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1. Intreduction. Eunler's constant y is defined by

. 1 1 1
¢ = lim {1 o e s — —logm} = 5772156649,
M0 2 3 n )

In this paper we study the properties of the corresponding limit y{r, &)
obtained by considering the sum of the reciprocals of the terms of the
arithmebic progression

ryr+k, v 425, ... (0<<r<CR).

In § 2, y(r, k) is defined precisely and shown to exist. In § 3 we show
that sy (r, k) differs from y/k by a linear combination of logarithms of
cycletomic infegers in the field of kth roots of unity. From this a fermmula
for 9(r, k) involving only real numbers is deduced and specialized for cer-
tain gmall k. In § 4 a study is made of the ¢ (%) primitive ¢(r, k) in which
v and % are coprime. In § b the conneetion is made between y(r, k) and
the logarithmic derivative y of the Gamma function at the point r/k.
The results of § 3 are now seen to give a really elementary preof of Gauss’
theorem on () for rational 2 In § 6 we make applications of y(r, &) fo
certain infinite geries. In particular we develop the comnection befween

y(r, k) and the plass number of the guadradic fields Q(V k). The final
§ 7 containg some comments on the numerieal evaluation of y(r, k).

2, Definition and existence of y(r, k). We denote by H(w,r, k) the

.general harmonic sum associated with the arithmetical progression r, 7+

+k,r+2k, ... namely

1
H(z,r k) = 2_[ P
J<nn
a=r(mod k)
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By this definition

H{w,rt-k, k) = H(e,r, k).
We now define ¢(r, k) by
1
(1 y(r, k) = lim{H(a:, 7, by — alogw},
so that '
r(0,1) =y.
Also
vrtk, k) =y(r, k).
In other words, y(r, k) is a periodie funetion of r of permd k.
Bince
1 »
Hi{z, 0,k =EH(?’ 0,1),
. 1. @
(0, k) =]—11m{H(—k—, ) log }M(logk)/k
or
(2) v(0, k) = (y —logk)/k.

To see that p(r, k) exists for r £ 0 (mod k) we can note that, for 0 < r < k,

P4 (n+1)k
r+nk

1 1 1
r--nk k 08

P

1
dt = O(n™3).
J(?%—%k Wr+nk 1) (nq. )
Hence the infinite series
[xfk1

ZU =lim > U,

00 D

1
= lim {H(m, 7, k) — - logw}

eonverges to a limit which we call (v, k).
From the definition (1) we see that .

=1

(3) . 2 y{r, k) =y
. r=0
and more generally
: k-1 _
(4) D) 7{r+im, mhk) = y(r, k).
A=8

In particular (m = 2) we have

{5) y(r, 28) +y(r+F, 2k) = y(r, k).

icm

Buler constants for arithmetical progressions i27

Algo from the definition, y(r, %) iz a strictly decreasing function of ».
More precigely

y(, k) > p(2, k) >

3. A closed form for y(r,
TymorEM 1. For k> 1,

==L, k) > 2 {k, k) = »(0, k).
k). We begin with

o1
(6) EBy(r, k) = y— 2 e—znrij,'].;log (1— 62751'.1','1.:)_

Proof. For r = 0 this is easy. The right hand side of (6) becomes '
k-1

k-1
— ¥ log(1—&"%) = y—log (1 — eEy} = y _Tog F(1)
& i b=

where

] zF—1
F(w) - ” (% ezmﬂk) _1

Sinee #(1) = k, the theorerm for r = 0 now follows from (2).
Suppose now that # == 0 (mod %). For simplicity we write e for ¢/,
Consider the finite Fourier series generafed by v(r, k) namely

k=1
(7) | o = > y(d, k)s"
A=0
By (3),
O‘D = y_
When j 0
k1 1
o, = lm {2 (H(m, A k)— = 1ogw)s*5}.
el =0 k .
Since
L,
(8) > =0,
» L A=D
we have
. Te—1
(9 “111112’ Him, 4, k)e Z—— = —log(l—¢).
! L=
Maultiplying both members of (7) by " and summing over § gives us
Je— k-1 k— 11
Z ope = Sy(2, k) ) sﬂM = Ty(r, k)
F=t - Ae=0 i=0 -

in view of (8). Substituting for ¢; from (9) gives the theorem.
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The simplest instances of Theorem 1 are for ¥ = 2. In +this cage
1—¢¥i% = 2 g0 that we have
v(0,2) = iy —log?) = —.05797. ..,
v(1,2) = 4y +log2) = .63518...

