they showed that
if the Generalized Riemann Mypothesis (GRH) is true then one may take
§ = 1~z in the above. We avoid the GRH by appealing to a recent
result of Gallagher [6] which reflects considerable Imowledge of the dis-
tribution of the zeros of L-functions. To indieate the depth of Gallagher’s
regult (our Lemma 4.3), we note that one may easily derive from it the
celebrated theorem of Linnik ([9], [10]) concerning the leagt prime in
an arithmetic progression. A recent form of the Linnik—Rényi Jarge sieve,
Turan’s method, and the Dem’mg—Heﬂbronn phenomenon all play essgn-
tla,l roles in Gallagher’s proof.
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354 H. I. Montgomery and R. {. Vaughan

‘While ‘we expect that Goldbach’s conjecture is true, it nevertheless
might be the ease that it is false. Indeed there might even be long inter-
vals containing no sum of two primes, althongh upper bounds are known
for the possible length of such intervals. Linnik [13] showed that if the
Riemann Hypothesis (RH) is true then for large X the interval (X, X
+Iog*** X} contains a sum of two primes. From Huxley’s theorem [81 on
the gaps between primes it is obvious that the interval (X, X + X122y gon-
tains a sam of two primes, and Ramachandra [15] has proved a more
precise result of this sort. We sharpen these estimates by proving

TrEoREy 2. For all large X the interval (X, X + X724 contains a sum
of two prime numbers. If the Riemann Hypothesis is true then there is
- 0 = 0 suck that for all X the interval (X, X+ Olog? X) contains a sum of
two primes (*). '

Both Linnik and Ramachandra employed the Hardy-Littlewood-
Vinogradov method in obtaining their results. In § 9 we derive Theorem 2
simply by appealing to known results concerning primes in short intervals.

We are happy to record our gratitude to Professor Patrick Gallagher
for his kind assistance. In particular, the proof we give of Theorem 1 incor-
porates s mumber of substantial simplifications suggested by Gallagher.

2. Notation and dissection of the unit interval, Throughout £, u, v, 2, ¥,
a, 7, 8, %, o denote real variables, while H, N, P, ¢, T, X, ¥ denote large
positive real numbers, The parameter § is a small positive real variable
which is eventually taken to he a small positive absolute constant. We
assumne that X ig larger than some X (8). We let o, b, d, &, 4, &, 7, @, ¥
denote natural numbers, while m is an arbitrary integer, p iy a prime num-
ber, and s is the complex variable § = ¢ 1-it. The constanfs O, ¢, €., ¢y,
...y a8 well as all implicit congtants are positive, absolute, and effectively
computable. :

Ws let y denote a Dirichlet character, and unless the contrary is
imdicated, y is a eharacter (mod ¢). We let 4™ denote the primitive character
which induces 3. We let 3, denote the principal character (mod g), while
7 is the primitive (possibly non-existent) exceptional character(®), of
modulus 7, whose L-function L(s, ;) vanishes at §. The expressions

2 2 X

% x 13

denote, respectively, a sum over all ¥(mod ), 2 sum over all primitive y

() Note added in proof It has come to our astention that Kétai [8a] has
anticipated the conditional result stated here.

=+ (*} The precise delineation of what constitutes an excephional character is given
in Lemma 4.1. '
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" (mod g), and 2 sum over all reduced residue classes a(mod ¢). In Lemma

4.3 we attach a special significance o the symhbol }'*#.
As usnal, we let ||y]| denote the digtance from ¥ to the nearest integer,

‘.'m'a7 and
elm) = D7 e(’“_”"’)
B Vg

e(a} =@
is Ramanujan’s sum. Analogously we let
2

hm
2.1 my = E % .
(2.1) ¢, (m) £ x )3( q ),

thus the Gaussian sum ocours as 7(y) = ex(l);
Much of our analysis iz concerned with the sum

(2.2) S(a) = D! (logp)e(pa),
PpsX

and the associated sum

(2.3) S(xym) = D (logp)rpemm).
P<pX -

To dissect the unit interval, we now put
(2.4) _ P=X% =X,

go that P =X. For 1<a<qg<P, (a,q9) =1, we let IMM(g, a) be the

. o 1 @ 1 :

major arc [—— —_ — —] The major arcs are non-overlapping, since
i 7 0’7 90 4 VPP 2y

' a o 1

- >2P>g+g’__1+ 1

¢ 4|7 W we” we @ 49

We let 2t be the union of all the major arcs, and we let m denote the set
of those ¢, Q7 < a<C 1-4+-Q7%, not lying in M.

