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1. Introduction. This paper continues [5], where we nse a reﬂectioﬁ
argument together with the Haldsz—Montgorery method fio obfain new
bounds for sums of the moduli of Dirvichlet polynomials. Forti and Viola

[1], [2] divide ordinates of ¢ into ‘good’ and ‘bad’ values, an ordinate
?

being good if the appropriate L-function is not too large. By a standard
argument: (cf. Section 3} an ordinate ean be bad only if there iz a zero
nearby. Since such bounds imply zero-density theorems, they obtain
inequalities connecting the numbers N (e, T, x) for different abscissae o.
Here N(o, T, z) is the number of zeroz iy of Li{s,y)in gz 0o, [y T
and N(o,T) is the number of zeros of [(s) in.the same rectangle. Thig
method was systematized by Jutila {63, who showed (actnally the ¢7-
analogue) that ‘

(1.1) S N Wie, T, ) < QIO

Q=i@ zmodg .

with A = 2.4605... The asterisk indicates the restriction of the sum to
primitive characters. Jutila considered the smm over all characters to
a fixed modulus, in which ¢7 veplaces @*T. In fact the method of [5]
already suffices to prove (1.1) with 2 = 27/11; we show this in Section 8.

The present paper combines the ideas of [5] and [6]. Recasting the itera-
" tion step in [5] enables us to treat good ordinates by estimating the L-func-

tion, bad ones by reflecting the sum. Section 5 summarizes our bounds
for Dirichlet polynomials. '
Ag an application we prove zero-density theorems for Z(s).

TumorEM. The ‘densily hypothesis’
(1.2) N{o, T) < -+

holds for ¢ z= o, and for any e > 0, where v, = 0.80118... 48 @ certain qua-

- fratic surd. Moreover, for 61/74 < o << 37/42

(1.3) : N(o, T) < Ta-o0ts-1te
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and for 3T/42 L o< 1
(1.4) N{o, T) ¢ T°O—Weote,

The implied constonts in (1.2), (1.3) and (1.4) depend on e.

‘We can also obtain bounds for 3/4 < o O’O, but in these the expo-
nent of T is an implicit function of o.

Forti and Viola [2] obtained (1.2) for ¢ > 0.8059..., improving earlier
results of Turan and Halasz, Montgomery [7] and the author [4], [5].

2, The reﬂecnon argument. We consider Dirichlet polynomulﬁ. of the

form
anN

(2.1) | 2‘ (o) (.

N+1

where g(m) is a Dirichlet character; a general Dirichlet polynomial can
be broken into swms of the form (2.1). Our object is o estimate

- R
(2.2) 5= Y DTSR 2,2,

2 g=0{mod gg) xmodyg r=1

where the agterizk denotes propriety. We assume that the complex numbery
s(r, z) = o(r, x) +t(r, y) satisfy

(2.3) 0< o(r, x) < (log NQET)™
that any pair s(ry, 1), 8(rs, zs) satisfy

(2.4) {11y ga) —Urey 20) < T,
and if y, = g, also

(_2-5) BTy xa)—8(Fay )l = 1
for v, £ ry. Let

(2:6) R = D Z*R(x).

g<Q; g=0{mod gp) z10d g

Haldsz’s inequality gives

(2.7 |E|2 G 2 Z |H 0("19 K1)+ (P2 ga) Fit(ry, 1) — (T, xa)s %4 %A)

XDT1 X9eTa
where
(2.8) G = Z]a(m
' Mol
and
(2.9) CH(s,yp) = Zb(m)x(m

=1

icm
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with coefficients b{m) = b(m, U) that satisfy

e,

161

U<m<eUor éU<m<el,

bim, U) == it mL U ormz
(2.10) b(m, U) =1 it eUsm<eU,
0<<b(m, Uyssl if
and.
(2.11) _ eUS NH1< 2N U,

We generalize the construction of b(m, U) in [5] as follows. Let

(2.12) J(w) =

21—2?»7.:2"'((2]1- —1) r)2

((h—1)1)2w Lt
with & pole of residue & at w = 0, and
(2.13) _ K(w) = (¢ —e*—1)J (w).

The kernel nsed in [5] iz the case b = 1. Then

2400

et

[0 —(2n —1)mi) ™",

l oo
(2.14) — f K(m)L(s—}—w,x)U“’dw:Eb(m, Uy {m)ym==,
1

2—fu

The assertions (2.1.0) follow from the lemma helow,

Ly 1. We have

24-ico

1 .
(2.15) o J{w)a"do = ¢(x},

Tt 2500
where
{2.16) ele) =0 for £<1,
(2.17) 0<elm<1l for ax=1,
and for €= 1 .
(2.18) e(x) +elem) = 1.

Proof. In partial fractions

)

& ( Ml)h-n(gwi)l-—..k
(h—n)!(h -{—n-—l) !