These results also follow at once from (3) and (2). For & > 2 the terms of

the sum in (8) become complex. Sinee p(r, k) is real we ean replace-the
sum by its real part. However, this leaves something to be desired, namely
& simplification using real logarithms. To achieve this we prepare

Levma A,
2
() ' vsm -;rj =0,
J—-I
k-1 %y
(b) DleosTL =0 i v 0 (mod B),
: e
-1 ] 0 if  r=0(mod %)
I : !

(c) Nisin ™ 1 5 _

- k ——cot-—  otherwise,

j=0 . 2 k

Proof. The well known sums {a) and (b) are the imaginary and real
parts of the geometric progression smm

k=1
2 EriE (ezrrir ml)/(ezr:irfkml) = 0.
i=t S
One way to prove (¢) is via the identity
DV = (1= ) o — 1) — (¥ 1))
j=0

which is established by an easy induction on & When u is @ kth root of
unity (1) this becomes

S_’Juj = - k - S
= 1—u’ ‘
or
k-1
, ) 1 - 4
' —u™) = — '{ .
=6 1 U

For r # 0{modk) and = =& this becomes.

k-1

N L D 1 146 k 17
Sin— = — k) - = —— g0t —
;Eo' k 2 1--¢" -2 GD_t A

This is (e).
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We return now to the sum in Theorem 1. We may assume that r = 0
{mod k). Next we observe that

1—d = —~21',(f"'j”“'sin-T-T:‘i
so that
log(1—é&') = log +10g@m—j -‘———(2_] k)
and
£ = cos 2] —isin 2]

Hence Theorem 1 is equivalent to

(10) ¥ — Ty ReJ §' ~rilog(1—& }
B-1 ; ‘ o k-l ‘ -
T &7 i =)
= log 1 2sin—— — 2j ; .
jzj og( sin 7 )cos +- % 2 ( i — k) sin %

Applying Lemma A (a) and {¢) to the second smm reduces it to

By (b) fhe first sum in (10} is equal to

k1 '

- Dy .
2; {cos -—T;—?j— logsin %} —log2.
=

In this smm the terms corresponding to § and &—j are equal and when
j = k—j the term is zero. Hence we can finally write, when » = 0(mod %),

: R - ] 2nrj nj
11y ky{r, k) =y +log2 —{WZ- colb T -2 Z gos — W
. ©oB<y<ki2
One useful and immediate consequence of (11) is the formula
. .
(12) y(E—r, k) = p(r, k)w%cot% (r 2 0(mod k).

Of course (11) can be further simplified when % is o speeific small integer,
This matter will be discussad at the end of the next section.

8 — Acta Arithmetica XX VIIL.
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4. Primitive y(r, k). When » and & are coprime we call y(r, k) primi-
tive, otherwise imprimitive. It is clear that if y(r, £} is imprimitive it must
be related to some y(ry, k) with &, << k. More precisely we havs

THREOREM 2. Let & be any common divisor of v and k. Then

: 1
(13) 7’(7"7 ]") = 7’(?‘/5: k/é)—%logé

Remark. In case 8 is the greatest common divisor (r, k) of » and %
then y(r/8, k/8) is primitive. In case » = 0 then (13) becomes (2).
Proof. Let r, =r/8 and %, = k/6. Then
‘ 1
H(z,7, k) = ‘(S‘H(mfaa Ty Ky)
and so
1 1 1 1
Hiz,r, kY — %Iogw = E{H(m[ﬁ, ¥iy kl)—?llogm/a}—zlogé.

Letting z-+oo gives the theorem.

‘We now consider the sum of all the (%) primitive v(r, k) where %

“is fixed. We denote the sum by
B (k) = (r’zélv(’-', k).
We derive an explicit formula for @{k), which depends om the prime
factors of £, in a succession of three theorems. The first is
TrmoreM 3. There exists a rational number Ny, such thot

k® (k) = p(k)y-+log Ny. _

Proof. The theorem is true for k = 1 with ¥; = 1. Supposing the the-
orem holds for all the proper divisors of k. We can then write, in view of (3)
k) =y — D D y(r, k).

