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1. Introduction. The problem concerning the mean sguare of the Di-
richlet polynomials ’

] N
(1) flsy ) = D) annln)n™,

where y rung over a set K of Dirichlet characters and s for each ¥ Tuns
over a set of “well-spaced” points in the complex plane, can be reduced
to the problem of estimating expressions of the type

. T+
(2) DT ifta-rit, g)Pa.
#E Ty
Tt is desirable to have “hybrid” estimates, i.e. estimates in which neither
the summation nor the integration is carried out trivially.

In the cage when K consists of theé primitive characters having mo-
dulus < X, such “hybrid” vewulfs were obtained independently and by
different methods by Montgomery [6] and the author [2]. Later Gallagher
[1] found # device (Lemma 1 below) which effected a considerable techni-
cal simplification. Gallagher’s lemma, combined with fhe large sieve
inequality of Linnik—Bomnbieri, yields the following result {see 1], or
{71, Th, 7.1):

TD"}“T . N
(3) 33 [t pla < (2T +N) 3 el
g<X ymodg Ty ’ 1

where the star denotes the primitivity of the character.

If K is the set of the real primitive characters having modulus < X,
then the inequality (3) of course gives an estimate for (2), but owing tio
the extra non-real characters in (3), such an estimate may be crude or
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trivial. Owr aim is to show that, using in Gallagher’s lemma a mean value
theorem for real character sums, obtained by the author in [37 (see Lemma
2 helow), one ean in some cases prove something bebter.

To formulate our mean value theorem, we introduce some mnotation.

D . :
Any real character arises from Kronecker’s symbol (—%—) , and this characier

will be denoted by yp. The modulus of z5, is | D], and if we write D = da?,

where d is a fundamental discriminant, then y,; is the primitive character,

equivalent to yp. All real non-principal characters are of the form y,

with D not a square and with D = 0 or 1{mod 4). A sum over such values

of D will be denoted by 3. The constant implied by the symbol < or o)
D

ig absolute unless otherwise indicated.

TaroseM 1. Let X223, N =2 be natural numbers, let a,, n == 1,2,
-y N, be any compler numbers, and define fs, x) by (1). Write

N
Zo= D lagl".
. -
Then for any real Ty and any positive T we have

T+

@) 3 1ft, o) a
T iDl=X T

<TX D |aa,| +(IX)2NSBZW10g" N .
1=m, nsV .
mn=a2

From thiz we obtain the following analogous result for values of
Dirichlet polynomials (for details, see Montgomery [7], Ch, .

COrROLLARY. Let o finite set A(IN of compler numbers s = o+ it be
given for each D with |D|<C X. Let Ty, T, a, & be real numbers such that

To+82<t<Ty+T—68/2, o>za, [t—¥]24
for each se A(D)) and for any two different s, 3'< A(D). Wrile

N
Zpla) = E la, Fn =72,
i

Then we have

B > M ifls, )

[ DX sed(D)
< (67" +log N)(loglog N) x
KT 3 (] ()~ - (TXPENTBZ,, () log® N}.

lesm, NN
T ——
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As an application of tha corollary we prove the following denéity
theorem for L-funetions.

THEOREM 2. Let N(a, T, y) be the number of zeros of the Function
L(s, ¥} in the rectangle

e<o<l, [<T.

Then for 1 <Ca<<1, T2 1, ¢ > 0 we have

(6) DN (a, T, gp) <, (ALY 0t
Firde

In [4] we proved a density theorem of the same type hub wealer for
inereasing 7. Similarly as in [4], one might conjecture that

{7) 2’ Nia, Ty} =, (XT)BE-ete,
X

As an arithmetieal application of Theorem 2 we menton the following
mean value estimate for character sums over primes. :

THROREM 3. For X = 3, y > 0, & > 0 we have

(8} 2 [ Z ZD(?)fl <, X
|1 DX g XV
where
14+p/2 for  0<y<y,
(9) hy) =331 49—V for 1<y<2,
-y for  p>=2,

1If the conjecture (7) is true, then we have in (8)

192 for O<<yp<1i,

(19) h{y) =
| R EE A
For example, from (9) we have i(1) —3—-V2 =1.58... , Whereas
(10) would give h(1) = 1.5. For comparison we note that for any sequence
M of natural numbers we have
| N aoln)| < (X g log 7

