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ACTA ARITHMETICA
XXVII (1975)

Yu. V. Linnik’s ergodic method in number theory
by

A, V. Manysuny (Leningrad)

1. Historical outline. In articles [11-[6} Yu. V. Linnik elaborated
the foundations of an original method in analytic number theory, which
later became known as the “ergodic” method. His starting point was the
tollowing problem (1): Given the integral positive ternary quadratic form

3 .
(11) F=Fl, 2y @) = D) ayim,
) AN
of determinant d = det{a,) + 0, find the conditions on which a given
integer m > 0 is represented by the form f, i.e. the conditions on which,
the Diophantine equation

(1.2) Fl@yy g, @) = m

is soluble in integers @y, @, #,. This problem becomes that of proper
representations — of solving equation (1.2) with the condition

(13) go.d. (@y, Bay 0g) = 1.
(Clearly, to find a solution of (1.2} it is necessary that the CONZIUENCes
(1.4) Jl@yy @y, ) = m (mod g)

are soluble for any modulus g > 0 (this can be reduced to the case
g = 8md). The conditions for the solvability of (1.4) can be expressed
simply by the characters of the form f and are gaid to be generic (simmul-
taneously holding or not holding for all forms of the genus).

An analogous problem of representation by a positive quadratic
form f == f(@y, ..., @) in 8> 4 variables is solved rather easily (see [52];
[35], Chapters I-11T) by means of the circle method of analytic number
theory.

(1} Tt is interesting 1o note fhet this problem arose in eonnection with that
of Delawnay [42] on the determination of a three:dimensional crystallographic lattice
by its distances. ' :
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It is proved then that if the necessary generic conditions are sat-
isfied (the solvability of congruences analogous to (1.4)), any sufficiently
large number m is represented by the form f; ‘an asymptotic formula

. for the pumber of its representations is also obtained. In the case s = 3
application of thiz method has hitherto met with unsurmountable diffi-
culties (2). In order to solve the problem of the representation of num-
bers by positive ternary quadratic forms (*) Linnik developed a new

_ analytic-algebraic method, using to full advantage the arithmetic of
quaternions (and their generalizations — hermitions) and, in particular,
the profound theory of B. A. Venkov [39] of the “rotations” of vectors
(pure dquaternions, guaternions without real parts).

In [5] it was proved that for the so-called “idoneous™ integral positive
ternary quadratic forms representable in the form of the sum of three
squares of integral linear forms, any sufficienly large integer s prime
to d is properly represented by the form f provided m satisties the generic
conditions for the form f; whereby, for the number of proper represen-
tations 7{f, m), the estimate ‘

h{—m)
loglogm

(1.5) _ 7(f, m) > ¢

was obtained, where &( —m) is the number of classes of integral properly
primitive positive binary quadratic forms of determinant m, and where
¢ > 01ig a constant dependent only on d. Here it is assumed that m satisties
conditions (1.4). In [5] an approach (*) was algo outlined for the more
general positive ternary quadratic forms f.

The problem of representation. of numbers by fernary quadratic
forms has been studied in [28], [24], [21]. The derivation of asymptotic
- formulae, in particular of that for »({f, m) in the cage of an “idoneous”
“form f, was made possible by a number of improvements [257 to Linnik’s

method, whereby it was found [9], [1.3] that the considerations can be gim-
plified if some theorems from the theory of Markov chains (°) are applied.

. (!) It is very likely that if application of the eircle method in {he cage § = 8
is possible, it needs non-trivial estimates of the averages of Kloosterman swms.

(*) Classical arithmetic of quadratic forms ean solve the problem {e.g. Jones [54])
only for one-class genera, e.g. (Gauss) for the genus of the forms o2 - wf 4 of,

(*) It is unfortunate that this approach lhas not yet been realized. In mono-
graph [35] another way of applying the ergodic metliod to more general quadratic
forms was chosen.

(®) Namely their ergodic features, from which the term “ergodic method”
was derived. It showld be noted that ¥u. V. Linnik's ergodie method has nothing
in common with the classical ergodie method (if the similar looking formulations
of their results are disregarded)., For some remarks on this see § 8.4.
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The problem of agymptotic formula for »(f,m) in the case of an

© «idoneous” form f becomes the guestion of asymptotically uniform dis-

tribution of the proper representations (#,, y, @) of the number m by
the sum of three gquares

(1.6) . o - wy -y ==

acoording to their residue-classes (by, by, baj with respect to the given
modulus f,

(L.7) @y, @y @) == (by, by, bg) (m0d g).

We will demonstrate (§4) the idea of Linnik’s ergodic method on just
this simplest model example,

The problem of representing the number m by the positive quadratic
form f == f(i, ®a, %) C2AD be interpreted geommetrically, By MM(f, m) we
shall denote the set of all primitive integral points (@, ,, a5) lying on
the surface of the ellipsoid (1.2), and |I(f,m)| = r(f, m) will denote
their number. Then, together with the question of representation of the
number m by the form f (i.e. of the condition »(f, m) > 0) and of the
asymptotic formula for r(f, m), the problem of the structure of the'set
M(f, m) naturally ariges, ie. the problem of the digtribution of 1':he ppmts
from WS, m)on the surface of the ellipsoid (1.2) according to their residue-
classes with respect to a given modulus. - ‘

Tor the cage of quadratic forms of ¢ > 4 variables, problems of a simi-
lar kind ave solved by means of the circle method (see [35], Chapter
III). Study of the distribution of primitive integer points on the surface
of the three-dimensional ellipsoid (1.2) was began in [22]. One of the
important results in thiy direction was Linnik’s theorem ([8], [161; 8el
alto [35], Chapter VI; [19], Chapter IV) on the asymptotically uniform
(for m~»oo) distribution of the primitive integral points of the sphere
(1.6) on ity surface (of course under the assumpbion of the proper sol-
vability of Diophantine equation (1.6), i.e. &ssuming that m = 1, 2 (mod 4)
or == 3 (mod 8)). These considerations were generalized ([33], Chapter VI)
for “idoneous” positive ternary quadratic forms. :

The problem of representing the number m by the form f and of the

. gtructure of the seb (S, m) in the case of an arbitvary integral positive

ternary quadratic form f of the odd relatively ‘_pril_m? invarianty [Qu, Al
(for the definitions of £ and A see §2) was analysed in monograph L35]',
Chapter V. Unfortunately, in this general cage one has net ye‘ﬁ gucceeded
in obtaining the asymptotic formulae, only lower and upper estu.mates have
been obtained for r(f, m) giving its true order of magnitude {for m — co}.

Tor an. exact formulation of these results see §3; the question of their
generalizations and aceuracy is discussed in § 6.
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In Linnik’s works ([7], [10], [11], [12], [14], [15]) and in those of

B. F. Skubeunko ([36], [37]) (see algo [19], Chapters V and VI), the ergodic

method was applied to the simplest indefinite ternary quadratic forms, i.e.
to the problem of the distribution of mteger points on the hyperbolic
gurface

¥

" {1.8) @y — iy =, mFE 0,

In these applications not all of the integer points of the surface (1.8)
were considered {due to their infinite number), but only those satistying
the supplementary “reduction” condition '

(1.9) << i om0
(1.10) 0<<ay<Vim|, Viml—z<|@l <Vim|+a I

It was also proved that primitive inféger points are asymptotieally uni-
formly distributed on the surface of hyperboloid (1.8) with regard to
hyperbolic metrie (for m—-4-co and for m—»>—oe). Study of the case
m < 0 was found to be particularly complicated. There, to apply Yu.
V. Linnik’s ergodic method, it was necesgary to obtain & very non-trivial
result regarding the lengths of the cycles of integral reduced indefinite
binary quadratie forms (°). For aceurate formulations of these results
see §3; the question of their generalizations for arbitrary indefinite ter-
nary quadrafic formg iz discussed in § 6.

The problem of the distribution of integer points in domain (1.8},
(1.9) (for m > 0} can be interpreted as that of the distribution of the
rednced positive integral binary quadratie forms

m < Q.

"y % 2@ uw - o, 08

of the determinant am, — a3 = m, or as the problem of the “distribution”
of the classes of integer ideals of the imaginary guadratic field @ ( V_m

The problem of distribution of integer points in the domain (1.8), (1.10)
(for m < 0), can also be interpreted as that of the distribution of reduced
indefinite integral binary quadratic forms of determinant m, which gives
some information on the “distribution” of the classes of integer ideals
of o real quadratic field. Unfortunately, the relationship between the

forms studied in this paper and the classes of ideals is more complicated
than in the case m > 0. '

(%) Namely (B. F. 8kubenlo [37], p. 726): such an abaclute constant ¢ can be
found that if Iy and I, are the lengths of two such cycles (for definition see e. . [40]),
then &;/l; < cloglm|. This theorem is of great interest in itself (apart from its con-
nection with the ergodic method), but unforfunately it is not well known.
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The guestion of generalizing these congiderations for the classes of
integer ideals of an arbitrary algebraic number field naturally arises.
In § 7 we shall study the wide programme outlived by Linnik ([15], [17];
[19], Chapter VII, Chapter IX, § 1). Regrettably, only preliminary resulty
were obtained towamds the realization of this programie. Recently Lin-
nik [20] presented a simpler variant of thiy method. For its ideas see § b
of this work.

Yu. V. Linnik ([43], [44]; [21], Chapter TIL; [48]) found several
interesting applications of the theorems on the mpwsentatwns of numbers
by positive ternary quadratic forms to the problem on the representa-
tiong of numbers by the sums of cubes. For this see §8.1.

2, Some facts from the arithmetic of ternary quadratic forms and
hermitions (7). Let

3
Z ajkijk,

be a ternary quadratic form w1th ipteger (*) coefficients a; (j, k =1, 2, 3)
and with the determinant @ = d(f) = det(ay) # 0. The number t( kb
= g.c.d. (@) 18 zaid to be a divisor of the form f, which is said to be pri-
mitive if £(f) = 1. Let f be a primitive foxm, then F = df " is its adjoint
form. The integers 2 = #{F) and A = d[£2* are then said to be the in-
variants of the form f. The set of forms of the given 1nvar1ants [£2, 4]
constitutes an order; for a given order d = 4.