Sk (rk)=0
. =1 .
- Applying Theorem 2 we have _
To'@(k) ) = Z 2 k{-l— {2 l10 5}..
Y, = 5 7 5' s I g0,

au.- (r,k)md

- Sl o (Eord

Sk
81

dgﬁ(d) — N od)log(k/d)

i ak
d<k

- D@ ?‘?‘IﬂgNd}_lngZ #(@)+ D p(d)logd.

dlk alk ak -
d<k
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Here we have nsed our induetion hypothesis. Sinee

Dlold) =k
dik .
we have
(14) B (k) —g(k)y = Rlogh— D' p(@)logd— 3 log¥,.
Ak ik
a<k

Now the right hand side is evidently the logarithm of some rational num-
ber. Call it N, since it depends only on %. This proves Theorem 3.
TueoreM 4. The N, of Theorem 3 is given by

N, = §-lemd)s
-1
where p 48 Mabius’ Funetion.
Proof. Let the mumerical function f be delined by

= 2 log N,.
5%
Then (14) can be written in view of Theorem 3,

er Yogd.

8|k

Elogk~f(k
By Mdibius inversion

g(k)logh = ' blog du(lk/s)—

otk

Zf ) (k(5).
Again by Mﬁbius inversion the second sum is simply log ¥,. Thus we have

log ¥, = ' dlog du(k/s)~logk D (%/8)u(6)

3% 8k .
_Zu(ﬁ (1ook—1og5)—klog7c2,u(a
dlk 81k
=~k >'(u(8}/4)logs.
81k

Taking exponentials gives the theorem.
THEOREM 5. N, s, in fact, the integer
N, = pw(k)l(p—l)

where p ranges over the prime factors of k.



oy

132 ’ D. H. Lehmer

Proof. By Theorem 4 it is clear that Ny is the product of powers
(positive, zero or negative) of the prime factors of &, Let p be any one of
these primes and let

ko= pim  (phm),
Ny =p"n  (ptn).
We must show that

(15) f = q(k){(p—1).
Any § {ividing & is of the form é = p'd where dim. By Theorem 4

-3y> meP” T(p?) p(d)fd.

dlm j=

It is clear that we musgt take j = 1 to get any contribution to 5. Hence

fe=t DN uld) = P (m) = o () () (p 1) = olk)ltp =)

aim
which iy {15}
Theorems 3 and 5 now yield

fp(k) (

(16) Dk = +

-, logp
p-1)

ik

As one consequence of (16), @(%) depends only on the prime factors of k.
In fact if & is a divisor of & then @(8k) = P(k). As another application of
(16) we have

TaroreM 6. I[f k> 1

( »9)) logp
b logsm——— = log2 — NEE
n<?zfqz UL’ ) pAUJ p~i

Proof. If we sum both sides of (11) over the ¢ (%) numberb 7 which are
<< k and prime to &k we obtain

2ary
%

kD (k) =

L\:!

€08

(y+log2)p () — 10gsmﬂ—? 2

D<J<k/z (r,k)=1

gince the cotangent terms for r and k—r des’aoy themselves.
Now the inner sum is

2 ezﬂf’fk—ga(')zg_kw
P {0 =2 )
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which is a well-known formula of Hélder for the Ramanujan sum ¢, (f) [3]-
Substituting for @ (k) from (16) and simplifying gives the theorem.

In case k = p, a prime, Theorem 6 becomes the familiar resalt
p-1
. T
Zsm— =7
=1

Theorém & is an instance of the catalytic effect of the Euler constants
v(r, k). Further examples occur in § 6.

Tt is well-known 8] that the values of the frigonometric functions
in formnula (11) are algebraic numbers. In case k& is a power of 2 times a (pos-
gibly emnpty) product of distinet primes of the form 2% 11 these algebraic
numbers are expressible in terms of successive square roots of positive
integers, that is they are constructable with ruler and compass.

