Новый класс тождеств для коэффициентов Фурье
модулярных форм

Н. В. Кузнецов (Москва)

В работе исследована структура решений системы функциональных уравнений, аналогичных функциональным уравнениям для тета-функций Ньюби. В результате получен новый класс тождеств для коэффициентов Фурье модулярных форм. Эти тождества содержат произвольную функцию и её трансформацию Ганекеля и могут рассматриваться как обобщение формул суммирования Пуассона. Их следствием является возможность выразить усредненные по модулям суммы Клоостермана через суммы сумм Рамануджана, т.е. через \(\mu \)-функцию Мёбиуса.

Проблема интерференции сумм Клоостермана в случае усреднения их по модулям вызывала глубокий интерес Ю.В. Линника на протяжении многих лет, и у него есть интересная гипотеза на этот счет [3]. Сравнение этой гипотезы с неарифметическим контрпримером А. Сельберга [5] показывает, что если гипотеза Линника верна, то она имеет глубоко арифметическую природу. Возможность выражения сумм с суммами Клоостермана через \(\mu \)-функцию Мёбиуса позволяет надеяться, что интерференция классических (арифметических) сумм Клоостермана действительно существует в отличие от неарифметического случая Сельберга [5].

1. Введение. Большое число теоретико-числовых задач приводит к изучению регулярных в верхней полуплоскости комплексного переменного \(\varepsilon \) функций \(f(\varepsilon) \), удовлетворяющих системе функциональных уравнений

\[
(1.1) \quad f(\varepsilon + \lambda) = f(\varepsilon), \quad \frac{1}{(-i\varepsilon)^k} f\left(-\frac{1}{\varepsilon}\right) = \chi f(\varepsilon)
\]

в которых \(\lambda, k, \chi \) — фиксированные параметры, притом \(\lambda > 0, k > 0 \) и \(\chi^2 = 1 \).
Регулярное в верхней полуплоскости решение системы функциональных уравнений (1.1), для которого разложение в ряд Лорана по степеням величин $e^{\pm i\alpha}$ (возможно в силу первого из уравнений (1.1)) не содержит членов с отрицательными степенями ("голоморфное" на $i\infty$), будем называть модулярной формой типа (λ, k, χ).

Класическая теория модулярных форм начиналась с изучения тета-функции Яоби $\vartheta(z)$,

$$\vartheta(z) = 1 + 2 \sum_{n=1}^{\infty} e^{2\pi i n z},$$

которая удовлетворяет функциональным уравнениям (1.1) с $\lambda = 2$, $k = \frac{1}{2}$, $\chi = 1$ (§6, гл. 21).

Наряду с $\vartheta(z)$, Яоби ввел тета-функцию двух переменных $\vartheta(z, v)$,

$$\vartheta(z, v) = 1 + 2 \sum_{n=1}^{\infty} e^{2\pi i n z} \cos 4\pi n v,$$

удовлетворяющую системе функциональных уравнений (60), гл. 21

$$\vartheta(z + 2, v) = \vartheta(z, v), \quad \frac{1}{e^{i\vartheta(z, v)}} \vartheta\left(z, \frac{v}{z}\right) = e^{i\vartheta((z, v)).}$$

По аналогии с (1.1) естественно поставить вопрос об отыскании решений следующего обобщения системы (1.4):

$$g(z + \lambda, v) = g(z, v), \quad \frac{1}{e^{i\vartheta(z, v)}} g\left(z, \frac{v}{z}\right) = e^{i\vartheta(z, v)}. g(z, v),$$

где параметры λ, k, χ удовлетворяют тем же условиям, что и в (1.1), а решение ищется в классе функций, регулярных на z в верхней полуплоскости, ограниченных при фиксированном v и $\Im z = +\infty$ и для каждого фиксированного z с $\Im z > 0$ имеющих цепями функциями комплексной переменной v.

В отличие от системы функциональных уравнений (1.1), теория которой в работах Яоби, Пуанкаре, Петерсона и Генке приблизила почти законченную форму, единственным примером решения системы функциональных уравнений (1.5) до сих пор была лишь тета-функция Яоби $\vartheta(z, v)$.

В настоящей работе показана следующая простая связь между решениями систем функциональных уравнений (1.1) и (1.5).

Теорема 1. Пусть $f(z)$ — модулярная форма типа (λ, k, χ) и $a(n)$, $n \geq 0$, — её коэффициенты Фурье,

$$f(z) = \sum_{n=0}^{\infty} a(n) e^{2\pi i n z},$$

принима для некоторой постоянной $B_f > 0$ при $n \to \infty$

$$(1.7) \quad a(n) = O(n^{\beta}).$$

Тогда функция

$$(1.8) \quad g_f(z, v) = \frac{(2\pi)^{k-1}}{\Gamma(k)} a(0) + \sum_{n=1}^{\infty} a(n) e^{2\pi i n \vartheta} \frac{J_{k-1}(4\pi n v)}{(4\pi n v)^{k-1}},$$

где $J_{k-1}(\cdot)$ — функция Бесселя порядка $k-1$, удовлетворяет системе уравнений (1.5).