1D<X na XY
nedl

(11}

iff X* 2 2. This is an easy corollary of Lemma 3 of the next section. In
the above example this gives the exponent 1.75. If v < 1, then the assertion
of Theorem 3 follows from (L1). Hence (8) is “non-trivial”, i.e. reflects
special properties of the prime number sequence, only in the case p > %
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%, Lemmas. First we quote the two basic lemmas,
Tmvova 1 (Gallagher [17). If the series

=

§ ~3
= [ 2

1

is ahsolutely convergent for Res = 0 (hence in particular if a, = 0 for n > N),

then N
j | (it 2 d <T2H2

where v = exp(T™) and T > 0.
TeyMA 2 (Jutila [2]). For X 2 3, ¥ = 1 we have

’

Yy dy,

to(m)|[ < X¥log'x.

|1DiLX 1Y |

From Lemma 2 we deduce the following
LEmwA 3. For X = 3, N = 2 we have

(12) Z

pLx 1

N

3 a1l 'n)l <X Y o, w{+X1“N”‘*Z”““10g"’N
1gmn<2N

TRA ==L

Proof. Put p(n) = 0 or 1 according to whether » is a square or not.
Then the expression on the left of (12) is
| E
. T '

1D=X

. Write

P10 | G O |
1m,na N

18) <X ) {1-p(mn))iana,+

1<m, n N

We shall estimate the second sam here by Lemma 2

s =| > (?)]
1Diex

Then the sam under eonsideration is

| -
(14) Zp B, 8(r) <{Zb~ S‘;p(r 0]

where

{15) : b, = |Gy, (]«

1<maN
mr=7

By Lemma 2 and fthe gquadratic reciprocity law it is easily seen that

N2

(16) ‘ D ()8 (r) < ¥*Xlog'¥

icm

On mean valuds of Dirichlel polynomials 195
By (15},
. ot , 7
2
XA iy @ty < 3 (6 lodt o+ al?).
1 1k, Jym, nN ' 1sch, oy, itV

hk=mn hk=ihn

Hence, writing d(»n) for the number of divisors of n, we have

a2 5
(17) Q< Ewhr* Zd (hh) < thr* (h) > dk)
1 R=1 k=1

< Zi*(Nlog* NY“ Nlog N,

the last step by Schwarz’s inequality and by the well-known formulas
for the sum functions of d(n) and d2(n).

The assertion (12) now follows from (13), (14), (16), and (17).

3. Proof of Theovrem 1. If T'<1, then we may apply Lemmsa 3
poinfwise and integrate tmna;]ly t0 obtain (4). Henece only the ecase
T > 1 remains,

By Lemma 1 we have

. LA,
18) D [ Iftit, gp)la
|Di=x 1y

Ty

<1 I flzanx.o(n)ﬂ_ﬂ'" '2?_%?

1Di<X 0 ¥
oo A2
<[ 3 janeSimuyidy = 3 e, 8(r),
¢ ysm,aEyr 1
where
¢ =1T° 2 |G f ?!_ldy:
Im, n<N.
Mmn=y
¥y = 7 'max(m, n), g, = max (?Il: min(m, 7"))
Obviously
{19} e. < T [, G|«
I<m,n<N
RN NT
ma=r
Hence

NZ

Do 8(r)< XT
1

2 (-p

Ism,nalN

(mm)) [a an|+2p (1)8(r)e,
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To coraplete the proof, we need an estimate for the sum

= ~ VA
(20) Y pst)e < Yo sm Yl

By (19) we have
F
B .
2 612' 3 T2 [ab.ak Oy o,
1 1<k, By, RN
heghghe

TEAINT
hk=1man

N : N
< Mgt > Ak +I D le 3 agm).

=1 hlesihr k=1 kr‘“lshgk

The first double sum is

N

T Ymptamy Y )

h=1 hsch<ht N(z—-1)
N v N(z-1)

<! Y imlfEm)” {i‘( b d(h+v))2'}”2
N

A==l »={
gTz{il%ladE(h)}lﬂ{ N Nam wathn)”

o=y, v<N(r 1) k=1
. g TPZYN( Nlogh N )”“( l\.TIC)g‘3,Z\T)”2
o<, N(T—1)

< TZ%E’& _Nm (] og 1\7)21,’4

and the second double sum is estimated similarly.
This and (16), substituted into (20), complete the proof of Theorem 1.