We give below a condensed list of y(r, &) expressed in this way.
To save printing costs we can omit the imprimitive cases by Theorem. 2.
We can also dispense with the cases in which & = 2(mod 4) since by (5) and
Theorem 2 '

log2

p(28 +1, 4m +2) = y(2s-+1, 2m+1) — PR

2m 1)+

dy(s+m+l,
Finally we can suppose. that r < %/2 in view of (12).
5. y(r, k) and I"(2)/I(2). From the three familiar bagic formulas

T(142) = 2I'(2),
M) I'(l—z) = nesensz,

1M1 +2) = e?¢ﬁ{(1+%) gfm}
n=1

for the Gamma funetion the following well-known piope'rtieé of its logarith-
mic derivative p(2) = I"{2)/I'(z) are immediately derived. :

an p(1+2) = () +1/z,

(18) p(l—g) == 'tp(z)+7ccotnz,

(19) p{lbe) = —p+2 }m’ %(n_kz) ~_y+2( ~1P s 1,

n=2
The following theorem indicates a conneetion between y(r k) and (2)
at the rational point r/k.
THEOREM 7.

p(r, k). = —{plr [k Hlogh} /e (0<r= k).
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LIST OF OERTAIN CONSTRUCTABLE y(r, k)

1 1 .
7{1,2) =§y«l—_2-log2,

™

1 — 1
g __]
y(1,3) =3v+ 55 V3+ 5 log3,

1 B
1,4) =— -~ +—log2
y(1,4) 4?+8+4 og2,

L 1 . V5 —
R —_— B
n V1+2[I/5 + %0 logh + m 10g(1+Va?/2,

1
y(1,5)=gy+~f~

1 T = 1 l/g —
2 —— — V11— — - 5
P(2,8) = 5y+-- V1 2/VB + 50 028 — 15 log(1-+V5)/2,

1 11(s —
r(L,8) =gr+ g{-;— (V2 +1) + log2 +1/§10g(1/§+1)},

1 1 — -
7(3,8) =< v+ —8—{§ (V2 —1) +1og2 —V2log(V2 +1)},

1 1. — _—_—
y(1:12) = —»+ T)JZ{TC(Q +V3) —2(V3 —1)log2 +log3 +-4V3log (V3 +1)},

1 1 - e
¥(5,12) =y + o [=(2 —V3)+2(V3 +1)log2 +log3 —4¥3 log (V3 +1)}.
The small Table 1 giving y(r, k) to 6D for all + and for k < 10 may
be helpful in cheeking formulas and in applications.

Tahle 1

r k oy k) r ki k) r k plr. k)
1 1 .577216 1 6 .756728 3 8 .084320
1 2 .635182 % 6 .223379 4 8§ —.01449]
2 2 — (57966 3 6 .0°8628 5 B —.07884%
1 3  .677807 4 6 —.078921 6 8 —.124108
2 3 .07320¢ B 6 -.150172 7 8§ —.159428
3 3 —.173799 6 6.—.202424 8 8 —.187778
1 4 .710290 1 7  .T74010 1 9 801191
9 & 144304 2 % .248515 2 9 .284800
3 4 —.075108 3 7 .0859987 3 9 .103868
4 4 —.202270 4 7 —.042448 4 9 007727
1 5 . .735920 5 7 —.100390 5 9 -—.053823%
2 B ,130389 6 7 —.157981 8 9 —.007666
3 5 —.013764 7 7 —.1958528"7 7 9 —.131110.
4 5 —.128886 1 8 .788631 8 0 —. 157860
5 5 —.206444 2 8 268501 g4 9

" -—. 180001
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Proof. By definition and by {(17) and (19)

i {1 1 " 1 : +m_.,}_~ ;—l—logm}
y(r, k) =;ﬁ?+k+r 2k4+r T [ha] k
— bt
k
1., (1 {1 1)_ R (S -
S‘;'Fii-iﬁ{r(z Twerl T