We say that the forms f and f ave 6quwalent (in the ring of integers)
if one can be transformed into the other by a unimodular integral sub-
stitution. The relation of equivalence divides the forms into classes. Each
form of any one class has the.same invariants (and determinant). The
number of clagses of forms for a given determinant is finite.

‘We say that the forms f and /' are semi-equivalent if one can he trans-
formed into the other by a unimodular rational substitution, the deno-
minator of which is prime to any . previously fized number. The semi-
equivalence of forms is tantamount to their equivalence in the field of
real numbers and in the rings of residue-classes for an arbifrary modulus
{or Lo the integer p-adic equivalence for amy prime p, including p = co).
The equivalent forms are semi-equivalent but the converse does not
generally hold. A genus is the set of all forms seini- equwa,lent to a gtwen
form. All forms of a given genus belong to the samé order so that,

(2.1) I = flay, wy w5) = Ay = g

() Tor details see e.g, Jones [54] and A, V. Malyshev {35], Chapter IV.

(%) One can also consider forms f with the integer coefficients ayy, ap; as,
2aq, 2613, 223, Weo restnct owmrselves to the mteger ag; o avoid difficulties of a fach-
nical nature.
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particnlar, the number of classes in a genus is finite. A genus of forms
can be defined by & finite number of its invariants, ie. by a complete
system of the form’s characters (see Jones [54]).

Asgume we are given an arbifrary odd (°) number g > 0, then the
form f of the invariants [2, 4]is equivalent to the form

(2.2) = ayad + Qayat -+ L Aa,ef (mod ¢),

where a,d,a, = 1 (mod dg).
'We say that the number mm is represented by the form fif the integers
®q, &y, By, Lor which

(2.3) oy, gy ) =

can be found; the triple {ay, @,, @) is called the representation of the
number m by the form f. If at the same time g.c.d. (w, s, #5) = 1, then
we say thab m is properly represented by the form f (and the triple (,, 4, )
is the proper répresentation of m by f). Let #(f, m) be the number of proper
and R(f, m) the number of all representations of number = by form f.
For positive forms f the numbers #(f, d'n) and R(f, m) are finite, and for
indefinite forms, in general, are infinite, In the latter ca,'se one congiders the
number of representations satisfying some supplementary condmons, e.g.
the number of “reduced” representations, see § 3. The guantities r(f, m)
and R(f, m) are the clags invariants.

Let f = af +-a2 +a%. Then for r(m) = r{f, m) the Ganss formula [40]

12h(—m) it
8h(—m) if

m =1 or 2 (mod 4),

(2.4) r(m) = m =3 {mod 8)

holds, where h(--m) iz the murmber of classes of integral properly pri-
mitive positive binary quadratic forms of the determinant m (it m £ 1, 2
"(mod 4), 3 (mod 8), then r{m) = 0). By the Siegel theorem [60],

(2.5) M g h{—m) < mMT,

where &> 0 is an arbitrarily small guantity; the constants implicit in
the syrabol < -depend only on s

Let f be the primitive form (2.1) of the invariants [2, 47, le’n d =804
# 0, and F = (1/Q)f, where f = df " is the algebraic adjoint of f (we
ey that I is the primitive adjoint of f); then

3
B o= E-Ak;%mz
L l=1

() An analogous (but not so simply formulated) result ean be obtained for an
even g.

iom

(2.6) i= k=12,
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is the primitive form of invariants [4, Q1. By U, we denote the 4-dimen-
sional algebra over the field of rational numbers with the basis [1, 4,, 45, 451,
where 1 is the unit element of A,

+9
Ty = ""'Aa'lck:

.3
— Aty -+ Zfim‘z,z%a

Gy g =
* 3 (mod 3}.

= Py,

3
EAra-w,ﬂu

Il

g1

The elements of algebra A,
A ey g8 gty - ayty,

where a, (& ==0,1,2,3) are rational numbers, we shall call hermitions

(01 generalized quaternions) corresponding to the ternary quadratic form

f. B f = o} +uh 4 then Ay = W, is the algebra of ordinary quatermons
The hermition

A =g~y — g8, — gy

is said to be econjugate to the hermition 4. The product
(2.7 . N(AY = Ad = A4 = af +Af(ay, @y, ag) .

is called the norm of hermition 4; N (.ElB) = N(4)N(B). If g, = 0 then
the hermition 4 is said to be a veclor (or pure hermilion). If A is a vector
{and only in this case) then ’

(2.8)

We ghall call the hermition A = ag-+ a6y + aais -+ agiy an integer her-
mition (1%) if @y, a5, 0y, ay are integers, and we shall call the integer her-.
mition A primitive it g.o.d. (ay, ayg, G, ag) = 1. A will be called primitive
(mod ¢) it g.c.d. (&, Gy, @y, G5, ¢) = 1. We say that hermition B is the
right divisor of hermition A, A[B, if AB™* iy an integer hermition. The
same applies to the left divisor 0, ONA4, if ¢4 iy an integer hermition.
An integer hermition # with an integer reciprocal is said to be a wunit;
B is o unit it and only if ¥ (8) == 1. ermitions 4 and B = AF, where
B s a unit, are said to be right associated; A and ¢ = BA —lgft associated.

The following theorem on uniqueness holds true (Hee e.g. [35], Chap-
ter IV).

A = —N(A).

(9 The notien of the integer hermition can be defined in a different way by
extonsion of the ring of hermitions with integer coefficients to a maximum order.
Both definitions ]mvo their own. u.flvanmges, for our purposecs the given definition
suffices.

38 — Actn Arithmetloa KXVIL
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ProposiTION 1. Let g.c.d. (b, 2d) = 1, A be a primitive (mod b) her-
mition; B, and B, be integer hermitions of the norm b. Then, if A[B, and
A[B,, we have :

B, = EB,,

where B is o unit of the algebra U,

The theorem of decomposition ([35], Chapter IV, §6) also holds
for the alg.ebra; A, of ordinary quaternions (and generally for hermition
algebras whieh are principal ideal domains).

PROPOSITION 2. If A is . an integer hermition of W, and if b
is @ positive integer divisor of N (A) prime fo 2d (i.e. in the case of A, if b
is an odd number), then a right divisor B of A, the primitive hermition of
the norm b, can be found. _

We will note one from among a number of propositions on the decom-
position of hermitions (see [35], Chapter IV, §§ 2—4).

ProrosirIoN 3. Let B, and B, be integer hermilions of norm v prime
to 2d, and let the hermition R, R, be primitive. Then, if the integer vector L
is vight divisible by R, and is left divisible by Ry, L is divisible by the number r.

Let T = @49, 4 %205 -+ 899y ' he a primitive integer vector of the norm
Am. Then

(2.9) It = —dm,
which is equivalent to the eqﬁality

(2.10) fl@ry @a, w5) = M.

Henee to investigate the set TR(f, m) (see §1) means to sbudy the set
of primitive integer vectors of the norm Am, i.e. the set of integer her-
mitions with the condition (2.9). Thiy idea (in the case f = &8 4-a2 +43)
is due to B. A. Venkov [39] who developed the theory of “rotations of
vectors”. Venkov's theory was generalized to hermitions by Limnik in
[31-[5]. An outline of this theory will now be given (for details see [35],
Chapter IV, §5). :

Let I and L' be two primitive vectors of the norm dm. L and I/
dre said to be equivalent (in a rotational sensge) if for an arbitrary integer
g, such an integer hermition @-of the norm prime to ¢ can be found that

(2.11) 0-'LQ ~ L.

ProrosirIoN 4. If
(2.12) I = I’ (mod 2d),

then, L and L' are equivalent.
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PrROPOSITION B, Let L and I’ be equivaleni and let § be an integer
hermition of the norm prime to 2d, at the same time let equality (2.11) heold.
Then an integer hermition B and an integer 1 con be found, satisfying the
condition

(2.13) 14+I' =QR.

Let N {@) =gq, N(R) =r. Then (2.13) implieg

(2.14) gr—1# = dm

and to the pair (“rotation”) (L, IL’) there corresponds the infegral pos-
itive binary quadratic form

(2.15) (g, 8, r) = qur+2lww+rv%, g.ed. (g,21,¢) =1

of determinant Am. We say that the rotation (L, I/) is governed by the
binary form (g, I, #). The choice of @, B and ! is not unigue.

PROPOSITION 6. By equalities of the type (2.11) and (2.13), o one-to-one
correspondence is established between the set of the pairs (L, H-'L' K), where -
B runs through all units of the algebra N;, and the class of integral properly
primitive binary quadratic forms of determinant Am. (For a more detailed
formulation. see [35], Chapter IV, §5.)

Condition (2.12) shows that the number of clagses of vectors is bounded
by a number depending only on d. Unfertunately, this is not a necessary
condition. In a more detailed study of this problem for algebra U, Venkov
derived a new proof of the Gauss formula (2.4): he was fixing vector L
and to the primitive points (@, @,, ;) of the sphere
(2.16) Bt atat =m

made correspond rotations (L, L) where I’ = 2,4, 4 %y8s - o39;. In order
to study the set M(f, m) Linnik proceeded s little differently. He fixed
norm ¢ = N (@) of hermition @, and for increaging m with the condition

(2.17)

(zn

7 ) =1 for all primes plg,

he considered chaing of primitive integer vectors of norm 4m of the form
(2.18) I, I'=Q7Lg, I'=Q7L¢, .., |

where @, @', ... are integer hermitions of norm ¢, and found their ergodic
propertied (for some details on this see §4).

Unfortunately, even under the necessary condition (2.17), integer
hermitions @, @', ... of norm g, generating chain (2.18) of primitive integer
vectors L, I, L”, ... of norm Am, cannot always be found. This iz possible .
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in the case of the algebra of ordinary quaternions (in gener.a,l, in the case
of o hermition algebra being a principal ideal domain), since by (2.17)
such integer 1 can be found thatb

2LAm =0 (1110('[ q).