Таким образом, каждому решению системы функциональных уравнений (1.1), удовлетворяющему O-условию (1.7), соответствует ассоциированная функция двух переменных, которая удовлетворяет системе (1.5).

Определено, что тета-функция Яоби $\vartheta(z, v)$ получается из $\vartheta(z)$ по правилу (1.8). В самом деле, коэффициенты Фурье функции $\vartheta(z)$ имеют вид: $a(0) = 1$, $a(n) = 2$ тогда и только когда $n > 1$ и $n = 0$, не являющиеся точным квадратом и $a(n) = 0$ для $n > 1$, не являющихся точным квадратом. Так как

$$J_{k-1}(v) = \sqrt{\frac{2}{\pi v}} \cos v,$$

то ассоциированной с $\vartheta(z)$ по правилу (1.8) является функция

$$g_f(z, v) = \frac{(2\pi)^{k-1}}{\Gamma(k/2)} \sum_{n=1}^{\infty} a(n) e^{2\pi i n \vartheta} \frac{J_{k-1}(4\pi n v)}{(4\pi n v)^{k-1}} = \frac{1}{\pi/2} \left(1 + \sum_{n=1}^{\infty} a(n) e^{2\pi i n \vartheta} \cos 4\pi n v\right),$$

которая лишь постоянным множителем отличается от $\vartheta(z, v)$.

Классическим результатом теории модулярных форм является утверждение, что пространство $\mathfrak{M}(\lambda, k, \chi)$ модулярных форм f, удовлетворяющих O-условию (1.7), бесконечномерно при $\lambda > 2$ для любого $k > 0$ и $\chi = \pm 1$, а при $0 < \lambda < 2$ $\mathfrak{M}(\lambda, k, \chi) = 0$ за исключением тех случаев, когда с целым $q > 3$ и с некоторым целым $m > 0$ параметры λ и k имеют вид

$$(1.9) \quad \lambda = 2 \cos \pi/q, \quad k = \frac{4m}{q - 2} + 1 - x \quad (x = \pm 1).$$

Для этих λ, k и $\chi = \pm 1$ (см., например, [4], гл. 1)

$$\dim \mathfrak{M}(\lambda, k, \chi) = 1 + \left[\frac{2m + x - 1}{2q}\right]$$

(1.10), как обычно, обозначает целую часть. При $\lambda = 2$

$$\dim \mathfrak{M}(2, k, \chi) = 1 + \left[\frac{k + x - 1}{4}\right].$$

(1.11)
Вместе с теоремой 1 это дает нижнюю границу для размерности пространства аналитических решений системы (1.5); во всяком случае, для \(\lambda > 2 \) и \(\chi \neq 1 \) это пространство оказывается бесконечномерным для любого \(k > 0 \).

В некотором смысле обратной к теореме 1 является

Теорема 2. Пусть \(g(x, \nu) \) — решение системы функциональных уравнений (1) и пусть выполнены условия:

(a) для каждого \(\nu \) \(g(x, \nu) \) регулярна по \(x \) для \(\text{Im} x > 0 \) и ограничена при \(\text{Im} x \rightarrow +\infty \);

(b) для каждого \(\nu \) \(\text{Im} x > 0 \) \(g(x, \nu) \) является целой функцией комплекского переменного \(x \);

(c) при некотором \(B > 0 \) функция \(\text{Im} g(x, \nu) \) ограничена при \(\text{Im} x \rightarrow 0 \).

Тогда \(g(x, \nu) \) можно представить в виде

\[
g(x, \nu) = \sum_{n \geq 0} a(n) \sum_{k \geq 0} J_{k-1}(4\pi \nu V_n) \tag{1.12}
\]

где \(a(n) \) — \(n \)-ий коэффициент Фурье некоторой функции из \(\mathcal{M}(\lambda, \beta, \gamma) \).

Таким образом, функции вида (1.8), ассоциированные с модулярами формами, ищут этим пространство аналитических решений системы функциональных уравнений (1.5).

Уравнение (1.5) для функции вида (1.8) позволяет получить большое число тождеств для коэффициентов Фурье модулярах форм, содержащих произвольную функцию.

Преобразования \(s \rightarrow Us = s + \lambda \) и \(s \rightarrow \zeta s = -1/\zeta \) переводят группу преобразований верхней полуплоскости, изоморфную фактор-группе \(G(\mu) = M(\lambda)/\{1 \} \), где \(M(\lambda) \) — множество матриц второго порядка, представимых в виде

\[
\begin{pmatrix} a & \beta \\ \gamma & \delta \end{pmatrix} = S \lambda U S \gamma S \delta
\]

с некоторыми целыми \(a, \ldots, \gamma, \delta \) и \(k_1, k_2 = 0 \) или \(1 \) (обозначения \(U \), \(S \) использованы здесь и для матриц \(\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \) соответствующих преобразованиям \(U \), \(S \)).