3. Theminor ares. Let R (n) be the coefficient of ¢(an) in the exponential
sum S{u)?; we note that if B (%) > ¢ then # is a sum of two primes. Clearly

(3.1) E{n) = E,(n}+ By(n},
where
By(n) = J‘S(a)sfe-(wa)da,
m

By(n) = [ B(a)2e(—na)du.

The gets I and m are even {mod 1), 50 B, (n) and By(n) are real. Our object
i to show that R, (n} is large with few exceptions for X < n< X, and '
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that R.{n) is small, with few exceptions. This latter is achieved in a stand-
ard way by showing thab
(3.2) S Rymp < XPHlogB X
X
The first step in proving this is to observe that Parseval’s identity
implies that

3 Ba(n = [ 18(a)*do < (max|S(@)[]* [ S(a)]*da.

We extend the range of integration in this second integral and apply
Parseval’s identity again to find that

149t
[18(a)rda < [ Bla)de = 3 log*p < XlogX.
ut o1 PepsX

Thus to obbain (3.2) it suffices to establish that
(3.3) _ max (8(a)] €« XP~Flog"X
m

We now appeal to Vinogradov’s fundamental lemma, which we state in
the following form. ‘

Ieana 31 If Y<q< XYY, 1< T XN, (a,9) =1,

a1
P
q
< g2, then

S{a) < XY "log" X,

This is essentially & consequence of Theorems 1 and 3 of Vinogradov
{[22], Oha,pter IX). Linnik [11],-[12] and Cudakov [27 found that similar
results eould be derived from zero density estimates for L-fumefions.
Recently these estimates have been greatly improved, facilitating this
approach. A derivation of Lemma 3.1 from zero density estimates is found
in Chapter 16 of Montgomery [14]. Recently Vaughan [19] discovered
& very simple proof of Lemma 3.1 with the condltmn Y < X¥* weakened
to Tead ¥ < X'°.

. Suppose ae m. By Dirichlet’s theorem on Diophantine approximation
there exist g < @ and a, 1 < ¢ < ¢, (@, ¢) = 1, such that a—2l< <g ot
q

This would imply that ae EUE(Q, a)y < M it it were the case that ¢< P.
Thus ¢ > P, and we may take ¥ ==P in Lemma 3.1. This gives (3.3).

4. Analytic lemmas. We now state the basic pr opertles of exceptional
characters.
. Lmwwa 4.1. There is a consiant o, >-0 such that L(s, x) s 0 whenever
%

oxl———,
logP
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for all primitive characters x of modulus q < P, with the possible emaepmon
of at most one primitive character y(mod 7). If it ewists, the character ¥ s

quadratic, and the (unique) exceptional reab zero ﬁ of Li(s, x) salisfies

Co, ﬁ
B

(4-4) 7 log*r logP

These assertions are establithed by Davenport ([3], §14).
The following is Lemma 1 of Gallagher [5].
TEMMA 4.2, Let ty, Uy, --., Gy be arbilrary real numbers. Then for

any x>0
+co (23

fl Zuame(ﬂﬂ)l dy < 'm 2 u,,llgdm_

—_% NN
The fo]lowmg lemmsa forms the crux of our treatment of the error
terms which avise in estimating R, {n). _
TEwra 4.3, For suitable (small) posilive absolute constants ¢;, oy

{4.2) ‘
- ' log N\ -
; z(p) (—03 logP)

DY m (h-|~ N)_l
" mazmax —_
A-'J 1:-" 2N h<N P

provided exp(log?N) <P < N°%. Here }¥ indicates thai the term with

g =1 1is to be
&
ZIOg?— Z 1,

@i g—h<nsT
n>0

and that if there is an emceptional character x then the corresponding férm is

Niwlogp + D W

z—h T—-R<nET
>0

" If the emceptional character ocours them the right hand side of {4.2) may be

reduced by a factor of (1— ﬁ logP.

This is Theorem 7 of Gaﬂagher 51, w1th two modifieations. In the
first place Gallagher did not have the maxmax in (4.2); to introduce this
n

I
we have only to note that
' | Ny, [N\
ma.xmax_(h—;———) #'min{z, h) < (—) ;
=N AN P P
and that '

. -1
AT Max (h+ %) 2T 'logs < PT 'log'P.

sV RSV
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In the second place Gallagher appeals to Siegel’s theoreim, which renders
his theorem non-effective. However, an appeal to the effective lower bound
(4.1) will suffice if we take T' = P% ingtead of T = P5. Gallagher’s proof is
effective in all other aspects, so Lemma 4. 3 is effective.