But then I--L is a primitive hermition and ¢|N(l+L). Hence (Propo-
sition 2) integer hermitions @ and R satisfying the condition

I+L =QR, N(@) =¢

can be found, so that I’ = Q7'L@ is an infeger primitive vector of norm
Am.

We shall make a further two remarks regarvding algebra 2, of ordinary
quaternions. The integer hermition A4 = p - @1y F Boly+ ayiy OF an odd
norm is called primary if

219) e+l =g = @y = a3 (Mod 2), o+ 8y + oyt g =1 {mod 4).

It can be verified that the prodnct of two primary quaternions is also
a primary quaternion. The following statement therefore holds ([35],
Chapter IV, §6).

PROPOSITION 7. Among the vight (**) associated quaternions of an odd
norm, there is one and only one primary guaternion.

PROPOSITION 8. Let # > 0 be an odd number, and lef o4(r) be the number
of primitive primary gquaternions of norm r. Then

1 1
golr) =7 ./.:S_J(l"I_ZJ)

alr

(2.20)

For arbitrary hermition algebras %, only asymptofic (for r--oo)
analogues of (2.20) are known. For a much more detailed account of
the arithmetic of hermitions readers are referred to [35], Chapter IV.

3. Detailed formulations of fundamental results obtained with the
help of Linmik’s ergodic method. All resulis obtained hitherto by applica-
tion of Linnik's number-theoretic ergodic method relate to analytic
arithmetic of integral ternary quadratic forms, and are formulated in
Theorems 14 below. For their application to the representation of num-
bers by the sums of cubes see §8. Some results related fto application
of the ergodic method to algebraic number fields are considered in §7.

Let f(a,, ,, 2;) be a primitive integral quadratic form of determi-

nant d # 0, let m + 0 be an integer and 4,,, be a domain on the surface

(3.1) . f(mlamzymx) =M, -

(31} or left.
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and let g > 0, by, b, by be Integers, g.c.d. (g, by, by, b} = 1. By
Ty babg(Asm) We shall denote the number of primitive integer points
{24, By, %5} satisfying the conditions

{3.2) (@1, Boy Ba) e Apy
and :
{3.3) (@15 ®ay %05) == (by, by, by) (med g).

In particular if g ~ 1, then vy, 5, 5. (Apm) = #(dy,,) is the number of primi-
tive integer points of the domain A4,,,. If 4,, coincides with the whole
surface (3.1), then 744 5, 5. (Arm) = T by, (S ™) i8 the number of proper
representations of number m by the form f with the supplementary con-
dition (3.3). If in addition g =1, then 7, 4 5(f, m} =r(f,m) i3 the
number of all primitive representations of number m by the form f.

The aim of this consideration is to study the function #yy 5, 5.(4;sm)
a8 |m| increases. For this it ig assumed that the following necessary con-
ditions are safisfied:

(i) The congruence

(3.4) ‘ Jby, by, by) =m (mod g)
holds.

(ii) The congruence .
(3.5) f(wlymzama) = m (mod 1)

is primifively soluble for an arbitrary modulus > 0.

For 14 8,5, Ay,m) a8ymptotic formmulae (Theorems 2-4) or estimates
(Theorem 1) are obtained, under gomeé assumptions.

ToeoreM 1. Let f be an integral positive fernary quadratic form of
odd coprime invarianis [2, 4] and let ¢ be & prime number, g4 24. Let a
positive indeger m salisfy the condition

- (3.6) _ (_Am)=1,

g

let ged. (g,2024) = l, and let Ag,, be a convex domain seen from the
eenitre of the ellipsoid (3. 1) in f-elliptic solid angle (**) 2 > 0. Then such
constants my, ¢ > 0 and ¢ > 0, dependent only on f, g, A and ¢, can be found, .
that for m = m, and satisfying the necessary conditions (3.4) and (3.5) (**),

(8.7) Ch{ — A1) < T (D) < ¢ ( —Am),

{42) A is the wolwme of intersection of the ellipsoid f(m,, g, y) < 1 with a cone,
corresponding to Ay, the apex of which is in the centre of the ellipsoid.

(%) .In our assertions (3.5} is equivalent to the primitive solvability of the
congruence '

Flay, @y, 23) =m (mod 8224m).
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where h( —Am) is the number of classes of integral properly primitive posi-
tive binary quadratic forms of delerminani Am,

CoROLLARY. Let f be a positive form of odd coprime invariants 2, A7,
and let g be a prime number, g1 24. Then such constants my, ¢ 0,
and o > 0, dependent only on Q4 and g, con be found, that for m = m,
ond satisfying (3.5) and (3.6},

{3.8) oh{—dm) < r(f, m) < o' h( —Am}.

For a proof of Theorem 1 see [35], Chapter Y, § 4 (preliminary reports
being [29] and [33]). We will now make & number of remarks.

From proper representations we can pass on to all representations,
and for number Rg:bpbz’ba(Af,m) of all infteger repregemtations (@, &, o4)
of number m by the form f, satisfying (3.2) and (3.3), obtain (under the
agsumptions of Theorem 1) the inequality

(3.9) CH ( — dm) < Ryp_ oy 5y (Apm) < ¢ H(—Am),

where H(—4m) is the number of all classes of inftegral positive binary
quadratic forms of determinant Am.

Instead of assuming the convexity of A, and that 1> 0 is fixed
{(with the possible dependence of A, on m) one ean consider arbitrary
domains 4, of a fixed form (**).

Besides the necessary conditions (3.4) and (3.5), we demand that m
satisfies (3.6) for some fixed prime g. Generally speaking (3.6) iz not
a necessary condition and is related to the specific character of the ergodic
~ method. (see §4). It should be noted however, that for all genera of the
form f of the order [, 4], with the exception of ome, (3.6) is & conse-
quence of the necessary condition (3.5) if for ¢ we choose the prime
divigor of number 2, for which

o o))

Tor the exceptional genus (and thus for f = &f-+af+4f) condition (3.6)
involves an additional limitation on sm (mod g). Condition (3.6) can,
however, be omitted if we assume the validity of the following, as yet
unproved, assertion on zeros of Dirichlet I-series with real characters:

Hyporemsis (H). In the domain

(loglog m)*logloglogm

(3.11) s —1] <
. ' . Vlogm

{4) Wa say that domains Ay, and A},mz have the same forms if the cones cor-
responding to them can be transformed- inte each other by f-elliptic rotation.
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P

=
&
-3

Yu. V. Linnik's ergodic method in nwmber theory
of the complen variable s, there are no zeros of Dirichlet L-functions

)
(312) L(s) = Z b

See [36], Chapter V, § 5 and also [30] and [34].

Finally, we shall note that since we are using the ineffective Biegel
inequality (2.5), congtants implicit in (3.7), (3.8) and (3.9) eannot be
eftectively computed.

TaaoReEM 2. Let

(Res > 1},

408 AgPm
- :

z(n) m(

3

(3.13) Flq, @gy 5) == Z (G 1+ Crg Tz -+ Cra0s)

k=1

where ¢ (k,1 =1,2,3) are infegers and det{ey) = d; is an odd number
such that @ = d(f) = d&. Let g > 0 be an odd number, by, by, bg be integers,
g.e.d. (by, by, by, 2) =1, and ¢ > 2 be a prime number. Lot m > 0 be prime
to dgg,

(3.14) f{ba, bey by} = m (mod 8, g},

and .
f —m
()
q 5 _
Also let A;,, be a comver domain with f-elliptic solid angle i> 0. Then
for m—oc and for fized f, g, A and q, _
i slfym; g, (ol

" gl

pldg

(3.15)

(3.16) Tiso,lig by (Apm) ~ (M),

where v(m) i the number of primitive ?‘epresmtdﬁiom of number m by the sum
of three squares (*%), and s(f , M3 g, (c,d)) is the number of distinet (mod d,)
solutions (@, ®q, 25) of

Flgmy b1,y gy +bay 923+ bg) == m (mod d,9),
for which the systems of numbers '
] 3 3
{2 ey g; +0y), Z 0o (g + By}, 2 oy g+ bj)}
Fual §=1 Jea1 :

are distinet (mod d,g).

(16) Bee Gause formula (2.4).
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For proof see [35], Chapter VI, and for particular cases and preli-
minary reports see [253, [8], [16] and [28]. :

The remnarks made in connection with Theorem 1 apply also to this
theorem. :

From asymptotic formula (3.16) one can easily pass on fo the asym-
ptotic formula for By b p.(Am)- Tnstead of assuming the convexify of
dormain A, ,, one can assume that the torm of Ay, is fixed. (3.14) implies
(8.15) for all genera of the form f except one, for which (3.15) follows
trom Hypothesis {$). The constants in (3.16) are ineffective. We will
tormmlate important particular cases of Theorem 2.

COROLLARY 1. Let-£2 > 1 be an odd number and f be ¢ primitive integral
positive ternary quadratic form of invariants [0,1] belonging to the genus

Sien () with  characters (—%i) =1 for all primes plQ. Le m>0
be an integer prime to £, for which the congruence '

(3.17) F{@1, g, @) = m (mod 2)

is soluble. Then for m—soc and for fimed £,
[ ( 2
12 1” 1
|2 1 + R
vy
y 2
g

514
. P

)} B(—m) 4 m =1, 2 (mod4),

(3.18) #{f, m) ~

)}h(—m)_ if  m =3 (mod 8).

See [25], and [35], Chapter VL
COROLLARY 2. Let ¢ > 2 be o prime number, and m > 0 be an integer

prime to g satisfying the conditions . “
(3.19) m =1 or 2 (mod4), or =3 (mod 8)
and .
(3.20) '(_m)=1.
| CVva )T

H
Let A, be a conven domain on the surface

(3.21) A = m,

(1) Linnik [57 called forms of the genus Jpp,;) “idoneous” (for the application
of hizg method)}. ) :

icm
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so thai the solid angle of A, is equal to 1 > 0. Then for m—co and for fized
A and q, :

(3.22) r( ) N_—;—T(m) .