Для каждой такой матрицы \(\sigma = \begin{pmatrix} a & \beta \\ \gamma & \delta \end{pmatrix} \in M(\lambda) \) полином

\[
\chi(\sigma) = (e^x \chi)^N
\]

где \(N \) — число матриц \(S \) в представлении (1.13) для \(\sigma \).

Теорема 3. Пусть \(a(n) \), \(n > 0 \), — коэффициенты Фурье модулярной формы типа \((\lambda, k, \chi) \), удовлетворяющей \(\mathcal{O} \)-условию (1.7). Пусть непрерывная в интервале \((0, +\infty) \) функция \(\phi(x) \) удовлетворяет условию:

(a) преобразование Ганкеля порядка \(k-1 \), т.е. интеграл

\[
\hat{\phi}(x) = \int_0^\infty V(x) \hat{\phi}(x) dx
\]

существует для всех \(x > 0 \);

(b) рад

\[
\sum_{n=1}^\infty n^{1/2-k_2/2} a(n) e^{2\pi in \xi} \xi \phi(\xi) = 0
\]

сходимся для всех \(\xi > 0 \) и \(\xi > 0 \);

(c) функции \(x^{k-2} \phi(x) \) и \(x^{k-2} \phi(x) \) принадлежат \(L^1(0, +\infty) \);

(d) для любого фиксированного \(\xi > 0 \)

\[
\lim_{\nu \rightarrow \pm \infty} \frac{1}{\nu} \sum_{n=1}^\infty n^{1/2-k_2} |a(n)| \int_0^\infty e^{-\nu \xi} \left| \phi(x) - \left(\frac{x}{\xi} \right)^{k-1} \phi(\xi) \right| dx = 0.
\]

Тогда для любого \(\sigma = \begin{pmatrix} a & \beta \\ \gamma & \delta \end{pmatrix} \in M(\lambda), \gamma > 0 \) и для любых положительных \(\xi \) и \(\tau \), удовлетворяющих условию

\[
\xi \tau = \frac{4\pi}{2
\]

справедливо тождество

\[
\frac{1}{2^{k-1}} \chi(\sigma) \int_0^\infty x^{k-1} \phi(x) dx + V \int_0^\infty \sum_{n=1}^\infty n^{1/2-k_2} a(n) e^{-2\pi in \xi} \chi(x V) dx = \
\]

\[
eq e^{-2\pi i \mathcal{O} \chi(x)} \left(\frac{x}{2^{k-1}} \chi(\sigma) \int_0^\infty x^{k-1} \phi(x) dx + V \sum_{n=1}^\infty n^{1/2-k_2} a(n) e^{2\pi in \xi} \chi(x V) \right)
\]

где \(\mathcal{O} \) спав функция суммируем по \(\mathcal{O} \)-полюсами.

Замечание 1. Если нулевой коэффициент Фурье \(a(0) \) обращается в нуль, то тождество (1.19) справедливо без предположения (с).

Замечание 2. При \(\lambda = 2 \), \(k = 1 \) и \(\chi = 1 \) единственной модулярной формой типа \((2, 1, 1) \) является тета-функция Якоби \(\theta(x) \) (см., например, [4], гл. 1).
Для $k = \frac{1}{2}$ преобразование Ганкеля порядка $k - 1$ совпадает с конусо-преобразованием Фурье, так как $V_{n}f_{-1/2}(v) = \sqrt{\frac{2}{\pi}} \cos v$.

Посому при $k = \frac{1}{2}$, $a = \delta = 0$ и $c(a)$, равными коэффициентами Фурье тета-функции Яноса $\Theta (k)$, тождество (1.19) лишь обозначением отличается от формулы суммирования Пуассона.

Замечание 3. Возможное теоретико-числовое значение тождеств (1.19) определяется тем, что они позволяют выразить сумму сумм Клоостермана через сумму сумм Раманауджана. Сумма Клоостермана определяется равенством

$$S(m, n; \gamma) = \sum_{1 \leq \delta, \eta \leq \gamma, \delta + \eta \equiv m \pmod{\gamma}} e^{2\pi i \delta \eta / \gamma}.$$

В частном случае, когда m или n обращаются в ноль, эту сумму принято назвывать суммой Раманауджана $c_{\gamma}(n)$:

$$c_{\gamma}(n) = S(0, n; \gamma) = \sum_{0 \leq \delta, \eta \leq \gamma} e^{2\pi i \delta \eta / \gamma}.$$

Суммы $c_{\gamma}(n)$ могут быть выразены в явной форме в их исследование значительно проще изучения сумм Клоостермана.