(2.19) [ ] (0 (2n—1)wi] = Y
L~2

The infegral

240

1

(ﬂw

1

Z—iog
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w— (2n —1) i) _

dw

. (20 ——1)1':1}.
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is zero for < 1 and for » = 1 it is

i Dni logz

(2.21) m = f gan=rtl gg
a
Forx>1 , .
1 24100 )1 :
(2.22) —— f nzhﬂl(th)!” (0 —(2n—1) i) 0 0" deo
et 900 1-h
logx loga

— | (2ipme s = [ suinoas.
0 |

]
By the periodicity of sinwf, the right hand side of (2.22) is positive and

logz I+logw , 1 - bab
)2 ! sin?*rfd6 = [ sin®~ =
(2.23) (of + f )ﬂn T 6fsm 7 i

L}

2%=(h—1) 1)
m(2h 1)1

which verifies (2.18) and (2.17). _ ‘
All the machinery of [3] goes through with these more general coeffi-
cients b{m, U). The implied constants in the various estimates will depend

on h.
3. The effect of a zere-free region. Next we show that H (s, x) is small

inside a zero-free region. The argwment is standard, of. Forti and Viola
[1], [2] or Titechmarsgh [8]. Let

(3.1) D = @' T|q,,
(3.2) _ Iy =log D,
(3.3) Ay = log iy,
(3.4) Ay = logid,.

Suppose that L(s, x) has no zeros f-+iy with § 2 a, |y — 7| < 4 4,. Let ¢,
be any number with [f,— 7| < 34,4,/4. On the circle d,, centre 2--1t,,
radins 2—a—34;" we have
(3.8) - max(0, RelogL(s, x)) < 4.
Hence on the cirele ¢,, centre 2--if,, radins 2—a—4;' the Borel-Cara-
théodory theorem gives
(3.6) ' logL(s, ) <€ A hs. .

Now consider the circles €, radins A,—a—47"; ¢, rading A, —o, 0;
rading 4,1 — A%, each with centre 4, + iy, Wwhere now [f— 7| < 24, 4,/3.
On ¢, the inequality {3.6) is valid, whilst on 0

(3.7) logL{s, x) < A4

icm
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by direct computation. Hadamard’s three circles fheorem gives
{3.8) logL(s, z) < A{~M=,

or o+l < o<1, On ¢ =a, given by

(3.9) oy = a+ Ayt A
wo have
(3.10) Lis, v} < D"

if I is large enough. The functional equation gives
(3.11) L1 —~a;-+it, ) < D97\ L{ay 8, y)| < DA-yatin

whether or not y is proper.

‘We now define a pair (z, y) to be good as far as & if L{s, ) is non-zero
for o> e and
(3.12) ft—z|<s DYE,

In the integral (2.14) if the pair (£, ) is good as far as a, we take the line
of integration to Rew = 1—¢a,. Then (2.9) and (2.14) give

(3.13) H(s, y) € N‘-ep—lsih,

4. Jutila’s convexity argument. Jutia’s convexity argument takes
its simplest form when we consider zeros of (s) alone. Let I{o, T) be the
total length of those subintervals of [ -1, T'] on. which {(s) is not good
ag far as o, and let f(s) be such that

(4.1) I{o,T) < TH9,

Let A{a) be the convexity property ’

(4.2} 1 —a)f(o) < A —0a)f(a)+{s—a)f(1)

for ¢ o X 1. By (2.7} and (3.13) we have (dropping ¥ from the notation)
(4.3) Z (H{a(ry) + o(rs) -+ it(ry) —it(ry))]

Ty i

1 .
< J‘ N0 o1 +1fh10g(T/N) A g + Nl—aTd—llz+f(u)+1/h

1
< J’Nl—aTa—-.llz+(1-ff)f(ﬂ}f(l—ﬂ)+(0—ﬂ)f(.l).’(l—ni+1lk10g(T/N)da.+N1—ﬂ11a—llz+f(ﬂ)+llh,

where « ig chosen so that

(4.4) 70 = RIY*,
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and we have assumed 4 {a). If

(4.5) flo) = Ff)+1—a
and ‘
(4.6} N1

. the expression in (4.3) is
(4.7) & Nl—uTuw1/z+f(a)4-1fJa < RNl—aTc:~1f2-|—2[15.
To the general case we let I (o, T, x) be the total length of subintervals
of [—T, T) on which L(s, ) is not good as far as o, and agle that
Wl

*
I(o, T, xx1) < DI

g<sQ;9=0(modqy) xracdg

(48)

where 7, is a fixed character to some modulus ¢, < € which is a multiple
of ¢,, the implied constant being uniform in y,, and in triples go, @, T

of real numbers =1 with D = Q*T/q,. Since (%) (x12:) = 2% x:l; and
T times the modulus of ¥, if at most D, any bound obtained using the Ha-
lasz-Montgomery method for the number of zeros of the functions L(s, y)
also applies to the number of zeros of the corresponding functions
I(s, xi.) Wwith y; fized as above.