5, Arithmetic lemmas. We begin by recalling several well-known results.
Lmsea 5.1 If y 48 a primitive character (mod g) then |t(x) = ¢*
If y is a primitive quadratic character (mod ¢) then

2

(1) = x(—1}¢;
and qf{4, q) 15 square-free.

Our objeet in the next three lemmas is to esta,bhsh a formula for ¢ (fm)
in terms of 7(x™).

Levma 5.2. Let g be a character (mod k), induced by ihe primitive
character *{mod r). Then vik, and ‘

k * k E]
() =#(;) b4 (;;) T(x).

This is well-known; for example Davenport ([3], p. 148) provides
a proof.

LEMMA 5.3, Suppose that the above hypotheses kold, and that (m, k) = 1.

Then
=¥ k * k *
Cpm) =3 (m)#(;)x (;) T(x')-

Proot. Clearly *(m)e,(m) = g(m)e,(m) = ¢,(1) = 7 ().
We now use the above to prove a result which includes Temmas 5.2
and 5.3 as special cases.

Lemya 5.4, Let y be o character (mod g), induced by a primitive ehar-
acter y*(mod v). For an arbitrary inieger m put g, = q/(g, Im|). If rfq
then ¢, (m) = 0. If v|g, then '

51 o _*L)M (9_) (i) .
&4 oim) = ((_q, ) etey M F ) )R

‘While many special cases of this lemmsa are familiar, we have been

unable to locate (5.1) in the literature (*). For convenience of reference we
note that O(m) = g, (m), s0 that the Ramanujan sum is

{4 ]
o(g1)

(5’2)_ cp(m) = p(qy)

(}) Nofie added in proof. This result is given on pages 449-450 of Hasse {7].
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Cleaaly ¢,(in) is periodic with a pericd which divides g, so in proving
Lemma 5.4 we may assume that m is positive. Write ¢ = 14y, Put h
= ag, + b, and set

m My
—_— =1

q 41
with (@1, ¢1) = 1. Then

g . ) o
_\ ; e(mlh)= e(bml) a1 B).
ofm) = D r(Bye (=" g i) 2y rle )

The outer sum can be restricted to reduced residue classes, since x(ag; +b)
=0 if {(b,q)>1. Thus

'

r | bm
. : = L1808,
(5.3) efm) = > e( gl) (b)

b=1

say. We now consider two cases.
Oase 1. r{g,. We show that S(b} = 0 whenever (b, 1) = 1. For any d,

o]

2(d)SB)= > x(adg +bd);

if (d, ) — 1 then this is
o
= M x(ag, -+bd);

fB==1

if d =1(mod ¢,) then this is
a2 .,
= Yalag+D) = 8().

a==1

Tt in addition x(d) # 1 then we deduee tha® 8(b) = 0. We now show that
‘there is a d with the three required properties. Since r{q;, y is not periodic
with petriod ¢; among reduced residue classes. Thus there are d,, d, such
that (dy,q) = (dy, §) = 1, &y = dy(mod g;), but x{ds) 5 y(ds). Then d
= d,;d;(modg) has the requu-ed properties.

The argament that we have just given iz known in the case r == g;
see Davenport [3], p. 68.

Case 2. rigq,. Now y{ag,+Db) is either y*(b) or 0. Thus if (b, ¢1) =1
then . : .

g N
e N 1 (l_i):*bfﬁ(@_
S0 =20y 2 1=t (b_ml;[ 2 =70
(aqy+0, =1 R qui
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Continning from (5.3), we see that

a1
Vo 2D XY e (bml): s
%lm) = gy o © O Tty

whers y, is the character {mod g,) induced by ¥ But (my, q) =1, s0
(9.1} now follows from Lemma 5.3,

Later we shall also require

Lemas 5.5, Let y, be wrimitive characters (modr), 1 =1,2. Then
Jor m =0,

I
p(iml))’

where the sum is cver all g which are divisible by both ry and ry; here yg is
the principal character (mod ¢).