AR
1 (1og i -+log k)}
k

i

oo o0
1 1 logk : ' 1(k ‘ AN 1 }
e e e E =t _loghty—— ; A —
= + -y : iy ogl 4y

B

k k o E?dc'(;ik-w") l kﬂl_ﬁ;.{f n{n-+r/k)
_3 —logk—+ L - 1-5——7; l =l{mlogk~w(1‘/k)}
% r Bl TR

which ig the ftheorem.
Solving for p(r/k) we find

(20) w(rfk) = —{ky(r, k) +logh} (0 <7<k

which, as we note, holds also for r = k. _ ‘
The results we have already obtained for y(r, k) can now be applied
to give information about 4(z). For example (1) gives us at once
T o 2nrj . 1_:]_
p(rfk) = —y ~1og(k[2) - 5 ot == 42 E cos = logsin =

0= jkef2

This was diseovered by Gauss in 1813 [4]. A simplification of G—au_ss’.proof
has been given by J engen [6] using Abel’s theorera on the contn.mlt.y .of
convergent power series on the circle of convergence. Ol_lr proof via finite
Fourier series indicates that Gauss’ remarkable result has a completely
elementary basis. Gauss used this result to produce the first table of p(z)
for & = 0(.01)1. He also pointed out that because of {17) and (18)_ we
can evaluate w(2) at any rational point s 0. For example we have

) T .
paH) = —yt 5 —logs,
1b 3 ) m@
w(?/g) =:mzi-~—2§10g3'—'y‘— ‘jg_ﬁ
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The relation (3) gives us
k1

D) wlrik) =

=1

—{klogk+(k—1)y}

while from (18) we obtain

p(r/k) = rp(i’c): +logk+ y }

=1 mk
(rd)=

6. Applications of y(r, k). As a first application we give

TrrEoREM 8. Let g(n) be o numerical funotion which is purely periodic
of period k. Then

S(g) = Zg(fn, [ = Zg(@ y(r, k

=1
k

. provided - g{v) = 0; which is a necessary and sufficient condition for con-

F=1

vergence of S(g).
Proof. We have

Z‘g(%?/n -

1€<n<s — ‘
- 1 logx g
T

__;g('r) {H(m,a,lu)ﬁzloguc} + K 2{9(7’).

As @—co the first sum tends to 3 g(#)y(r, k). The gecond sum must
vanish for convergence.

Theorem 8 can be used to evaluate §(g) in terms of the y(r, k) oT
inversely, when S{g) is known, to obtain interesting linear combinations
of the y(r, k). To illustrate the latter use we ean choose g(n) = ¥ where
J # 0(mod %) and & = ¢, Then 8(g) becomes —log(1 — &) and we obtain
(9). To illustrate the former use, consider the example

Do E@, 7, T

91y =g(2) =... =g(k—1) =1, g(k) = 1—k.
Thig gives us the series
101 1 1—%
S B i +k11+ ‘ +‘?kl——1 +El+
' =loghk
using (3) and (2). This is a generalization of
1—3+3—1+ ... =log2.
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A more interesting and conspicuous class of examples of S(g) are
the Dirichlet L series L(s, ) at s = 1 namely

(=]
1y (m)
L1, ) = _E -
where () is a non-principle character modulo &, that iz, & non-constant
purely multiplicative periodic function of period & which vanishes when-
over % and & have a prime factor in common. For » prime to k, x(#n) is
a g(k)-th Toot of unity, not necessarily primitive. Of particular interest
to the theory of quadratic fields are the cages in which & or —% is the discrimi-
pant of a monic irreducible quadratic equation, because of the connection

between L(1, ) and the class number h(l/?'[:—ic) of the field of that equation.

- For us this means that the two linear combinations

I a % —~k B
Z( Tpesn wma B[S,

where the symbols are those of Kronecker, can be expressed in terms of
h(V +k). For k> 1 the precise fotmulas ave

) fe=1
(o) O (%) ptr b = 21oge a0/,
r=1
- 1 o -
(22) 2 (T)y(?', k)y = ?k””zh(l/ —k)

wheve w == 6 for & = 3, w = 4 for k = 4 and w = 2 for all other k and

&, 18 the fundamental unit in the real field @ (V).
Thus for k =5, (21) becomes

A+VEE N\~
y(L, B)—y(2, B)—y(3, 5) + (4, 5) x2l°g(_—+2_i)ﬂ/5

and for & = 12, (22) becomes

2(1, 12)—p(5, 12) + (7, 12) —p(1L, 12) = n/V12

sinee in both cases b = 1. These relations are easily verified from our hst
of p(r, k).