5. The iteration step. As in [5] we introduce the number B(Z, M, D)
defined for each triple B, M, D of real numbers > 1 as the greatest lower
bound of numbers B for which

2B it N M,

(6.1) E< - .
(N M¥e@ER i MLN<D

holds for each choice of g, €, T satistying (3.1), of coefficients a (¥ +1),...,
&(2X) and for each set of points s(r, y) satisfying (2.3), (2.4) and (2.5).
We quote the following bounds for B.

Lmyvva 2. If D2 N we have ’

(5.2) B(E,N,D) < D(BRENELRD'Y,

and if % be any positive integer

(5.3) B(R,N, D)< DVR¥ N L RNV + BV N (B(R, DF[N*, D).
If N=D we hawve _

. {5.4) B(R,N,D) < R NUe+LR

The implied constants depend only on I and k.
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The bounds (5.2) and (5.4) are due to Montgomery, ¢f. [T}, and (5.3)
is the result of [51 The ideas of Forti, Viola and Jutila lead to the follow-
ing Tesult. .

TeMMA 3. For D= N = DYV we have

(3.5) B(R, ¥, D) < DR N { RN DKe-D),

provided, that f(o) defined in (4.8) hos the property 4 (a) and satisfies (4.5),
and that
(5.8) D < RDY

In any case we have for N < 1 and for any ain 12 < a1

(8.7) B(R,N,D) < D*R"N'" L RN31-9 pie—D 1 pus gliz piity,

and for any positive integer k
(5.8 B(R,N,D)
< Dt ( Rz Nl 1R HI—e) (e + B2 Rifzmllzk U4 ( B(R,, D i NL" D))l/ﬂk),

" qwhere the implied constants depend on k and & and where

(5.9) R, = D=,

Proof. The term in R to the first power within the brackets comes
from ordinates which are good as far as a. In (5.7) bad ordinates are treated
a8 in [7] by estimating the corresponding L-function: they are good as
far a8 1. In (5.8) the iteration is applied to bad ordinates, whilst in (5.5)
bad ordinates are classified according to which o they are good for, and
Jutila’s convexity argument of Section 4 is used.

We now turn to zero-density theorems. In Secfions 6 and 7 we malke
repeated use of Lemma 3 to obtain results for {(s), whilst in Section 8,
which really belongs to [5], we improve Jufila’s value of 1 in the more
general zero-density theorem (1.1).

6. The range o > 61/74 for {(s). We now consider zeros of {(s) only,
0 that gy == @ = 1 and D = T. In [5] we showed that

(6.1) N (o, mn < T4B(1_u)la7(2o—1)+0(1!h)

for 61/74 < o < T5/89. We shall extend the validity of (6.1). The application -
of Lemmag 2 and 3 to zerog of £{s) has ’

(6.2) By Rt

(6.3) G < N -

where ¢ will be chosen below. Equation (5.3) of Lemma 2 gives, with the
definition (B.1) of B(R, N, ), " _

(6.4) thmzlh < E2< Nl-—zaui-l{htz!h(RN_I_R2~1l4kt1/2+R2N1[2t1]47.:)_
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With k& =2 (6.4) gives

(6.5) R < Ng_za+1jhtqfrh o b 16
provided that
(6-6) . N’G—-3M—-1f2h = Oltlflﬁ'(-zﬁﬂ

for @ guitable constant ¢, (depenﬁ:ing on k). The relation of 7 to T can now
be explained: we divide the interval [ — T , T'7 into subintervals of length
i, where 1 satisfies (6.6). Let

(6.7) N = gohee—D.

with this choice we can dispose what ave called in [5] class (ii) zeros by
ilsing Haneke’s theorem [3], provided ¢ > 16/37+1/h and T is sufficiently
large. Jutila’s method of breaking up a long Dirichlet polynomial requires
N to be large snough for the expression on the right of (6.5) to be

(6.8) . ' < Na~3a+3/2ht11-1’
and then gives
(69) - N(U,T) < N3—35+2ih,

so that we require

(6.10) R« NO-30+302h1-0T616H00R)

The firgt term on the right of (6.5) satisfies (6.10) for

(6.11) ¢ < 16(20—1) /(900 —53) -+ O(1/h),

_ which agrees with ¢ > 16/37 +1/k for o > 2/3 +0(1/h). This choice males

(6.12) N — {16(006—33)+-0(1/)

and (6.6) is satistied for & > 139/166 - O(1/k) (< 75/89). The second term
on. the right of (6.5) satisfies (6.10) for o < 37/42--0(1/k) (= 0.8809...},
and we have extended (6.1) to the range 61/74 < o < 37/42.