Поясним в тождестве (1.19) $\lambda = 1$, так что $\Theta (\lambda)$ будет совпадать с классической модульной группой, и будем считать характер $\chi(s)$ единичным. При этом матрицы σ — обычные унитарные матрицы, однозначно определяющиеся по своей нижней строке (δ, γ) $(\delta$ и γ — любые взаимно простые целые числа рациональные). Умножение тождества (1.19) на $e^{2\pi i \delta \eta / \gamma}$ с некоторым целым m и суммируем по δ и γ в одном простым с γ и меньшим γ, получаем выражение для суммы сумм Клоостермана через сумму сумм Раманауджана с произвольной (удовлетворяющей условиям теоремы 3) функцией $\varphi (s)$:

$$V_{\delta} \sum_{n=1}^{\infty} a(n) S(n, m; \gamma) \varphi (\sqrt{\gamma} n) =$$

$$= \sum_{n=1}^{\infty} \gamma^{m/4 - b/4} a(m) c_{\gamma}(m) \varphi (4\sqrt{\gamma} n) +$$

$$+ \frac{a(0) c_{\gamma}(n)}{2^{\delta - 1} \Gamma (k)} \left\{ \int_{0}^{\infty} w^{k - 1/2} \varphi (w) dw - (iz)^{k} \int_{0}^{\infty} w^{k - 1/2} \varphi (w) dw \right\} +$$

$$+ \int_{0}^{\infty} w^{k - 1/2} \varphi (w) dw - (iz)^{k} \int_{0}^{\infty} w^{k - 1/2} \varphi (w) dw \right\} +$$

$$+ \int_{0}^{\infty} w^{k - 1/2} \varphi (w) dw - (iz)^{k} \int_{0}^{\infty} w^{k - 1/2} \varphi (w) dw \right\} +$$

$$\sum_{n=1}^{\infty} \gamma^{m/4 - b/4} a(n) c_{\gamma}(|n - m|) \varphi (4\sqrt{\gamma} n).$$

2. Доказательство теоремы 1 и 2. Пусть $f(z) = \Theta (\lambda)$ — модульная форма на $\mathbb{H}(\lambda, k, \chi)$, т.е. регулярная в полусосности $\Im \omega > 0$ и ограниченная при $\Im \omega \to +\infty$ функциями, удовлетворяющими функциональным уравнениям

$$f(z) = f(z + \lambda), \quad \chi f(z) = \frac{1}{\lambda} f \left(\frac{-1}{z} \right).$$

Возьмем в дальнейшем будем считать, что все рассмотриваемые модульные формы удовлетворяют дополнительному O-условию: для каждой $f \in \mathbb{H}(\lambda, k, \chi)$ найдется постоянная $B_{\gamma} > 0$ такая,

$$\lim_{\Im \omega \to 0} \left| \Gamma (\Im \omega) \right|^{B_{\gamma}} |f(z)| = 0.$$

Как показано в [4], гл. 1, это эквивалентно условию, что коэффициенты Фурье $a(n)$ функции f при $n \to \infty$ растут не быстрее некоторой фиксированной степени n.

Характер функции $f \in \mathbb{H}(\lambda, k, \chi)$ поставлен в соответствии функция двух переменных:

$$\chi f(z) = \frac{1}{\lambda} f \left(\frac{-1}{z} \right).$$

Так как $\Theta (\lambda)$ однообразна и регулярна во всей плоскости z и так как при $|w| \to \infty$ модуль этой функции не превосходит $|w|^{\rho(z)} e^{\lambda \rho(w)}$, то ряд (2.3) для любого x из верхней полуплоскости определяет целую функцию переменной ψ.

Очевидно, $g(x + \lambda, \psi) = g(x, \psi)$. Чтобы вывести уравнение для $g(x, \psi)$ при преобразованиях $x \to x - 1/\lambda$, соответствующему второму преобразованию Яноса для тета-функции, нам потребуется

$A(x)$ 1. Пусть $a(n), n > 0, \chi$ — коэффициенты Фурье модульной формы $f \in \mathbb{H}(\lambda, k, \chi)$. Тогда при любом $a > 0$,

$$\sum_{n \leq N} a(n) = \frac{\chi a(0)}{\lambda} \left(\frac{2\pi w}{\lambda} \right) + \chi \sum_{n=1}^{\infty} \left(\frac{1}{w} \right) \frac{1}{\lambda} J_{\lambda} \left(\frac{4\pi w}{\lambda} \right)$$

где индексы χ суммы означает, что при целом ω последнее слагаемое берется с коэффициентом $\frac{1}{\lambda}$ а ряд в правой части суммируется членами высшего порядка, большего.