Proof. We may assume that m > 0. Let #, be the conductor of the
primitive character that induces y, ¥,, let r, be the leagst common multiple
of 7y and ry, vy = 11, 1), and leb ry = (7, m). Weleb a; = a,(p) be defined
so that p%||», 1<<i<b. Clearly r;lr,, so that a, = max(a,, a,, a;) for
any prime p. As 1,{g, we write ¢ = r. k. If ¢ gives rise to a non-zero term
in the sum then {(gfr;, ;) =1 and u{g/;)? =1,1 =1, 2, from which we
~ deduee that (k,,) =1 and u(%)? = 1. Thus

(5.4) D D)™ Oy ()T (120} 7 (Tata)] <
q

p{a) = plrde(®),  olaf(g; m) = o(k/(k, m))e(rrs).
:—:, for otherwise ¢, xz,u(q;n) = 0 for all ¢; thus

vy < 1,/r5. These obgervations lead to the coneclusion that the sum under
consideration -is

We may assume that r,

(B:3) < (raterefry) PRl O a0k (h, )

2 r4)—
Here the sum is

. 1 ’ 1 -1
tor {p 1) ey ( p—1 g P
me pim »im

The other factor of (5.5) may be written as [/;-I1,, where

ol Rt T T

Dlrg,pim
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and

-1 1 ~1
m= [T 2] <[] (=)

Biry nlrg

We combine these three estimates to obtain the degired result.

a
6. The major arcs. For o in the major are M(g, o) we write a = " +9.

We have g < P, 80 if » > P then (p, ¢) = 1, and it follows that

e(pa) = plg)* D x(pa)e(D)e(wn).

_ Thus in the notation of (2.2), (2.8) we find that

(6.1) $(a) = p(@) X () (D)8 (z, m)-

Note that the harmless condition p > P ensures that S(x,#) = 8{x* 7).
In general we expect S(yx, ) to be small, but if y =y, 07 2 =¥
then we approximate to 8(yx, ) by the corresponding expression

Ti) = Y o), T =— 3 n ().
PonsX PonsX
Of course T (%) is defined only if there is an exceptional zero E Put
8oy m =T +W o 1)y 8(Tor ) = T +W (Zxe 1),
and
S, =Wl m (X # Xox # 2o

Thus also W(x,n) = W{x*, %) for any y. By Lemma 5.2 we see that
7{%,) = ulqg), so the above definitions give

©{q)
(g

) o
(6.2) St = L0 T+ Zx(a)r(x)W(x, ),

umnless there ig an exceptional character of modnius 7, in W}neh cage if
7 | g then we obtain an addltlonal term

(@) w(Xx0) 7(

6.3
(6-4) ()

on the right hand side of (6.2).
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Assume for the moment that the exceptional character does not
oceur. Then

TACIESUIRY

(6.3) S(a)zz( n )+2mg)qﬂ(q)*z S @D TW (z, 1)+

+o(g)? Yxx (@) (@) (x) Wi, )W (x'y 7).

x,x

Henee
, ’ _ /4@
(6:4) 3 [ Blafe(—na)da = p(@le(g) e —n) [ T(nPe(—nm)dn+
a Wg.a) —1/gQ
1@
Qg S’c(—n)r(x) [ Ty W (g, nye(—ny)dy +
—1zQ
1/q@ .
Fo(0 Y e d—me(DeT) [ W W s ne(—nm)dn.
X —1jgQ

Here the first term contributes to our main térm, and the others are remain-
der terms which we now estimate. Suppose that ¢(mod ¢) is induced by
#*(mod 7). Put
. 1/rg "
(6.5) Wi ={ [ Wz nlan)
—~1/rQ

We note that W(yx) = W(x"), so the total (over g < P) major arc remainder
is bounded by

(6.6) 2X* Zu(g)ﬂm(q)-@ leg(—m) (I W (") +

Q=P

+2¢(Q) - lcn(— n) (e () W (YW (™).

g<P

Here we have nsed the Cauchy—Schwarz imequality and the fact that

/g
(6.7) [ TPy < f[T medyp = Y 1< X,
—1/2@ PangX

We now group terms arising from fixed * and y™; by Lemma 5.5 we
see that onr error terms are