If in (21) and (22) we substitute for y(, %) from (11) we obta,m,‘
aftel simplification, & pair of class number formulas for positive and neg-

- ative discriminants.
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These are
U sin{n¥/k):
YR N

b ~ [Isin(=R/E)’
It

WERY —F) = w V( )Got wr[k).

In the first relation, which is due to Dirichlet {3], N and R r&ngé over
ok

integers < k/2 for which ( ): —1 and (Eb) = 1. In the second relation,

which is due to V.A. Lebesgue [7], » ranges over the positive integers

< k2. '

As g ecorollary to Theoremt 8 we can evaluate a more general
sum.

CoRrOTLLARY. Let o and b be relatively prime integers with ¢ << a<Ch
and let g(n)- be any numerical function periodic of period k. Then

-1
g{n) \
n=0 F==0

13
provided X g(r} =0, which is necessary and sufficient for convergence of
Pe=l ’

S{g, a, b).
Proof. Define ¢,(n) by

if # == a(modd),

() = [bg )

0 otherwise.
Now we can apply Theorem 8 with & replaced by bE.

Another type of sum that can be evalnated by p(r, k%) is conside-
red in ‘

TomorEM 9. Let m = 2 and lof

() Rids (79r Ko )y

be pairs of positive integers for which

e (?"n‘??d k??l)
O<n<l ( =1()m)

and the m )atwnal numbers #;/k; are distinct. Finally let p (x) be any polyfno-
mial of degree << m —2, a necessary condition for convergence.

icm

Faler constonls for am‘thmetalcclzl Progressions 139
Then
N p{n) O logk
§ = 2 S (47 = 2y
L (Tyn--r ) (Bywt ) oo (Bt 4-1,) }";‘1" k;

where the coefficients ¢; are defined by the partial fraclion decomposition

o

Ty A-71) (Ry @ 7)o (Rypto 47, rand kjm-tr;

Proof. By (23)

p(2) = }“

(ke +ry) .o (koo +75)
kw+f.~ ]

' The right hand side is a formal polynomial of degree m—1. Hence its

leading coefficient must vanish, That is

(24) . 2 ek =

Fe=1

Again by (23)

Pp(m)
S“Eﬁ (k!n—}—qfl )

ﬁ 1
=1li E - = lim e; H (E;o
},},ﬁch kg ni, > (s 752 )

1 Usnsw O -

. 1 A , ’
z e,lim [H(kjm, 7y, k) — —Elogk,.m} +
W-)DO /.
e w
—!—llm{(logm) ygjjk} y-—logk
s ] = e
m
%
== > cj{y(?j, —{————logkﬂ}
J"=J.

in view of (24). Thix gives the theorem.
To give a simple illustration consider the sum

(=]

1
8= 2 i @n+1)(gn 1)

n=i
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Here we have

€, =

L]

— 9 == 8
) Gy == —, ¢ =3

and 8o the sum, is

8 =1, 1) ~2{y(1, 2)+}log2} +3{r(1, 4) +ilog4}.
This reduces to =/3 = 104719735 ... '

Because of (24), those sums S for which the k; are all equal will have -

the value
m
Z‘Cj v ('i“j, Tu) .
=1

As an example we may cite the sum

oo % .
o 1 o E—1 N
S’F% (o +1) (ks +2) ... (b + ) :(gl(_l) (*—l)y(”k))/“' Dl

For example when & = 6 we find

8 = {192log2 —81log3 —7n¥/3} /4320 = .01390480727.

. The reader will have observed that in 511 these applications Buler’s
constant y eancels out. |

7. Numerical evalnation of y(r, k). Formula (11) which gives the exact-

value of y(r, k) is somewhat unwieldy and expensive for the nuerical
caleulation of y(r, k) expecially for large %. If one hags access to a good
table of {1 +2) such as [1] or [2] one ean use the formula of Theorem 7

plr ) == 2 (LR

Alternatively one can use the series (19) instead of a table, -

For aunfomatic computing and where greater accuracy is desired one
can apply the Buler-Maclaurin snmmation formula. This method. avoids
the use of trigonometric functions and allows one to “wholesale” the com-
putation of y{r, &) for k fixed.