Это тождество для коэффициентов Фурье произвольной модульной формы было получено Генке [2], как несобственное следствие известной теоремы Э. Ландау, когда Генке установил взаимо-
однозначное соответствие между пространством модулярных форм \(\Lambda(\lambda, k, \chi) \) и множеством рядов Дрихле

\[
\psi(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}
\]

с функциональным уравнением Римана типа

\[
\left(\frac{\lambda}{2\pi} \right)^s \Gamma(s) \psi(s) = \chi \left(\frac{\lambda}{2\pi} \right)^{k-s} \Gamma(k-s) \psi(k-s).
\]

Для наших целей достаточно проинтегрированной формы тождества (2.6):

\[
A_q(x) = \sum_{a \in \mathbb{Z} \times \mathbb{Z}} \frac{(x-n)^2}{q!} a(n) = \frac{\chi(a(0))}{\Gamma(k+q+1)} \left(\frac{2\pi}{\lambda} \right)^{x^2+q+1} + \frac{x^2}{\lambda} \sum_{n=1}^{\infty} a(n) \left(\frac{x-n}{\lambda} \right)^{x^2} J_{k+q} \left(\frac{4\sqrt{\lambda} x n}{\lambda} \right).
\]

В силу сделанного предположения о порядке роста \(a(n) \), ряд в правой части (2.5) сходится абсолютно (и равномерно на любом конечном интервале) при всех достаточно больших \(q \).

Рассмотрим теперь ряд

\[
\Phi = \sum_{n=1}^{\infty} a(n) \omega(n) = \int_{\mathbb{R}} \omega(x) \left(A_q(x) - a(0) \right) dx
\]

где для фиксированных \(v \) и \(s \) через \(\omega(x) \) обозначена функция \(e^{i\alpha x - \beta x^2} e^{\text{int} x} F_{k-1} \left(\frac{4\sqrt{\lambda} x}{\lambda} \right) \). Учитывая, что при \(x < 1 \) \(A_q(x) - a(0) \rightarrow 0 \), а при \(x \rightarrow +\infty \) функция \(\omega(x) \) убывает быстрее любой фиксированной степени \(x \), с помощью достаточно большого числа интегрирований по частям ряд \(\Phi \) можно записать в виде

\[
(2.6) \quad \Phi = (-1)^{k+1} \int_{\mathbb{R}} \omega(x) \left(A_q(x) - a(0) \right) dx.
\]

Если \(q \) взято достаточно большим (чтобы ряд в (2.6) сходился абсолютно), то в (2.6) вместо \(A_q(x) \) можно подставить ряд и проинтегрировать по интегралу в его варианте (в силу равномерной сходимости на любом конечном интервале и быстрого убывания \(\omega(x) \)). В результате получим,

\[
(2.7) \quad \Phi = (-1)^{k-1} a(0) \int_{\mathbb{R}} \omega(x) \left(\frac{x^2}{q!} \right)^{a(0)} \left(\frac{2\pi}{\lambda} \right)^{k^2} \frac{\omega(x)}{q!} dx + (-1)^{k+1} \left(\frac{\lambda}{2\pi} \right)^{k} \sum_{n=1}^{\infty} \frac{a(n)}{q^n} J_{k-1} \left(\frac{4\sqrt{\lambda} x n}{\lambda} \right) x^2 dx.
\]

Интегральные формулы из теории бесселевых функций (см., например, [1], стр. 60)

\[
(2.8) \quad \int_{\mathbb{R}} e^{\lambda t} e^{\mu t^2} dt = \frac{1}{2\gamma} \frac{\alpha}{\mu^{1/2}} e^{-\lambda^2 / 4\mu}, \quad \text{Re} \mu > -1, \text{Re} \gamma > 0,
\]

\[
(2.9) \quad \int_{\mathbb{R}} e^{\lambda t} e^{\mu t^2} dt = \frac{1}{2\gamma} \frac{\alpha}{\mu^{1/2}} e^{-\lambda^2 / 4\mu} J_{1/2} \left(\frac{\alpha}{\mu^{1/2}} \right),
\]

где \(\gamma \) - система плюс. Ре. \(\gamma > 0 \) приведную часть (2.7) можно записать в виде

\[
(2.10) \quad \frac{(2\pi)^{k+1} \chi(a(0))}{\Gamma(k)} \int_{\mathbb{R}} \omega(x) \left(-\frac{1}{x^2} \right)^{k} e^{-x n^2} e^{\text{int} x} F_{k-1} \left(\frac{4\sqrt{\lambda} x n}{\lambda} \right) dx + \frac{x e^{-x n^2}}{-x^2} \sum_{n=1}^{\infty} \frac{a(n)}{q^n} J_{k-1} \left(\frac{4\sqrt{\lambda} x n}{\lambda} \right) dx = \frac{1}{(-2\gamma)^{1/2}} e^{-\lambda^2 / 4\mu} J_{1/2} \left(\frac{\alpha}{\mu^{1/2}} \right).
\]

С другой стороны, по определению \(\Phi \), это выражение равно \((2\pi)^{k-1} a(0) / \Gamma(k) \). Следовательно,

\[
(2.11) \quad g(x, v) = \frac{X}{(-4\pi)^{1/2}} e^{-x n^2} g \left(-\frac{1}{x^2} \right)
\]

и теорему 1 доказана.