(6.8) <
where

(6.9) : W= 33w.
<P x

(x4
(p(ﬂ)( +W2),
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. We now consider the fixst term on the right of (6.4). The integral
in this term satisfies the trivial bound (6.7), but now we require 2 more
precise estimate. Clearly T'(5) < |inli™", so

iz

(6.10) Jirmpran < Q.
1/gQ

Thus the integral under consideration is

1
(6.11) = [ T(n)e(—nn)dy+0(gQ) = n+0(¢Q)
1] .
for n < &, so 61]1' total major arc main term is
(6.12) D n(gPe(a) e (—n){n+0{aQ))-
g=P

Here by (b.2) the error term is
6.13) <@ Nagloplal(e, W) <@ Y de(@ Zw )
a<P

din
< Qng(n) *d(n)logP < X+P1,

In (6.12) the main term can be written as a sum over all 2= 1, with an
error of

614)  <n Yo@ plg/g ) <n Y@ D g

g=P din r>Pld

< nPld(n)np(n) < X3Pt

for n << X. Thus the first term on the right of (6.4) summed over ¢ <P
becomes

(6.15) - S(n)n+0(X+ P,
where ©(n) is the singular series

(6.16) e(n):ju(q)"w(q)‘ﬂ%(—-%)m n (1—_(1%1,—2')17 ( +—f)

g=1 otn Dln

by (5.2). Combining (6.4), (6.8), and (6.15), we find altogether that
(61T)  R,y(n) = Snyn-t O(XHET)+0ng(n)" (WX 4 W)

for n < X, provided that the exceptional term does not occur.
‘We now suppose that the exceptlona.l term exists, and proceed to
determine the effeet that the term (6 2) has in (6.2). Clearly the right
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hand side of (6.4) must be angmented by the amount

Y@
6.5 Tl e(@ R e(—n) [ T(nfe(—~mnn)dn+
—1fgQ
1/g@ .
+2u(@) o5, ()t (Fme(@™ [ T(mT(n)e(—ny)dy+
~1/aQ}
' . q@ .
+20(0) Y ep(—ne@ein) [ Wl Time(—ny)dn.
ooz —1/a@

We now treat thig Iagt term in the same way that we dealt with the seecond
and third terms in (6.4). The total contribution of this term is ne more
than :

(6.6) 82X ¥ o(q) 2|Gxx — )z (F)w(27) [ W (")
o<t
rig
since
. 2@
(6.7) [ Tran< X.
~1/gQ

Applying Lemma 5.5 as before, we find that (6.6) is
< ng(n) TPW,
whieh iz absorbed by (6.8).
We now investigate the first two terms in (6.4). By partial summation
we see that T{x) < ligll~', so in addition to (6.10) we have

v 12 C .
(6.10) [ 1Tmtan <9, [ ITHTH)dy < 99
1/gQ aQ

We now write the integrals in (6.4) as I (ﬂ)—l—O(qQ) and J (n)-+0(qQ},
where

~ 1 -~ ~ 1 -~ "
I(n) = [ T(nYe(—nn)dn, J(n) = [ T(n)T(n)e(—ny)dn.
o ]
As in (6.7) we find that
(6.18) Im<X, Jmi<X.

(Later we extimate I (n) more precisely.) Regarding (6.12), we find that we.

must infroduce the terms

(6.12) ;Pr'(ixo)%q(~n)¢(q)”2(f(n)+0(q@))+

q~ .
vl )
+°2M (%) G52 (— )@ ()T (m)+ O (4Q))-

TIQ

.(B.ﬁ') Ry(n) = G(n)n+é(n)f(n)+o(
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 Here we treat the error terms as in (6.13). They are

(6.19) <7 3 ag(@) " elaitn, )7 < TP (0 7).

Q§P.
rig

‘We now extend the sums in the main terms to include all ¢ > 1. This
introduces a further error, which in view of (6.14) and (6.18) is

< Xr Yo ¢lglg, ) < XHP ().
| &
rig

The first infinite sum is

(=]

616 i) = D vliulel—ng@) ™
| e '
. e mlg e 1 1
— W=D pFIE, W)y o (Fi(F, ) H (1”6?17“)1:[( +__I)
pin Din

;—u

by Lemma 5.1 and (5.2). The second sum in (6.12), extended to infinity, is

(6.20) > i@l o5~ m)p()
a=1
rig

— WPl I1 (1—@—:-);) g (1 +}fj)

nir
ntn 2lin

< Z(0PFe(P) Tnp(n)”

Collecting our estimates (6.17)—(6.20), we find that if the exceptional term
oceurs then instead of (6.17) we have

i(ﬂ)é;‘ﬂ:X)
P (7)2p(n)
+ O (X P (n, 7)) +0 (nep(n)™H (XPW +-W),

for n< X.