If in the Buler-Maclaurin formula

N
FOEF -+ e 1) = [ FO -+ L) (O} +

1

1 1 4 7 T s
g (PN =F O = 1 () =/ (0)}

-1 .
+ i TN =) ...
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we sl
' 1y = (kt+n", EN+r =2

we obtain the asymptotic formula

1 1 L [ E*
(25) plrs B) = H(o, 7y B) =g o8& = 50 4 008 = Jo50r T G504t

1t e choose % near to 1000 and k< 100 these six terms alone give
an ervor less than 5107 in absolute value; for small k it is, of course,
very much smaller, ‘

Tor fixed & we can give a polynomial approximation to y{r, It) once
the values of H (1000, r,%) have been computed. To this effect coetfi-
cients 0; ave defined as Lollows.

1 1 % ? i

Uy = 7 10g 1000+ — 35307 T 93107 ~ 258-10°
1 1 k r -
=599 “ g0t 6100 8100
1 1 ko
O: = 53 70° ~ 5a0° T 4102
1 i
b= "
1

s = fiom
Then from (25) _ .
y{r, k) = H(1000, 7, Ic)—00+01t-{-02t24.-03_t3+.04t"
where '
$ = 1000 —r(modk) (0<t<CK).

Similar polynomials based on other limits than 1000 can b_e written down
from (25) whose general ferm is 1B, 27", B,, being, . of course,
the Bernoulli number of index 2n. Such formlas are sometimes use‘ful
in case & is large and only & few values of r are involved. Such an occasion
is the following question. _ | .

Tngpection of our modest table of y{r, k) leai(ls one to guess that
abous half of the y(#, k) are positive. This is in reality far from the truth,
ag ‘we gee from

TazEoREM 10, For large L the monolone s6quence

y(l, k), y(2, kY, cuny v ik, k)

changes sign in the neighborhood of r = kflogk, so that almost all y(r, k)
are negative.



142 : D. H. Lehmer

icm

Prooi. We shall prove somewhat more. Let I = logk —y.
By Theorem. 7 to make y(7, k) = 0 we must have

p(&) = —logk, =2 =r/k
or, by (17},
(26)

But by (19)

ep(l+2) =1—=zlogh. _

w+2) = —pzt 3 E(n)( -2

Therefore (26) becomes

(27) B =L (2 + L (B) P — ).

Taking onty the first term the theorem follows. Solving (27} by iteration
we find '

(28) 2 = L7 - L(2) L™ 4 £(3) I~ [2{0(2)) — £(4)1 L5 —
| —[BE(2) 2(8) +L(5)] L0 — ...
As an illustration we fake & = 100. The terms of (28) become
-2483 —.0252 +.0046 2-.0041 —.0025 = .2202.
By a,ctl;a;l computation we find
(22, 100) = .00204268,
v(23,100) = —.00056747.
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On the distribution of additive arithmetic funetions
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of Yu. V. Linnik

Let g(n) be a real valued addifive arithmetic function (i.e. g(fnm)
= g(m)+g(»n)if (m,n) = 1). The distribution of values of such functions
has been extensively investigated. As a new direction, Erdds, Ruzsa and

Sarkozi [1] proposed to estimate

’ ' def
(1) max N(a,z)= max 2‘1
— =T LS00 =0 0D nega
g(n)=a

for general additive functions. They found bounds c» in various cases,
often giving the best possible value of ¢. If, however, g{n) = w(n), the num-

ber of prime divisors of n, then this quantity is about const and

Vloglogw
they conjectured (oral communication) that this order of magnitude can.'r{ot
be exceeded in any case, provided that g(p) 0 for each prime p. .The aim
of this paper is to prove this conjecture in the following more precise form.

THEOREM. Let g(n) be an arbitrary real valued additive funciion and put

. Bla) §'1
&) = ——

psE »

p(n)#0

Then there is a universal constant ¢, such that

]
N{a, z) = 1< 6—=—= .
(@2 ”gm V)
- fni=a

The result is sharp even in this more general form: The bound is
attained if g(p) = 0 ox 1and 3 1/p = F(w)as s seen from [21and [3]where

=T
a(m)=1

much more detailed information is given in this special case. (For refer-