Докажем теорему 2. Первое из уравнений (1.5) означает, что \(g(x, v) \) можно представить в виде ряда Фурье

\[
(2.12) \quad g(x, v) = \sum_{n=0}^{\infty} \varepsilon_{\text{int}} n c_n(v),
\]

Коэффициенты с \(n < 0 \) в этом ряду отсутствуют в силу предположения об ограниченности \(g(x, v) \) при \(\text{Im} x \rightarrow +\infty \), а каждая из функций

\textit{3} — Acta Arithmetica XXVII.
\(a_n(v), n \geq 0,\) является целой функцией комплексного переменного \(v.\) Разложим \(a_n(v)\) для \(n \geq 1\) в ряд Неймана. Условия справедливости этого разложения дает

Лемма 2 ([1], стр. 74). Пусть \(F(v)\) представляет степенным рядом

\[
F(v) = \sum_{n=0}^{\infty} b_n v^n
\]

с отличными от нуля радиусом сходимости. Тогда при любом \(v,\) не равном целому отрицательному числу, \(F(v)\) представима в виде ряда Неймана

\[
F(v) = \sum_{n=0}^{\infty} \tilde{b}_n v^{-n} J_{\nu+n}(v)
\]

где

\[
\tilde{b}_n = (n + n) \sum_{\nu \in \mathbb{C} \setminus \mathbb{N}} \frac{\nu^{-n-1}}{\Gamma(n + 1)} b_{n-1}.
\]

Попадая в разложения вида (2.14) для функций \(a_n(v), n \geq 1,\) \(v = k-1\) (в случае целых функций этот ряд сходится во всей плоскости), представим эти функции в виде

\[
c_n(v) = \sum_{l=0}^{\infty} a_l(n) \frac{J_{k-1+l}(4\pi v\sqrt{n})}{v^{k-1+1}}
\]

с некоторыми постоянными \(a_l(n)\) (для каждого фиксированного \(n \geq 1, c_n(v)\) можно считать функцией переменной \(4\pi v\sqrt{n}).\) Разложим ещё \(c_n(v)\) в ряд Тейлора,

\[
c_n(v) = \sum_{l=0}^{\infty} a_l(n) v^l
\]

можно записать второе функциональное уравнение системы (1.5) в виде

\[
\sum_{l=0}^{\infty} a_l(0) v^l + \sum_{n=1}^{\infty} e^{2\pi i n l} \sum_{l=0}^{\infty} a_l(n) \frac{J_{k-1+l}(4\pi v\sqrt{n})}{v^{k-1+1}} =
\]

\[
= \frac{X}{(-\pi i)} e^{-2\pi i v} \sum_{l=0}^{\infty} a_l(0) \left(v^l \left(v + \sum_{n=1}^{\infty} e^{2\pi i n l} \sum_{l=0}^{\infty} a_l(n) \frac{J_{k-1+l}(4\pi v\sqrt{n})}{v^{k-1+1}} + \sum_{n=1}^{\infty} e^{-2\pi i n l} \sum_{l=0}^{\infty} a_l(n) \frac{J_{k-1+l}(4\pi v\sqrt{n})}{v^{k-1+1}} \right) \right)
\]

Положим в этом уравнении \(v = 0.\) Учитывая, что при \(v \to 0\)

\[
\frac{J_{\nu}(v)}{v^\nu} = \frac{1 + O(v^\nu)}{2^{\nu} \Gamma(\nu+1)}
\]

находим, что числа \(a_n(0)\) и \(\frac{(2\nu\sqrt{n})^{\nu-1}}{\Gamma(\nu+1)} a_n(n)\) при \(n \geq 1\) — коэффициенты Фурье некоторой модулярии формы из \(\mathfrak{M}(\lambda, k, \chi)\) (возможно, нулевой). Обозначим эту модулярию форму чрез \(f_0,\)

\[
f_0(x) = a_0(0) + \frac{(2\pi)^{k-1}}{\Gamma(k)} \sum_{n=1}^{\infty} a_n(n) x^{k-1-1} e^{2\pi i n x}.
\]

По теореме 1 функция

\[
g_0(x, v) = \frac{(2\pi)^{k-1}}{\Gamma(k)} a_0(0) + \frac{(2\pi)^{k-1}}{\Gamma(k)} \sum_{n=1}^{\infty} a_n(n) e^{2\pi i n x} J_{k-1+1}(4\pi v\sqrt{n})
\]

удовлетворяет функциональному уравнению

\[
\frac{1}{(\nu \pi i)^{k-1}} g_0\left(-\frac{\nu}{\pi i} x, \frac{\nu}{\pi i} x\right) = e^{2\pi i n x} g_0(x, v).
\]