To complete our description of the main terms ar1smg from the major
ares it remains to derive a sharp upper bound for I (n). Clearly

fm) = Y (ka—Bft<nnft =,

P<k<n—P
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n—nf = | a*(logn) du

> (1 1512 W\ nexp| — 2287 10gn
/( —maxif, ——16-g—— 1244 g X g

l(l Bymlogn (F=1- —1—_)

logXx "’
logn - -1
1— —).
l lo gX T B< logX)
Thus, by (4.1},
(6.21) C p—wf > e(1—f)ulogP (X < a< X).

7. The major arc error terms. We now estimate

= 3 W (g,

gsP x

where W (y) is defined in (6.5). One reasonable appl oach would he to use
an explieit formula to relate B(y, 1) to zeros of L(s, ), and then appeal
to an appropriate zero density estimate (namely Theorem 6 of Gallagher
[51). We choose a route which is conceptually more sophisticated bub
technically simpler. '

By Lemma 4.2 we see that

( f ’ p z(p)logp

P<JJ<_Y
T—EgQ<psE

2 1f2
dm)

< TP max max (b XP Y ]_}:*” x(p)logp1

<2 X
E t<hssX pouy

in the notdation of Lemma 4.3, an application of which gives
10gX
log P

(1.1) W < X'Pexp ( —&
if there iy no exceptional term. If the exceptional term oceeurs then

~ log X
7.1 W< X201 — —e.—2""11 )
(7.1) < (‘ ﬁ)exp( Ce logP) ogP
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8. Completion of the proef of Theorem 1. We have already observed
that n iz a snm of two primes if B(n) = 0. Now R(n) = Ei(n)— |Ry{n)!,
so % is representable if
(8.1) By (n) > By ()]

We now show that this inequality holds for even n, 3X < n < X, with
the exception of at most

(8.2) & XPWioeh X = X Plogh X
values of #, 3X < » < X, Then Theorem 1 is immediate.
From (3. °) we see that the number of # < X for which |R,(n)|] > XP~1*

iz at most < XPlog®™X. We may discard such =, in view of (8.2), so
that |Ry(n) < P for our remaining #. We now show that

(8.3) Ry(n) > XPp8

for even n, 1X¥ < n< X, with the exception of < XP-'? values of .
This suffices to complete the proof, since the exceptional # can he absorbed
in (8.2).

We suppose first that there is no exceptional character. Then from
(6.17) and (7.1) it follows that

R,(n) = G(n)n+ O0ngpn) " Texp(—¢, 871} » np(n)' X » X
for even #, 3 X << n < X, supposing that d is suffmlently small. This gives
{8.3) without exception.

If there is an exceptional eha,raetm then we a.ppeal to (6.17) and (7.1).
If (n, fr) = 1 then, by (6.16),

S(n) < npn)y Fe(r) = o(1),
sinee it follows from Lemma 4.1 that 7 » logP. Thus R,{n) > X for all
even n with,(n,7) =1, $X <a< X. If (n,7) >1 then the first error
term in. {6.17) vanishes, bub now the second error term may be large. To

cope with this we now discard those even n for which (n, 7) > P,

Then for the remaining » this error term is
< XHP(n, 7) € XHPR < IPTA

¢

Moreover, the number of discarded # in

M1 <« IPRAF) < XPTH,
=X
d>f.'lPi':[t'2 ﬂdi

which is admissible, in view of (8.2). Thus it remains fo treat those n-with
1< (n, 7)< P2, For these, by (6.17), (7.1) and (2.4),

(8.4) RBi(n) = S(mn+&m)I(n)+0(XP )+
| +0{nip(n) (1 — ) Xexp(— e, logF).
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We now consider é(-n). From (6.16) and {6.15), we see that

(8.5) B <&@ [ [p-2)7"
o7
pin
n>=3

If the product iz non-empty then as before
Ri(n) > np(n) X > X

for even #, 3 X <2 n< X. On the other hand, if the product is empby then,
by Lemma 5.1, (#,7)> 547 Bubt the n under consideration Satlsfy
(n, 7)< P, 50 the present case arises only if

{8.6) r < P
By (6.21) and {8.5) we deduce that

S(myn+E(m)I(n) > eS(n)(1— BynlogP = cnp(n)~Y{1—f) Xlog P,

for even n, X << n < X. The last error term in (8.4) is less than half this
size if § is sufficiently small, so '