See [87, [16], [35], Chapter VI, and [19], Chapter IV.

COROLLARY 3. Let g > 0 be an odd number, m > 0 be a number prime
o g, m =1,2(mod 4), = 3 (mod 8), and

(3.23) (;ﬁ)=1

¢
for all primes qlg, and let by, by, by be three integers such that
(3.24) S BLREb; =m (modg).

By ”Q:bl,ba,ba(m) we denote the number of primitive integer points (@, Ty, )
on the sphere

(3.25) Braltat =m,

satisfying the supplementary condition
(3.26) (%, Bay %) = (by, bo, B5) (mod g).

Then for m—>co and for fized g,

(3.27) - P giby by byl ) -~ m r(m),
where -

. . .
3.28 g} =g° 14— = o{g*
(3.28) olm,g) =g H( +p) golgY)

ig the number of solutions of

(3.29) o, + a3+ of = m (mod ¢).

See [25], and [35], Chapter VI

(3.27) ix also valid when condition (3.23) is relaxed, namely replaced -
by the existence of an odd prime g satisfying (3.23).

We now turn to indefinite ternary quadratic forms. So far only the
case of the simplest form

(3.30) f = a—o;

{or form f' = @j+ai—u}) for ¢ =1 has been considered here. Since
the number of primitive integer points (2, 4, x;) of the surface

(3.31) B0 T =
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is infinite, it is assumed that A;,, = P, where Py, i8 the reduced
domain, The number of reduced primitive integer points of (3.31) is,
however, finite. The case m > 0 (the hyperboloid of two sheets, Theorem 3)
and m < 0 (the hype1b0101d of one sheed, Theorem 4) are considered
separately.

THEOREM 3. Let ¢ > 2 be ¢ prime, m > 0 be an dinfeger prime fo 2q
and

332 (ﬂ)ml
(3.32) 7 Ly

let f = mmy—at, and Py, be the reduction domain
(3.33) 2 [ira < @1 < 0y

lying on the hyperboloid (3.31). Let € >1 be an arbitrary consiont and
P (0) be o sub-domain of Py, lying in the half-space

(3.34) _ @y < Oty

such that P, is the Eyperbolic quodrangle

(3.35) By =, 2| < @y < By << Oy

Let A, be a conver domain, A, = Pr.(0), having the hyperbolic
solid angle (") A > 0. Then, for m—--occ and for fized 4, C and ¢,

A
f,m) NTo'h( r”*m)r
where A, = 2w is a hyperbolio solid angle of the domain Py ..
Bee [T}, [10], and [19], Chapter V.
TuroREM & Let g > 2 be @ prime, m << 0 be an integer prime fo 2¢,
where |m] 18 not a perfect square and

(3.37) | (;m)—l
. - : g 1=

leb f = w0y —a5, and _Pf,m be the reduction domain

(5.36) (A

23| < V] -+

Tt A = P,m be o convex domain with the hyperbolic solid wrbgla A> 0.
Then, for m——oo and for fized A and g,

(3.38) @ym, — mg_m, <Vm|, Vim|l—z,<

A
(3.39) Ay ~ 'l_('l'('PLm):
[}

&9 Determmed by the volume of the sub-cone z; @y — 23 < 1 Gonespondmg to
Afm with its apex in the origin.

icm
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where 1{Py,,) is the number of primitive imteger points of the domain Py, ,
and A, s the hyperbolic solid angle of the domain P;,,.

Bee [36], [37], and [19], Chapter VI.

Ag in the above, (3.32) and (3.37) can be replaced by Hypothesis
($). The asymptotic value of the quantity r, 10 ba(/lfm) can be obtained
in the cage of f = @, @, —a; and m + 0. Detailed studles of these problems
have not however been. made. We shall niote that from the formmlae of
Theorexas 3 and 4 one can pass on o the corresponding formulae for all
integral representations. Finally, we shall note that constants implicit
in (3.36) and (3.39) are not effective.

4. The essence of Linnik’s ergodic method (on the example of the proof
of upiform distribution of the integer points of a sphere, for a given modulus).
We shall demongtrate the idea of Linnik’s method on the simplest, one
can say model example, ie. on the proof of Corollary 3 of Theorem 2
(§ 3). This corollary will be derived from the following [25]:

TaRoREM 5. Let m >0, ¢ >0, and w be infegers, m = 1,2 (mod 4),.
=3 (meod 8), ¢ be an odd number prime fo m, and let '

{4.1) w?+m = 0 (mod ¢).

- Let @ be o primitive integer gquaternion of norm q. By r(m, @) we denole

the number of primitive integer veclors L of norm m, for which the quaternion
u—+L is left divisible by Q. Then, for m—co and for fized g,

N
oo (q)

where v(m) is the number of all primilive vectors L of norm m, and where

(4.3) —q[]ﬁ+ )

3. the number of primitive primary quaterwions of norm ¢.
Proof. Without loss of generality we assume quaternions ¢ to be
primary. We choose such number I that

(4.2} r(m, Q) ~

r(m),

(4.4) #4-m == 0 (mod ¢*), I = u(mod g),
where o
(4.5) s = [glog,m]

and a constant ¢ > 0 will be fixed in the sequel. We shall consider all
Ly of norm m. By (4.4) and Prop-
osition 2 of Bection 2 we can wrife ‘

(4.6) VL = B Uy N(B) =¢ (=107 =7(m)),
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where
(4.7) By =@ Qp ... '_Qf's?

in which all @, are primary quaternions of norm g¢.
In each Lth column of the matrix

11 *°- @ls
48 b
l rL e Qrs

there are exactly r(m, Q) quaternions @ =¢. For & = 1 this is implied
by its definition and (4.4}, (4.6) and (4.7). The case & > 1 can be reduced
to the afore-mentioned since there is a one-to-one correspondence between
equalities (4.6} and the equalities

(£.9) HIP = Qp Vi (j=1,..,7)
where for given %,
(4.10} . LY“’ = (le' ‘Qj,k—l)_lLf{Qﬂ' 'Qj,k—l)

run through distinet primitive vectors of norm m, and where

(¢.11) - Vg(k) = (Qj,k+1' 'st) Uj(le' 'Qj,r:—;)*

- We shall prove the asymptotic formuwla (4.2) & contrario allowing
that for some y > 0 we can find- either an infinitely increasing sequence
m gatisfying the assumptions of the theorem, for which

. r{m
(4.12) r{m, @) << (1—9) { )9
. ap(¢)
or guch sequence m, for which
rm
(4.15) C rm, @) > (g
o(g)
Without any loss df generality, since '
Tp{a}
(4.14) D' r(m, Q) = r(m)
i=1

we can assume that m satisfies (4.12), where y > 0 is independent of m
(but possibly dependent on g).
We ghall prove that from the » = r(m) equalities (4.6) one can choose

‘ , /2

(4.15) v

equalities o

(4.16) I+L; = B;U;, N(By) =Q3 Gg=1,..., "")‘

(4.22)
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(for simplification we are changing their indices) with the condition:
for a given j (j =1,...,7) the number @, =@ (k =1,...,s) is

Py 8
4.17) < (1———) e
( ’ 2/ oo{g)
Indeed, it for {r(m)—r) rows of matrix (4.8) the number Qi =@
{(k =1,...,8) for a given j is

>(1-

1o |~2

) §
Uo(ﬂf)’

- then estimating the mumber of times that @ appears in the colwmng and

in the rows of matrix (4.8), we arrive at the inequality

(-4 si rm-n1<lo-n 55}

. equivalent to (4.1b).

By (4.5} the overall number of distinet primitive primary quater-
niong B of norm ¢* is equal to

(4.18)

4

We ghall £ind the lower and upper estimates for the number «’ of distinct
quaternions B; of norm ¢, appearing in (4.16).
Firstly, it ig clear that

(4.19) W w;

here w is the.mlmber of primitive quaternions of the form

(4.20) B =g ... QP

where Q' are primary guaternioms of norm g, and for a givén j the .
number of equalities '
(4.21) QP =@ (h=1,...,8)

satisties (4.17). w is found to be considerably smaller than (4.18), namely
w < mo,

where & = d(g, ) > 0, The idea of the proof of estimate (4.22) can
be demonstrated on the following simplified model.

Imagine a set of all s-digit g-adie integers, their number is equal
to ¢° and the number of thege numbers which do not contain a given
digit (e.g. 0), is

(gwl)ﬁ s (gﬂ)l"‘u‘:’g”(l"ll’ﬂ)'_
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We shall also obtain & similar estimate for the number of s-digit
g-adic integers, in which the digit 0 oceurs “unugually” seldom, less than,
{1—y)sjg times (instead of the “usual” frequency of sfg times).
In estimating w a technieal difficulty arises sinece i’or the prlmmnty
of BY, the conditions

(4.23) o, = dPE

must be fulfilled. This difficulty can be overcome by modelling [9], [13]
the primitive quaternions BY by the Markov chains
09,09, ..., Q0

with the forbidden transitiong (4.23), and with the remaining equally
probable transitions. A second method for overcoming this difficulty is
to consider not all columns of the matrix (4.8) but only those fixed at
such a distance from each other that the “interaction” of Q¥ with Q) is
agyruptotically negligible. For details the reader is referred to [35], Chapter
VI, §1, where .a more general question is considered which makes the

idea described less clearly visible. See also [19], Chapter 1V, §§ 4-5.
On the other hand, if

(4.24) | 0< o< 1/2,
then
(4.25) . w > mg"ﬁ,

where constants implicit in (4. 25} depend only on ¢, ¥ and on any arbi-
trarily small ¢ > 0. The proot of this assertion is a foeal point of Linnik’s
ergodic method, although in hig basic work the weaker estimate

1y
—log(l — —)
N S 2

2logq

was obtained (**). (4.25) is obtained by a slight simplification and refi-
nement of Linnik’s considerations. See [237, [21], and [36], Gha.pter
v, §3; [19], Chapter III, §2. -

By (4.15) and (2.4)-(2.5), (4.25) follows directly from the following
proposmon For an arbitrary quaternion B the nmmber of B; = B
(J=1,...,¢) in equalities (4.16) is

(4.26) _ < Y-

w s m, o =5 tv, T=

- However, proof of (4.26) has never been obtained (and it is not clear
whether (4.26) generally holdg). Linnik has chosen s different way and
proved that (4.26) holds “on swerage”. In faet, it the squalities of (4.16)

(**) Pall's objections [59] of a technical ehamcter were taken into conﬂldera.-
tion fo [21], pp. 243244,
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are nambered so that

w

"
D=7

=1

(4.27) 1+Ly =BT, ((=1,..,w; k=1,...,7),

B™) are distinet quaternions of morm ¢f, then.
w

(4.28) Drp < mte

d=1
To prove (4.28) we will note that for given j, #5 pairs
Z-}‘ij' = B(j)Ujk!