Это уравнение означает, что сумма слагаемых с \(l = 0\) в левой части (2.17) равна сумме слагаемых с \(l = 0\) в правой части этого равенства. Следовательно,

\[
\sum_{l=0}^{\infty} a_l(0) v^l + \sum_{n=1}^{\infty} e^{2\pi i n l} \sum_{l=0}^{\infty} a_l(n) \frac{J_{k-1+l}(4\pi v\sqrt{n})}{v^{k-1+1}} =
\]

\[
= \frac{X}{(-\pi i)} e^{-2\pi i v} \sum_{l=0}^{\infty} a_l(0) \left(v^l \left(v + \sum_{n=1}^{\infty} e^{2\pi i n l} \sum_{l=0}^{\infty} a_l(n) \frac{J_{k-1+l}(4\pi v\sqrt{n})}{v^{k-1+1}} + \sum_{n=1}^{\infty} e^{-2\pi i n l} \sum_{l=0}^{\infty} a_l(n) \frac{J_{k-1+l}(4\pi v\sqrt{n})}{v^{k-1+1}} \right) \right)
\]

(в (2.17) мы опустили слагаемые с \(l = 0\) и получили равенство разделили на \(v).\) Полагая в (2.21) \(v = 0,\) находим, что \(a_0(0)\) и \(\frac{(2\nu\sqrt{n})^{\nu-1}}{\Gamma(\nu+1)} a_n(n)\) — коэффициенты Фурье некоторой модулярии формы \(f_0 \in \mathfrak{M}(\lambda, k, 1, \chi).\) Поэтому, в силу теоремы 1, функция

\[
g_0(x, v) = \frac{(2\pi)^{k-1}}{\Gamma(k)} a_0(0) + \frac{(2\pi)^{k-1}}{\Gamma(k)} \sum_{n=1}^{\infty} a_n(n) e^{2\pi i n x} J_{k-1+1}(4\pi v\sqrt{n})
\]

удовлетворяет уравнению (2.20), с заменой \(k\) на \(k+1.\) Таким образом, уравнение (2.17) остается справедливым, если в обеих частях вести суммирование лишь по \(l \geq 2.\) Повторяя это рассуждение, точно так же находим, что для любого \(l \geq 0\) числа \(a_0(0)\) и \(\frac{(2\nu\sqrt{n})^{\nu-1+1}}{\Gamma(\nu+1)} a_n(n),\) \(n \geq 1,\) — коэффициенты Фурье некоторой модулярии функции из \(\mathfrak{M}(\lambda, k+1, \chi).\)
Отметим теперь, что интегрально решение системы функциональных уравнений (3.4) понимать лишь при $\chi^2 = 1$ и это решение должно быть четной функцией z.

В самом деле, $\lim \{g(z, v)/v^m\}$ при некотором целом $m \geq 0$ является модульной формой типа $(\lambda, k + m, \chi)$. Обозначим эту модульную форму через F; тогда

$$F(s) = \chi \frac{1}{(1 - z^2)^{k+m}} \frac{1}{z} = z^n F(z).$$

Следовательно, необходимым условием существования ненулевого решения системы (3.5) является равенство $\chi^2 = 1$. Далее, двойная идентификация второго из уравнений (3.5), получаем $g(z, v) = \chi^2 g(z, -v) = g(z, v)$, следовательно, в разложении (1.6) коэффициента $\phi_l(n)$ с нечетными l должен быть равен нулю (точно как $v^{-1}N_{l+1}(v)$ является четкой линией при четных l), чем и завершается доказательство возможности представления (1.12).

3. Тождества с произвольной функцией для коэффициентов Фурье модульных форм. Прежде всего, получим закон преобразования решений системы функциональных уравнений (1.6) относительно преобразований из группы $O(l)$.

Лемма 3. Пусть $g(z, v)$ удовлетворяет системе функциональных уравнений (1.5). Тогда для любого преобразования $z \rightarrow oz = \frac{az + \beta}{\gamma z + \delta}, \sigma \in O(l)$,

$$g(z, v) = \frac{\chi(\sigma)}{(\gamma z + \delta)^2} e^{-2\pi i\sigma z^2/4 + \pi} \frac{az + \beta}{\gamma z + \delta} = \frac{\chi(\sigma)}{(\gamma z + \delta)^2} e^{-2\pi i\sigma z^2/4 + \pi}$$

где $\chi(\sigma) = (\chi^-)^N, N - число матрицы S в представлении (1.13) для σ.

Для доказательства при фиксированных v и z, $\lim z \rightarrow 0$, рассмотрим следующую функцию от z:

$$\psi(z) = \frac{az + \beta}{\gamma z + \delta} = \frac{az + \beta}{\gamma z + \delta}.$$

С этим обозначением доказуемое равенство (3.1) можно записать в форме

$$\psi(z) = \psi(S^m z),$$

если ψ представлено в форме (1.13). Поэтому достаточно показать, что для целых m

$$\psi(z) = \psi(U^n z),$$

и что

$$\psi(z) = i^k \chi z^N.$$

Равенство (3.4) очевидно, поскольку $g(z, v)$ периодична по x с периодом l. Для доказательства (3.5) заменим во втором из уравнений (1.5) x на $x + \frac{\pi}{2}$ и умножим полученное равенство на $e^{-2\pi i\pi x^2/(y z + \delta)}$.