Ry (n) > eonp(n) (1 — ) XlogP — 6, XP-,
By Lemma 4.1 and (8.6) we see that

1—f » 7 Plog F » P~log™P.
Thus

R, (n) » XPWog™' P > XP13,
ag required. '

One should mnote f$hat thiy concluding argument can be arranged
rather differently: Take P = X if the excepfional term does not oceur,
or if it does and 7 < X%, On the other hand, if X% < 7 < X™ then take
P = I‘c‘”. In this way we ensure that » < P"Z whenever ¥ < P. Then the
treatment of the exceptional case is somewhat simplified.

9. Proof of Theorem 2. We require the following two lemmas.
P Levva 91, If X > X(s) and X' < h< X then the interval
(X, X+h) contains ~ hlog™*X primes.
The first result of this character was proved by Hoheisel. The presemt
form is due to Huxley [8], ‘whose basic result is the zero density: estimate

Za-a)

(9.1) N, T) «T5 “log’T,

ovalidl for § < ¢ < 1. The exponent T/12 arises as 1—c !, where ¢ = 12/p
is the constant in the exponent in (9.1).
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Lenmmrs 9.2, If the Riemann Hypothesis is true then

¥ g4ty

(9.2) [ togp—by)'dy < 6¥%I0g* ¥
¥ v

for 0 01, Unconditionally,

¥ y+by

(9.3) J (D logp—ty)'dy < 6*¥olog™ ¥
¥ v

provided that 0Y > X'+e,

The first assertion is due to Selberg [16]. Selberg also used a zero
density estimate o establish an wneonditional Tesult; his analysis with
{9.1) yields (9.3). Here the exponent 1/6 oceurs as 1—2/c, where ¢ is the
constant in the exponent in (9.1).

We now prove Theorem 2. Suppose that the interval (X, X +h)
contains no sum of two prime numbers. Let ¥ = X"****, Then by Lemma
9,1 the fnterval (X — ¥, X —1¥) contains » ¥Ylog™ X primes. For such
a prime p the interval (X —p, X-—p 1 h) contains no prime number.
Thus the interval (¥, y +4h) contains no prime for a set of 4, }¥Y <y < ¥,
with measure » Ylog™X. We take ¢ = 3hY ' in (9.3), and deduce
that h < ¥¥+*, That is, A< X"+, Here the constant 7/72 arises

¢

Suppose now that the Riemann Hypothesis is true and that the infer-
val (X, X+ h) contains no gam of two prime numbeirs. Then for each y L X
at most one of the intervals (y, y +3h), (X —y, X —y 30} contains a prime
oumber. Thus of the intervals - :

(3X -+ 3h, 3 +3 (% +1)h)

with — 3Xh ! < k< 3XRh7Y at least X727 of them contain no prime num-
ber, and hence the interval (y, ¥ -1} contains no prime for a set of y,
1X <y <X, of measure » X. From (9.2) with ¥ =X, 6 = (hX™
we see that h < log*d. '

: 1 2 '
as (1— —) (1——-), where ¢ i3 the exponent in (9.1).
G a
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On an inequality for additive arithmetic functions °
by

J. Exeams (Vilnius)

In memory of ¥u. V. Dinnik

G. H. Hardy and 8. Ramanujan [2] proved that for any fixed 6> 0
and all positive integers m < n, with a possible exception of o(n) of them,
the inequality

o (m) —Inlns| < (Inlns)2+°
is true. Here w(m) denotes the number of different prime diwisors of m.

This is an analogue of the probabilistic weak law of large numbers. It
shows the bounds between which the funetion w{m) oscillates for the great

majority of values of the argument.

P. Turan [67], [6] gave a very simple derwa.tlon of this statement.
He proved the elementary inequality

n

ey - . D {eo(m) —Inlnn)t <

M=l

eynlnlne,

where ¢, is a constant, which evidently implies the result of Hardy and
Ramanujan. ' :
Naturally there arose & question of the generalization of (1) to & larger
class of arithmetic funetions. P. Turan [7] obtained the following theorem.
Lt f{m) be a real-valued strongly additive function snch that
0<fp)< K

for all primes p and a constant K and
= 550
! psn

&8 m—oco. Then the inequality

n

D (fimy =, <

me=1

holds, where ¢, is a constant depending on K.

e;nM,