4.29 ; i By =1,...,1)
( ) 1+Lﬁc" — E@)UM” (% ey iy
can be consiructed, where

Ljrk" = —BY Lﬂc"(ﬁm )_1

is an primitive integer vector of norm m. Hence (4.28) reduces to an
estimatie of all pairs of equalities of the type (4.29). But by application
of Venkov’s rotation theory (see §2), this question reduces again to an
upper estimate of the number of representations of a binary quadratic.

* form by the sum of three squares. For details see [35], Chapter V, §3,

and [19], Chapter IIL, §2 (see algo [21]).
By Cauchy’s inequality, (4.28), {4.15), and Siegel inequalities (2.4}~

(2.5) | - _

N % S st ¥

= 2z
PR S

andl thus (4.25) iz proved.

By (4.19), for sufficiently large m (4.22) and (4.25) contradict each
other, which proves Theorem 5.

CoroLLARY, Let @ = Q,Q, be a primitive quaternion of norm g, let
m, q and w satisfy the assumptions of Theorem B, let r(m; @1, @) be the
pamber of primitive vectors I of morm m, for which

=] mg-— ’
ml—nq-}-a .

(4.30) | QNw+L),  (u+D)s- ‘
Then for m-rco and for fived g,

1
(4.31) r(m; Qs Qa) ~ 5 =r (m).

Thig is & simple consequence of Theorem 5 since there is & one-to-one
correspondence between primitive vectors L of morm m with the condi- -
tion @\(u --L), and primitive vectors L' = Q7 L, of norm m with con-
ditions (4.30). '
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Proof of Corollary 3 to Theorem 2 (§3). Let ¢ = g% By
(8.23) there is an integer % such that :

(4.32) = (j (mod ¢).
By (3.24) we can, changing (b, by, b;) (mod g) if necessary, assume that
{4.33) LB LB = m (mod g).

The quaternion % -1-b,4, -+ bais+byty is primitive (modg) and its norm
is divisible by ¢. Hence, by Proposition 2 of Section 2,

(4.34) w-Hbyiy +byty+ byly = Gy WGy,

where @y, @, and W are integer gquaterniong, N (G4) = N(6s) = g, and
&,@, = Q is & primitive quaternion. of norm ¢. If L is a primitive vector
of norm m, G (u--L), (u+L)/G, then by (4.34) and Proposition 3 of
Bection 2, '

U2 =

L= byiy 4 byig + byig (mod g).

The converse is algo valid. Hence (3.27) is equivalent to (4.31), and Corol-
lary 3 of Theorem 2 is proved.

The above proof of Theorem & can be given a slightly different “ergo-
di¢” interpretation. (4.6)-(4.7) lead to »(m) chainy of primitive integer
vectors of norm m:

(4.38) IPsIPw I (G =1, ..., r(m),
Wliere
(4.36) N =1, IP =i Yg, (k=1,2,..,8).

Note that (4.36) is an orthogonal linear transformation with o rational
mafrix and denominator ¢. It can be shown without using the theory
of quaternions, that for a given odd ¢ and —m heing a quadratic residue
(mod g), to each infieger primitive point I lying on the sphere

(4.37) @ mt ol =m
there correspond two and only two rational orthogonal transformations
of denominator g, of L into primitive points I’ (which corresponds to
the rotations I®.L¥+D.and 1% »I%Y; we shall choose the first one).
For construction of the flow {4.35)—(4.36) we assume m to be a gnad-
ratic residue (mod g). This is the crucial point of Linnik’s method. It is
not clear whether without this assumption (¥*) any other flow of primitive
integer veetors L of norm m with the necessary “ergodic properties” can
be constructed — see below Theorem 5a.

{1 Or without the slightly we&ker'assumption (4.48) — sec below,
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It can be verified that any part of flow (4.35)—(4.36),
(4.38) L§°)—>L§”—>Lﬁ?3—>~ =D =1, 0,0
with the eondition
qr“ B ,}%lﬁ—-s,
where & > 0 18 an arbitrarily small number (without loss of generality
we have changed the indices}, possesses the following “ergodic” prop-
erby.

THROREM Ga. Lef the assumptions of Lheorew b hold and let Q, be
the set of primitive vectors L of nerm m, for which
(4.40) QN(u4-L).
By s,(Q) we denole the number of indices & satisfying the condition L:(,-’c)eﬁ@
(=0,1,....8; § = L, ..., 7"\ Then chwins (indices §) of flow (1.38) divide
inte two categories: 1. For each of the indices § of the first calegory, for
M— oo,

$

(4.41) 8:(Q) ~
! oolq)’
where the constomts tmplicit in the symbol ~ depend only on g¢; 11, The
number of indices § of the second category is the quaniity of the order o(r”).

Proof of Theorem Ba . We shall carry out this proof (like the proof
of Theovem 5) a contrario. Having an infinite subsequence of m's for

which the number of indices § of the second eategory is » ', one can
assume that for this subsequence for every such j,

(4.42) < (1—y)

ay(q)

for a y > 0, depending only on g. (4.42) is analogous to (4.17). Starting
from this point we shall repeat the proof of Theorem 5 and in the same
way arrive at contradiction, which proves Theorem 35a.

Frowm Theorem bawe can pass on fo the following theorem on, “mlxmg”
a reinforcement of Thoeoram 5.

Tworuw bb. Usder the assumptions of Theovem B, indioes I, 1{h < s
Jor flow (4.38) divide inio wwe categories: 1. For each of the indices & of the
Jirst category, for m-»oo,

-’)"”
Lot :r . ' ol e r——

(4‘45) (@) pvps
where v, (@) is the mumber of TP eQy, for given & and j=1,...,7", and .
where conslants in the asymptotic formula depend (mly on ¢ IT, The number
of indices of the scoond ecaiegory 48 o(s).

37w Acka Arithmetlea XXWVII,
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This theorem follows from  Theorem. da by estirnating the number
of eniries of the quaternion  in matrix (4.8) (like the choice of equalities
(4.16) with {4.15) and (4.17)).

Corollary 3 of Theorem 2 also has a corresponding “ergodic” ana-
logue: Let R,q 5,5, De @ class of vectors I, for which

(444:4:) L = blrf:l +bz'i2 “]“‘ ba?:s (Il’lOd g)w

Then under the assumptions of Corollary 3, for all indices j =1, ..., ",
with the possible exception of o{»'*), the number L}’”) € mmbi-bz»bs i agympto-
tically equal for m—oc and given g, to

(£

»
elm, g)’

where p{m, g) it determined by (3.28). The asymptotic equality (4.45)
follows from that of (£.43) by Proposition 3 of Seetion 2 (see the above
considerations), whence the corresponding assertion on *mixing” follows.

{4.45) can also be proved directly. For this we make corregpond to
each residue class of vectors L (mod g) and each index % =1, ..., s,
the set G of integer guaternions S (mod g), for which

(4.46) IS = 8(byiy+boty-+bgis), N(8) = ¢* (mod g).

(4.45)

Now the three-dimensgional prob'lem of obtaining the agvmptotic equa-
lity (4.45) becomes the four-dimensional problem on quaternions B; =
Qs i@y, of norm ¢°, for which

(4.47) @i o Gy = 8 (mod g),

Thig four-dimensional problem can be solved by the circle method. For
detalls see [35], Chapher VI, where a glightly more general problem is
considered. This-second variant of the ergedic method has the great
advantage that condition (3.23) can be weakened by assuming the exi-
stence of any fixed prime ¢ (not necessarily connected with g), for which

(448) | (;;'i) —1.

To Linnik’s theorem on the agsymptotically uniform distribution of
integer points on o sphere (Corollary 2 of Theorem 2) there also corresponds
an “ergodic” analogue: Under the agsumptions of this corollary for all
chaing of flow (4.38), possibly with the exclusion of o(r”) exceptional
chaing, the nwmber L e,,, for given j and k =1, ..., s, is asympto-
. tically proportional te the solid angle of the domain /,,.

Here also, the three-dimengional problem reduces in the proof to a
fou:;—dimensiona] problem: The whole surfaee of a sphere divides into parts

BeSp.
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Iy oo, I, with small diametfers so that for spherical rotations any real
veetor of domain [ behaves in “almogt” the same way say, as its centre
of gravity M;. Let 2, be the set of real quaternions X satisfying the
condition

(4.49) X M Xed, (1=1,..,n).

Note that {£4.49) is analogous to (4.46) of the preceding problem. L, is
a measurable cone-shaped domain of a four-dimensional space, whereby
from the theory of Haar meagure, for its solid angle w, we derive

(4.50) . e L

Again there arises the four-dimensional problem of quaternions B;
= Qe oo @y, of norm ¢, for which

(4.51) L4 FENUIRY PR3 LI

This problem can alse be golved by application of the circle method.
Tor details see [8], [16]; [3B], Chapter VI; [19], Chapter IV.