В результате получим, что

$$\psi(z) = \frac{\chi(\sigma)}{(\gamma z + \delta)^2} e^{-2\pi i\sigma z^2/4 + \pi} \frac{az + \beta}{\gamma z + \delta}.$$

Таким образом, (3.5) доказано, и повторное применение этого равенства вместе с (3.4) непосредственно дает (3.8).

Лемма 4. Пусть $\psi(z, v)$ удовлетворяет системе функциональных уравнений (1.5). Тогда для любого преобразования $z \rightarrow oz = \frac{az + \beta}{\gamma z + \delta}, \sigma \in O(l)$,

$$\psi(z, v) = \frac{\chi(\sigma)}{(\gamma z + \delta)^2} e^{-2\pi i\sigma z^2/4 + \pi} \frac{az + \beta}{\gamma z + \delta}.$$
Далее, в силу предположения об абсолютной интегрируемости $e^{k-1/2}v$ (φ — трансформация Ганнеля функции φ порядка $k-1$), интеграл

$$
\int_0^\infty J_{k-1}(axy) y^{k-1/2} \varphi(y) dy = \frac{\varphi(a)}{a^{k-1/2}}
$$

сходится равномерно по x для $x > 0$. Поэтому предел из (3.9) равен

$$
\lim_{x \to \infty} \frac{\varphi(a)}{x^{k-1/2}} = \frac{1}{2 \pi^{-1} \Gamma(k)} \int_0^\infty x^{k-1/2} \varphi(x) dx.
$$

Остальные слагаемые проинтегрированного равенства имеют вид

$$
\frac{e^{-\frac{a^2\pi}{\gamma \nu}}}{\gamma \nu} \sum_{n=1}^\infty n^{\frac{1}{2}k-\frac{1}{2}} \frac{\varphi(\nu)}{\gamma \nu} \int_0^\infty \frac{e^{-\frac{\pi}{\gamma \nu} n^2 v^2}}{n} \left(\frac{4 \pi \nu n}{\gamma v} \right) \varphi \left(\frac{4 \pi v}{t} \right) dv
$$

где $I_{k-1}(\cdot)$ — модифицированная функция Бесселя порядка $k-1$, определяемая равенством

$$
I_{k-1}(v) = e^{-i(k-1)\pi} J_{k-1}(v \sin(\pi)).
$$

Воспользуемся интегральной формулой (2.8),

$$
\int_0^\infty e^{-\frac{a^2\pi}{\gamma \nu} n^2 v^2} I_{k-1} \left(\frac{4 \pi \nu n}{\gamma v} \right) v^k dv = \frac{e^{i\pi/2}}{4 \pi (2\gamma)^{k/2}}
$$

Тогда n-тый интеграл в (3.12) (обозначим его Φ_n) можно записать в виде

$$
\Phi_n = \frac{e^{(\xi \pi)^2/4}}{(4\pi)^{1/2}} \varphi(\xi \nu n) +
$$

$$
\int_0^\infty e^{-\frac{\pi}{\gamma \nu} n^2 v^2} I_{k-1} \left(\frac{4 \pi \nu n}{\gamma v} \right) \varphi \left(\frac{4 \pi v}{t} \right) \left(\frac{4 \pi \nu n}{\gamma v} \right)^{1/2} \varphi \left(\xi \nu n \right) \nu^k dv.
$$

Так как для всех $v > 0$ $I_{k-1}(v) < e^{\pi/2}v$ (для вещественных $v > 0$, $I_{k-1}(v)$ положительна), то интеграл в правой части (3.14) оценивается величиной

$$
\Phi_n = \frac{e^{(\xi \pi)^2/4}}{(4\pi)^{1/2}} \varphi(\xi \nu n) +
$$

$$
\int_0^\infty e^{-\frac{\pi}{\gamma \nu} n^2 v^2} \left| \varphi(v) - \left(\frac{v}{\xi \nu n} \right)^{k-1} \varphi(\xi \nu n) \right| \nu^k dv
$$

(здесь сделана замена переменной интегрирования $v \to \frac{t}{4\pi}$ и использована свяь между параметрами $\xi t = 4\pi/\gamma \nu$). По предположению (d) теоремы 3

$$
\lim_{n \to \infty} \frac{1}{n^{k-1/2}} \sum_{n=1}^\infty \Phi_n(e^{-\gamma \nu} n) = 0
$$

а по условию (b) ряд с $\varphi(\xi \nu n)$ сходится. Таким образом, предел при $x \to 0$ правой части проинтегрированного равенства существует и теперь простое объединение полученных равенств дает (1.19).

Литература

Поступило 21.1.1974

(529)