4. Proof of Theorem 2. Put L = log X'T. Trom the zeros under con-
sideration we pick out a subset A {a set of “good” zeros) satisfying the
following conditions: . ‘ :

(i) if p = f-+1iy and ¢’ = B’ }iy" are counted in 4 as zeros of the
same L(s, yp), then |y—v'iz= 2L%

(i) the region ¢ > f-+L7%, [t—y[< I* does not contain any zero
of L(s, yp) if p = f+iy iz counted in 4 as a zero of L(s, yp)-

Th is edsily seen that it suffices to find an upper estimate for the ecardi-
nality of the set A.

For any zero p of L(s, xp) we can constroct a Dirichlet polynomial

(21) (8,4p) = b0

LY
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On mean values of Dirichlet polynomials 197

with 1b,| < (%) such that |Fle, zp} » 1. If £ > 0 is fized and XT %, 1
then for pe A 'we may choose in (21)

= (XTY, g =(XTyE>

{see [6], Lemma 2).
Split np the polynomial F(s, yp) into a sum of < L polynomials
of the type

N
(22) . PN O
N
with N < N < N. Then for any “good” zero g of L(s, yp) ab least one
of these polynomials is » L% at p.
To apply the corollary of Thecrem 1, we first raise each pelynomial
(22) to a suitable infegral power. This power « i3 chosen in such way that
X% ig “near” (XT) since then the corollary gives the best estimate for
the number of “large” values of the polynomials. Given a number 2 with
2 < 2 < 9, an integer u exists such that z < N* < 2*. Hence by the corol-
Iary the cardinality of the set 4 is

(23} <, (TX' 2+ (TX) P ()2 L49,

where ¢(z) is & constant depending on 2. The optimal choice for » is
o — max (T (Fryerssy,

Putting this into (-23) we obtain the required estimate.

5. Proof of Theorem 3. We use the classical formula

Sapmydmy =~ > ¢7'a"+ 02T log*(IDw) +#“log (1 Dl)),
] |Im el . ’

where @ = T > 2, # is of the form ¥ + 4 with integral N, and ¢ runs over
the zeros of L(s, xp), except possibly the zero 1. —f, if there exists an
exceptional zero B, of L{s, yp) (see [8], Satz 4.6). It suffices to prove an
estimate of the type (8) for this modified sum, where z = X7.

The O-term is negligible if 7 = X. The sum over the zeros is estima-
ted by absolute valnes. Using’ Theorem 2 and partial summation, we see
that the funetion %(y) is determined from the condition

h(y) = max{ya+ (7 - 6a)/(6 —4a)},

a1

and (9) is obtained by a short caleulation. The conditional result (10)
is verified similaxly. '

—
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1. Introduetion. In 1926 van der Waerden [15] proved the following
gtartling theorem: If the set of integers is arbitrayily partitioned into two
classes then at least one class contains arbitrarily long arithmelic progres-
sions. It is well known and obvious that neither class must confain an
intinite arithmetic progression. In fact, it is easy to see that for any se-
guence a, there is another sequence b,, with b, > #,, which contains no
arithroetic progression of three terms, but which intersects every infinite
arithmetfic progression. The finite form of van der Waerden’s theorem

* goes as follows: For each positive integer n, there exists o least integer f(n)

with the property that if the integers from 1 to f{n) are arbitrarily partitioned
indo twe (1) classes, then af least one class contains an arithmetic progression
of n terms. (For a short proof, see the note of Graham and Rothschild [71.)
However, the best upper bound on f(n) known at present is extremely
poor. The best lower bound known, due to Berlekamp [3], asserts that
f(n) > n2" which improves previcus results of Erdds, Rado and W.
Sehmidt.

More than 40 years ago, Brdos and Turén [4] considered the quantity
rp{n), defined to be the greatest integer | for which there is a sequence
of integers 0 < @y < @y << ... < ;=< n which does not contain an arith-
metic progresgion of % terms. They were led to the investigation of ri{n)
by several things. First of all the problem of sstimating r,(n) is clearly
interesting in itself. Secondly, #4(n) < 2/2 would imply f(k)<mn, ie.,
they hoped to improve the poor upper bound on f(k) by mvestlgatmg
75 (n). Tinally, an old question ih number theory asks if there are arbitra-

Yy In faet, van der Waerden proved this for partitions inte r classes for any
positive integer r.