On these lines Theorems 3 and 4 and also their “ergodic™ analogues
gan be proved. Great technical difficulties arise due to the infinite nnumber
of unit elements corresponding to hermition algebra, and in the case of
<< 0 difficulties arize in considering the cycles of binary quadratie
forms governing the hyperbolie rotations of vectors L. Here it has been
found useful to represent hermitions by integral quadratic matrices of
the second order. For details see [10], [37]; [19], Ohapters V and VI.

5. A new variant of Linnik’s ergodic method. In [20] (*) Linnik out-
lined 2 modification to his method which indicates new possibilities for
its application. This modification iz based on the following proposition (1)
[41]. S

Provosrrion 1. Let be given a real number v, sotisfying inequality

(6.1) l<vgi,
Let m > 6 be « square-froe integer, and A be a real nuinber suth that

(5.2) w < A< Ay =m

(2 In this section Linnik’s ides is consiflerably changed as paper [20] contains
an inaccurasy. '

{21) It is clesirable to generalize & little Proposition 1 (say, to geb rid of the
agsumption that m is square-fres) and to give a detailed proof of Propositions 1 and 2.
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By h(—m, A) we denote the number of reduced propeﬂy primitive integral
‘positive bmm‘y quadratic forms

(5.3) (a,b,e) = ew+2buwvtert, ac—b=m, 2P <a<go

with the supplementary ocondition
(5.4) o 4.

Then o constont y > 0 can be found, dependent only on v, such that for m-» oo,
A

For proof see [41] and [46]. The elementary operation of sieving
by application of (5.5) and the Siegel estimate (2.5) leads to the following
proposition, which is also used in the sequel.

PROPOSTIION 2. Under the assumplions of Proposition 1 let t{ —m; A, 1A)
be the number of square-free infegers a from the interval

(5.6) MM<a< A

satisfying the conditions:

(i) (—m) 18 a quadratic vesidue (mod a);

(ii) a 15 not divisible by any of the primes p < logm.
Then for m-—+co,

(5.7) t(—m; A, $4) » A

We are now in a position to give an outline of new proof of (4.25),
for square-free integers m. We should now in fact assume that constant
¢ > 0 is sufficiently small (we shall choose it in the sequel). This iz al-
ready sufficient for obtaining all “ergodic” theorems, theorems on “mix-
ing”, and for the asymptotic formulae (and estimades) Whleh are treated
in §§ 3, 4 by the initial ergodie method.

Besules this, according to Linnik [19], p. 204, this variant creates
possibilities for broad generalizationg of the ergodlo mebhod. (see § 7).

Firgtly assume that

(5.8) _ 0< p< .

Suppose that the conditions (4.4), (4.5) are satisfied and that we have

(5.9) P m
equalities '
(5.10) UL, =B, U, NB) =¢ ({=1,...,1),

Yu. V. Linnik's ergodic method in number theory 581

where & > 0 i3 an arbifvarily small real number. Let ' be the number
of distinet guaternions B; in {5.10). We shall prove that

(5.11) w' > mir,

where &> 0 is an arbitrarily small real number.
We shall agsume the contrary: There can be found such an infinitely
increasing sequence s satisfying our conditions, that

(5.12) ' w < m

where 4 > 0 is independent of m. Further on we shall aggume that m
has been taken from thiz sequence.
By Proposition 2 we can find square-free integers (2?)

(5.18) _ ’ Qyyonny O

with the conditions:

1.

(5.14) e g me (=1, ., 1);
2.

(5.15) met gt g me

3. If p is the prime divisor of a; (f =1,...,1), ‘then
(8.16) P > logm;

4. The number (—m) is & quadratic residue (mode;) (§ =1, .., 1).
By (5.10) and (3.18), for arbitrary § (§ =1, ..., %) the integer I, can be
found satigfying

(5.17) E+m =0{mod ¢*a;), & =1(modg).
However, we then obfain #-r{m} equalities |
(5.18) Lty =B, Vydy (F=1,..,1%
where B; and 4, are primitive primary guaternions,

(5.19) NBY = ¢,  F(dy) =a,

where B,, determining by L;, do not depend on j and for ¢ =1, ..., 7

egnal to B, from (5H.10).
From (5.18) we obtain equalifies

(5.20) YDy = AgBVy  (=1,.

P =10,

(“) Added in proof. See; H. B. Inockypry, Sanackn HayyH. cemmHapos JIOME
50(1975), pp. 169178, .
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where
(5.21) Ly = Ayl AG

is an integer primitive vector of norm m. We have

N(By) =¢, N
(=3, 5 =1, .01,

(5.22) A4B; = Bydy, Ay) = a

where B“ and Aﬁ are prlmltlve primary quabernions (uniquely deter-
mined by (5.22) in virtue of Propositions 1 and 7 of Section 2).

Let
{5.23) BY, .., B®

be the set of all primitive primary quaternions of norm ¢° so that

(5.24) | g—gn(l—i— )

»la
(see Proposition 8 of §2).

For given j and %, the number by, of dlbtln(}t quaternions A.,Lj in (5.22)
satistying the supplementary condition

{55.25) éﬁ = R
for the given B®, ig estimated as
(5.26) : Ty € mHE=e77,

where y > 0 is a constant dependent on 8 but not on . In fact the number
of primitive primary quaternions 4 of norm ;, for which B¥4 is right
divisible by the given quaternion B? of norm qs = ms, is

(5.27) | Sk g ke,
m
for sufficiently small o > 0 (see [35], Chapter IV, § 3). The number w’

of distinet B; in (5.22) (ie. in (5.10)) is however estimated by (5.12).
Let r, be the number of equalities

(5.28) 1+Lb :B,LUf (’b' =1, ey = 1“('”’!;))
with the condition
(5.29) - B, = B®,

and let #§’ be the number of equalities (5.22) with condition (5.25) for
given j (b =1,...,9; §=1,...,%. Then

g

(5.30) | : D=7

k=1
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and

(5.31) <y, (G=1,..,t k=1,...,9).

Z =
k=

‘We shall prove that there exists such % (1 <k <yg), that the number
of indices j, for which

(5.32) P sy
and

(5.33) 7 mMme=rit

will be i
(5.34) > e,

In fact in the opposite case, for every % cither

(5.35) Ty < A
or the number j with condition (5.32) is
(5.36) <t

1), (B.38), (5.36), (5.24), (4.4), (5.30) and (5.15),

2%' j@~g> < g M g (g 2'} 1 2 (rpm ™7

fem) Je=l Jgwal,

< ”»p,lfz—?/5+m—1'f4tr < gpl—e—vite

Therefore, by (5.3

(5.37)

On the other hand, by (5.158), (5.31) and (5.9),

g i
2 _’7(1 = > miTel

k=1 j=

(5.38)

fince for large m estimates (5.37) and (5.38) contradict each other, we
can chooso index & = k, with condition (5.33), whereby the number of
indices § with condition (5.32) hag the lower estimate (5.34).

Wo fix such & and for a given j we will find the lower estimate for
the number of pairs of equalities

oLy = ByAy Vy,

(5.39) 2
b A-Luyy = By "Ii’i Vg

with, the conditions

(5.40) 1§M = By = BW®
and.
(5.41) Ay =1,
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neluding the trivial pairs ¢ = i'). Let "% be the number of equalities

(in

(5.20)—(5. 22)—(0 25} for given j, k& and
(5.42 ) . 1) = A
(v = hyp)- Then -

gy

oy .
Z I‘"."E"‘U) = 7'.('3)1
LIS

and on applying the Cauchy inequality, from (5.28) it follows that for
given j the number of pairs of equalities of the type (5.39)—(5.40)—(5.41)
is equal to

Ry
. 1
(5.43) 2O Nz s ()2 m e e,
=] ik

However, for this k¥ and due to (5.33), (b.32), (b 34-) and (5.15), the
number of pairs of equalities (5. 39)—(u 40)-(5.41) 1
. .
(5.44) > Z’mﬁllﬂ-i-ew(,‘,..(lg))z; tm--wltm—1/2+o+v(,,kmw-w4)2 e m”""""*a‘}"c‘.
j=1 . '

- Bstimate (5.44) also holds for the number of non-trivial pairs of (5.39)-
(6.40)5.41) (for our %), since by (5.15) the number of trivial pairs is

< tr, < mF o,
and since by (5.33) '

m"”"aﬂ“i > mllﬁ—gw/&,rk

~ On the other hand, the number of all pairs of vectors (L, L) with
conditions (5.28)—(5.29) is

(5.45) < 72,
By estimations (5.44) and (5.45) we obtain that
(5.46) > ml

pairs of equalities (5.39)—(5.4
(5.47)

0)—(5.41) can be found, for which

L'i." == LO, Lt’j = Lé,
Wher(_a (Ly, Iy) is a fixed pair of distinet vectors satisfying (5.28)-(5.29)
for gwen k. From (5.39) with conditions (5.40) and (5.41) we find that

N(L,—L,) is divisible by > m*® distinet numbers of the set (5.13).
But thls is impossible since

0 £ N(L,—L) <m,

»
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and gince the leagt common multiple of the deseribed divisors from (5.13) is
= mh

In fact, since the prime factors of numbers from (5.13) satisfy (5.16),
if the least common multiple were << m?® the number of all prime facfors
of all our divisers wonld be

logan

loglogm B uloglogm'

Trom these factors, no more than
UL
2“ Tog logm
distinet squave-free integers can be found, which contradicts the esti-
mate » m*® for the number of divisors. This contradiction proves esti-
mate (5.11).
‘The final considerntions can be simplified and made more accurate
if instead of Proposition 2 we prove the existence (under the assumptions
of Proposition 1) of » A" primes (or almost-primes) ¢ with eonditions

pceed, ()1 en

6. On some unsolved problems from the theory of termary quadratic
forms. “As usual the unsolved problems from a given field of studies are
more numerous, and also much more difficult, than those that have
been golved” (Y. V. Linnik [19], Chapter XI). Unsolved problems related
to Linnik’s ergodic method arve discussed in report [17] and in monge-
graphs [35] {Conclusion) and [19], Chapter XI.

In Sections 6-8 we shall formulate some of these unsolved problems
and consider possible means for their solution by application of Linnik’s
ergodic method. This section is devoted to ternary quadratic forms.

6.1. The xepresenmhon of numbers by indefinite ternary quadratic forms.
In Theoremy 3, 4 of § 3, due to Linnik [7], [10] (m > 0) and Skubenko
[36], [37] (Img 0), the indefinite ternary quadratic forin

(6.1) fo = gy — 5

was considered. Of course there now ariges the problem of generalizing
the results of Linnik and Skubenko to integral indelinite ternary quadratio
forms more general than (6.1). It is assumed that d(f) = detf # 0 (since -
otherwise the problem becomes “binary™). Without loss of generality
we can agsume that in the representation of f as the sum of three squares
of real lineur forms, one square will be positive and two negative. Then,



h&6 A, V. Malyshev
ag for fo, .
(6.2) Sy, @0y @a) =M

is for m > 0 a hyperboloid of two sheéts and for m < 0 a hyperboloid
of one sheet.

I appears that the considerations of Linnik and Skubenko can be
generalized it we develop in the appropriate way (see [35], Chapter IV),
the arithmetie of indefinite hermitions of 2, and in particular if the the-
orem on decomposition (Propogition 2, § 2} and the theory of the rota-
tions of vectors (see §2) are established. In the case f = f, this hag been
done by Linnik and Skubenko who found repregentations of integer
hermitions of the algebra U, Dby integer rational quadratic matrices of
the second order. The wpresentsutlon of 9, by second order matrices (%)
does not generally appear to serve any purpose. One should therefore
carry out gfudies directly with hermitions from .

The decomposition theorem (generalized to some extent (**)) follows
from.the Eichler theorem [53] that all ideals of a simple central algebra
gver the field of rational numbers which is not a definite hermibtion ai-
gebra, are principal.

The great technical difficnlties arise from the existence of an infinite
number of units. It would be interesting to by-pass these diffieulties by
generalizing the concept of the primary quaternion to indefinite hermi-
tions. Tf this is not possible studies should be limited to hermitions belong-
ing to the fundamental domain of a group of awtomoerphisms of the form
f, and in all operations with them it should be ensured that vectors do
not depart from the reduction demain (for the case f = f, this has been
done in papers [10] and [37]; see also [19], Chapters V and VI).

For realizing Linnik’s ergodic method in the case m < 0, Skubenko’s
theorem on eyeles [37] (for a formulation see the footnote (°) of this paper)
and its generalization to automorphisms of the form f are necesgary.

It ghould De noted that Bkubenko’s theorem on cycles is interesting in -

itself. It would be worthwhile to find for it a direet proof, which does
not use the theory of rotations of hermitions (or ml:egml matrices of the
second order).

Tt would be interesting to study the relationship between the decom-
position of hermitions from 9, and the property of the form f (one class
per genus) given by Meyer’s theorem [58], and papers [56] and [87]
in which it is made more precise. In this connection, the question of the

(*) Although representafion by quadratic second order matrices with integer
algebraic elements is apparently possible.

(*) The différence hotween definitions of integer hermltlonﬂ in our paper and
those of Eichler ¢hould be noted.
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existence of # Tuclidean algorithm for rings of integer hermitions in
A is also of interest.

Tinally the case m =0, i.e. the question of integer points on the
cone

(6.3} Sy, g, ) = 0,

gshould be considered. This problem is generally simpler than that of
integer pointy on the hyperboloid (m = Q) gince integer points of the cone
(6.3) pormit rational pavimetrization. Particular cases of thiy problem are
congidered in [49], [38] and others. Ax far as we know the general case
has nol been fully studied.

6.2. The representation of munbers by posntwe ternary quadratic forms.
Here two problems naturally arise:

a. to extend the resulty of [35], Chapter V (Theorems 1-5) to as
general ag possible integral positive termary quadratic forms f, ie. if
possible without assuming that invariants [£2, 4] are odd and coprime;
not torgetting however, that for some forms f results of the type of Theo-
rems 1-3 357, Chapter V do not hold; see the counter-examples of Jones
and Pall [55]);

b. to prove asymptotic formulae in all thege cages (or in as many
cages ag possible).

We believe that the mogt natural way of applying the ergodic method
is ag follows. Let us consider the set of hermition algebras

{Q[fla"'rgrfn}r fl =f7

where fi, ..., f, are representants of all clagges of forms of the genus f
(one can say, the “genus” of integral ovder of a hermition algebra over
a field of rational mumbers). In each of these algebras we single out the
primitive integer vefbors of norm Am. In doing so we consider proper
representations of the nwnber m by the genus f. Tor the number of such
representations, formulae represonting this number by h( —Am) are known

“(see e.g. Jones [B4]). For a thus construeted genus of primitive vectors

of norm Am one can try to construct the flow of veetors and prove ity
“evgodicity”, and then fo obtain asymptobic formulae.

By eonstructing and studying the flow we put ourselves in need
of & generalization of Venkov’s theory [89] of rotations of integer vectors
(500 also §2) for genera of primitive vectors of the hermition algebra
A, Thereby, to the paiv of vectors (L, L’) corresponds an ideal of al-
gebra 90, {containing L), “governing” the rotation from L to I/

We also need generalizations of the theorems on hermitions of a large
norm. {see [347], Chapter IV, § 3), for ideals. One can congider these gen-
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eralizations as the quantitative analogue of the theorem on rational trans-
formations of one formn of a genus info ancther (see [35], Chapter V,
Remark T7), which i3 in itself of interest.

However, in studies of the posed problem one can more directly
follow the considerations of monograph [35]. It appears that it is possible
to generalize Remark 7, [35], Chapter V (refining Smith’s theorem on
rational transformations of forms of a genus) for some cases of not coprime
or even invariants [2, A7 (here it iz necessary to bear in mind the afore-
mentioned counter-examples of Pall-Jones [65]). Once for the genus
of some form f & proposition of the type of Remark 7, [35], Chapter V
is proved, for the forms of this genus we can derive Theorem 1, [35],
Chapter V, and hence all the remaining results of Chapter V, [36].

In this way one can also try to obtain asymptotic formulae. Tere,
for applying the method Remark 7, [35], Chapter V, should be made more
precise by obtaining asymptotic formulae for the number of rational
trangformations of one given form of a genus into another with a given
increasing denominator. This problem is cognate to that on the represen-
tation of large numbers by quaternary quadratic forms (see Hermite's
formulae for the automorphs of ternary quadratic forms), and to solve
it one ean attempt to apply the asymptetic formulae of [35], Chapter ITT.

6.3. Om the condition (—é]ﬁ) = 1. This condition is necessary for the
construction of a flow of vectors, and is an essential feature of Linnik’s
ergodic method, '

For all genera of ternary quadratic forms, with the exception of
genera with characters

=)
= —1
q

(6.4)

for all odd primes ¢i@ (¢ prime to .4), this condition is a consequence

of the necessary “generic” (p-adic) conditions for representing m by the
form f.

For the remaining “exceptional” genera (among them the genus
of the form f = &} +«}-+25) this condition appears to be unnecessary,

depending only on the method applied for proof. One can be freed of
this condition by assuming the validity of some Hypothesis () on zeros

of L-functions with real chavacters, lving in the neighbourhood of s = 1
(see [38], Chapter V, §5; Chapter VI, § 2). Tt would he interesting to
weaken thig hypothesis and ideally, to completely get rid of it.

6.4. The remainder terms of asymptotic formulae. In all the asymptotic
formulae obtained hitherto with the help of the number theoretic-ergodic
method, the remainder terms have not been estimated. The problem of
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estimating these terms naturally arises. Aceording to Tinnik [19], Chapter
XI, by the ergodic method one can obtain estimates for the remainder

term of the order
1
Ot ——— H
logm
where =~ 0 i & congtant.

Aceording to monographs [35] and [£0] it appears that by straight-
forward. application of Linnik’s method, estimate (6.6) can be obtained,
but under a certain assumption about the lower estimate for R —dm)
which is better than the Siegel estimate (2.5). Buch an estimate can be
derived from some still unproved hypotheses of (9) type on zeros of
Dirichlet L-functions, mentioned in 6.3. An unconditional estimate of
the type (6.0) can be obtained for the remainder terms, based upon the
variant of the ergodic method presented in Seetion 5 of this paper.

" (6.5)

6.5. On ternary forms with integer algebraic coefficients. 1t is of great
interest to gemeralize these considerations (including the arithmetic of
hermitions) for the representation of integer algebraic numbers by ternary
quadratic forms with integer algebraic coefficients.

6.6. On the arvithmetic of hermitions. In all these considerations an
important role is played by the arithmetic of hermitions. The study of
the arithmetic of hermitions (generalized quaternions) is in itself interesting.
It is particularly interesting to consider the conditions on which a Bucli-
dean algorithm can exist in the algebra %, and also the relationship
between the property of the form f “one class per genus” (Meyer type
theorems [568], [56], [57]) and the assumption that all ideals of the algebra
Ay arve prineipal.

6.7. On the possibility of replacing the appavatns of the arithmetic
of hexmitions by considering rational tramsformations of ternary gquadratic
forms. Let f be an integral primitive ternary quadratic form of determi-
nant d 4 0, and lot (m,, my, #y) be a proper representation of w by form f.
It p s an odd prime number with the eondition

( e £ m)
O < ji~d :IN,
r

it ean be shown {hat the rational substitution § of denominator p and
determinant -1 ean be found for which

6.6)

{6.7) 8 is an integral form
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and
oy _
(6.8) w,} 8§71 is a primitive integer vector
Ty

(it however (6.6) is not satisfied, such a substitution § does not exist).

By choosing § from among substitutions SU, where U is a unimodular

substitution, we will be able to obtain the uniqueness of 8.

Therefore we can congtruct a flow of primitive representations of
number m, satisfying (6.6), by forms of the genus f. Proofs of “ergodic”
theoremg and their corollaries (theorems on “mixing”™ and asymptotic
formulae) for this flow without using the apparatus of the arithmetic
of hermitions, are of great interest.

7. Linmik’s programme for studies of the ergodic properties of algebraic
fields. As previously stated, problem of the distribution of integer points
in domains (8.81), (3.33) (for m > 0) and (8.31), (3.38) (for m < 0) can
be congidered ag the question of the distribution of ideal classes of ima-
ginary and real quadratic fields. Therehy ergodie propertles of second
order matrices I, satisfying the condition

(7.1) P = —m,

were analysed. In his veport [17] to the 3rd All-Union Mathematical
Congress in 1956 (see also [15], and [19], Chapter VII and Chapter IX, § 1)
Linnik designated a wide programme for the extension of these results
onto nth order matrices and arbitrary algebraic number fields. That
is the study of asymptotie properties of a sequence of algebraic fields
depending on the parameter D (for quadratic fields this is the diserimi-
nant m), and the application of cbtained results tc systeras of Diophan-
tine equations with a small number of unknown quantities (indeed, of
a special type).

Let a (D), ..., &, (D) be integml.functio'ns of the parameter .J-oco.
To the algebraic nuwmber field
(7.2) _ Kp =@(6p),
where
(7.3) By -t ay (D) 05 .. (D) =0,

there corresponds a set of integral quadratic nth order matrices L = L,
satisfying condition
(7.4) I (DYL . o (D)E =0,

(The matrix I is an analogue of a vector of hermition algebra.)
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The set of quadratic real mth order matrices satisfying condition
(7.4) forms a variety of dimension (generally speaking) n®—n. We are
interested in the problem of the distribution of integer matrices L on
this variety, and particularly in the problem of the uniform distribution
of thege matrices in thiz variety (in the sense of the corresponding inva-
riant measure},

In accordance with the principles of the method conmdered for pro-
ving the uniformity of the distribution, a “flow” of integer matrices I,
satisfying (7.4), should be constructed and the “ergodicity” of this flow
ghould be proved. A flow of integer matrices T can be constracted with
the help of the following Linnil’s theorem, given without proof in [107,
[17], and [19], Chapter VIL. _

ProvositroNn 1. Let L and Q be integer matvices whonever the deter-
minent of matric Q s square-free. For the matriz

(7.5) L' =@ Lg

to be an integer matriw it is necessary and sufficient thal there emists
an integer | for which

(1.6) VL = QU,

where U and I are integer. and wunit matrices respectively.
The unigueness of transition

(7.7) Lol = Q70Q

ean be achieved by singling out the 1ed11et10n domain (25) on (7 4) (with
real I).

To prove the ergodicity of the flow it is necessary o develop a theory
of rotations of matrices I, generalising Venlkov’s theory of rotations
of vectors (see § 2 above). Some aszertions of such a future theory have
been given withoui proofs by Linnik (see [12], Chapter VII, §3, and
alse [15] and [17]). 14 seems, according to Linnik, that there the variant
of the crgodic method deseribed in Section 5 will be particularly useful.

The integral mabrix L satisfying (7.4), gives an integral solution
of a special gystem of # Diophantice equations of »* unknown quantities
(see [19], Chapter VII, § 1). Ergodic theorems would lead fo asympiotic
formulae for the mumber of solutions of such a system. Note that due
to the small number of var mbleh ordinary analytic methods cannot be
applied here.

(™) The construetion of the roduction domain is a diffiewlt problem whieh
has not been fully solved, even for particular cases of (7.4).
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Ergodic and asymptotic theorems for integer matrices L satist
(7.4) and lying in the reduction domain, can be considered as somse
formation on the asymptotic (for D-soo) distribution of ideals of
field K. Although here, the relationship between matrices L and ic
of the field K, (excluding the case of the imaginary quadratic ficl
= —D, D >0) is so far not quite clear. Linnik proposed the applica
of the Chételet-Schur theorem for the construchion of a flow of id
of the field K, representing them by the system of wth order q
ratic matrices

[2y) ..., 8]
For some details see [19], Chapter VIL, § 2 (and also [15] and [17]).
These conditions can of course also be generalized (see [19], Cha
IX, §1) for the case when elements of the matrix I are integers ol
algebraic number field. This permits us firstly to include in the gen
scheme the considerations based upon the arithmetic of hermitions % 1
an arbitrary form f {in parficular the consideration of the distribu
of integer points on ellipsoids), and secondly to talke into considera
new types of systems of Diophantine equations for rational infeg
Unfortunately, with the exception of the special auxiliary
the ergodie method) considerations of digtribution of quadratic inte
matrices on a diseriminant surface (see [47], [48], and [19], Chapter V
[60] and [B1]), for % > 2 no complete results have been obtained. 1
natural to begin this consideration with the simplest case of the Kum
field

(7.8) = +D,

where D. is free of nth powers and D-»oe, in particular, with
case 7 == 3. Here we at onee meebt with analogues of eycles and
have first to ebtain for them an agsertion corresponding to Skuben
cycle theorem [377.

8. Final remarks

8.1. On the representation of numbers by the sums of cubes,
on related problems. By applying the algebraic 1cle1mty

H? HA\
(8.1) ot = e —!-SH(u—u u;w), where H = -9,

Linnik [43] and [44] (see also [21], Chapter III) derived from the theo
on the representation of mumbers by positive ternary quadratic fo
{contained in Theorem 1§ 3), the following interesting arithmetical -
positien. ' S

icn
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- (8.2)
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TrsoREM. 6. Fvery sufficiently large integer is the sum of seven cubes
of non-negetive integers.

Watgon [61], by using Linnik’s idea (and in particular the identity
(8.1}, gave a simplified variant of the proof of this theorem, in which
the well-known Gauss theorem on the representation of numbers by
the sum of three squares only was applied.

In article [21] Ydnnik had already considered the question of the
rvepresentation of special types of large integers by the sum of six eubes
of non-negative integers. By fthe same method Linnik [45] and Watson

[62] studied quostions on the representation of large numbers m in the
form

m = of +ay -y} - y3 + v}
or
(8.3) m = i H 93 90

where @y, o, Yapooeo Ys AT6 nbn—neg%we infegers. Relamed problems have
been studied in [45}

These considerations can be generalized in.several directions. The

- most interesting (and difficult) problem within the framework of the

Linnik conception given in Section 8.2 is to prove the representability
of all large integers by the sum of six cubes of non-negative integers.

8.2, The ergodicity of the modular invariant. Let m > 0. To the integer
point (ml, Byy &) 0f the hyperboloid
(8.4) WB— @8y = M
there corvegponds the pbsitive binary quadratic form
(8.5) (t0y, g, Ty) = :&1u2+2m2u®—1¥w3v2

of determinant m = 4} —w,@;, and to form (8.5) there corresponds the
poink

(8.6)

And to tho reaueeci larms

(8.7) (1, 0y, @),
there correspond points of the i‘undament&l domain
(8.8) do ={—%<

of the whole modulax group I” of tmnsfmmatmns of the half-plane H.

2we| < 0y < @y

<fortuz1)
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We shall congider the modular figure
(3.9) M = {ypd,| yel'}.
To the sequence
(8.10) L, Ly = Q7 Iy, Ly = Q5L Qs

of integer points of hyperboloid (8.4), if Ly and ¢, are suitably ch
(in their classes), there corresponds (see [19], (Jha,pbet V, §19) el
the sequence of points

(8.11) @, wfp, cu/_pz,
of the half-plane H, or the sequence of points

{o}, {o/p}, {o/p%, ...

of the fundamental domain A, respectively. Here {w} is a point I
in 4, and equivalent to point o with respect to the group I.

One can consider (8.12) as a sequence of “generalized fracti
parts”? with respect to the modular figure M (similar to-ordinary i
tional parts of eomplex numbers with respect to a quadratic lattice -
the fundamental domain 0< o<1, 0<t<1), (8.12) being fracti
parts in Lobatchewsky geometry. Xrgodic theorems for inbeger pc
of hyperboloid (8.4) (see §3) become a guestion on the distributio:
sueh “fractional parts?. However according to Linnik, ordinary met]
for studying fractional parts are not applicable here due to known p
liavities in the behaviour of a modular figure in the neighbourhoo
a real axis. .

 Linnik {[15], [17], and [19], Chapter V, §19) proposed one T
interpretation of ergodic theorems for imaginary quadratic fields in b
of the modular invariant I(w).

It is not clear whether such “modular® mterpretatmnﬁ ean, Jim;
considerations of ergodic properties, although this gubject merits 1
detailed study and generalizations for other fields, in particular the
quadratic field. It is also not clear whether in the general case there
any connections with aubomorphie functions.

There i3 also the problem fo give an interpretation. similar to o (¢
for integer points of the general hyperboloid of two sheets

(8.12)

. Jleyy @5y ) = 1,
where f iz an indefinite integral quadratic form (see § 6.1).

8.3, “The elementary-ergodic method”. For applica.tion.s-of the 1
ber theoretic dispersion method Linnik needed some considerations
with an “ergodic” character. It should be noted however, that lie

icm
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n different technique in his considerations. For some details see [19],
Chapter IX, §3. Later on, B. M. Bredihin, P. P. Vekhov, Y. P. Golubéva,
T.T. Tonkov and others were working in the same direction.

8.4, On the method. When we speak about Linnik’s ergodic method
in number theory we have in mind a really precise and specific method
of the analytic mumber theory, which wé have trisd to describe to some
oxfent in thik paper. Unfortunately, it has nofhing in common with
methods of the clasyical ergodic theory (*), although the results are ana-
logous to thoge of the ergodic theory. We wounld like fo hope that it is
possible o Duild & unique theory of which the classical ergodic method
and the “digerete” Linnik ergodic method ave particular cages. The main
difficulty here lies in the construction of o working analogue for invariant
IMeasure, )
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