A convenient bound for the range o > 37 /42 can be found by putting
(6.13) - N

- tlj”io‘— 1

so that the two terms in (6.5) are of the same order of magnitude. The

condition (6.6) holds for ¢ > 11/13+0(1/h) (= 0.8486...). Substituting
in (6.8) we have
(6.14) N(U, .T) & N3—3a+0(1!7b)110{1;‘h) < T3(1w0‘)f26+0(1jh),

Haneke’s theorem again disposing of class (i) zeros,

icm
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7. The density hypothesis fer {(s). To prove the density hypothesis for
£(s) in the form
(7.1) N{o, T) < Tr0-m+o0aik)

we need in place of (6.10)

(7 2) _ R < A73—35t1—30f2+0(1!fb]
with
(7.3) N=t

for some ¢ > 2/3 +0(1/k). We use (5.5) of Lemma 3 in place of Lemma 2,
which gives :

(74_) thwz,’i'l. < l\“—w“mﬁm(lﬂ\r+R2N1““t“_1"2)
provided that A (o) holds and

(7.5) B> N{a, T)0P,

To obtain a non-trivial npper bound from (7.4) we require

(7 6) Nu+2a—2—llh - Gota—lj‘z—*-élh

for some ¢, depending only on h, that is

(7.7 < (3 —2e(1—a)) /{1 —e) +O( (1/R),
whence
(7.8) R « Ny-2etUnyih

This ensures (7.2) when

(7.9) | o< 1f{a-H3)+O(L]R),

which is consistent with ¢ > 2/3 for o < 1—O0(1/h), and gives
110y o« < (106 —T) /(46 —2) +O(L{R).
Using the bound established in [4]

(7.11) N (a ) g FRA-aEa-DLh,

which has the convexity property A( ) f01 a > 1/3, we find thfnt (7.5) is
patisfied if

4(1—0o)
2o 4+1

3{5 —60) 1 )
(7.12) 56010 +0( ,

h

which is true for 5/6 = o > 0.8020... (< 55/68).
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For 99/124 + O(1/h) < o < 55 /68 + O(1/h) we have 6174 < o < 37/42,
and we may use (6.1), which enables us to satisty (7.5) for

41— a) 12(5 —60) 1
7.153 —\.
(7:13) 20+1 - 37(40—3) +O(h)
Let # be that roof of
(7.14) 5602 — 3390 +4 =0

which is approximately 0.01182..., and ¢, m4]5 +@/10. Then for ¢
= oy+0(1/h) we have the density hypothesis (7.1).
Between ¢, and 37/42 the form of the upper bound for ¥ (s, T) is

dictated by consideration of class (i) zeros. To the left of ¢, we still have
the estimate

(_7.15) Tz—za-{»l/h
for the number of class (ii) zeros, but for class (i) zeros, defined in terms
of Dirichlet polynomials, the best estimate we can obtain still exceeds

(7.16). We ask (7.5), (7.6) and (7.8) to hold, and now relate ¢ to 7 by
{7.16) T = N'=°

s In (6.13). The definition of f(o) with (7.5) and (7.8) gives

{7.17) Nr-re tf(a)+-0(1m)’

80 that the total number of zeros is

7.18 Nio, TV ¢ N¥-39400h & praR+0ih) g meie-+0um)Ifint2)
(o, 1) < <1 &P .

The condition (7.6} now gives

(7.19) (1—0)(2a—1) = (a+20 —2)f(a)+ O(1/h),
or
(7.20) 2--20 = af(a)/{a+f(a)—1) +O(1/R),

which must be read as an implicit equation for « in terms of o.

8. AQ*T density theorem. We seek to prove

(8.1) Z 2* N(o, T, z) < DF—olilts

g<Q;g=0(mod gy} zmodgq

for ¢ > 7/9, where as wsual D = Q*7/q,. In Jutila’s device of breaking up
a long sum (8.1} corresponds to a cuﬁm&l value far & of

(8.2) _ N = D,

icm
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The work ecrresponds to that of Section 6 with D replacing both T and 4.
With & = 6 (5.3) becomes
(83) Rzpuzm < A71—2a+1,'h_D2/h(RAT+R2N1I2 +R11!6N1;'2(B(R’ D6/,1\76, D)}ljﬁ),

and sinece DS/N® = D™ = D, (5.4) gives unconditionally

(8.4) B(R, .D";N" D) <« DPNRIB DR,
Thus provided o> 3/44-0(1/h) we have
(-S.D) R < _N'z—za—]-l,ih_D»'l,'h+l\ﬂ2—24o’+12]h.D6+50[h-

The first term on the right of (8.5) clearly satisfies {8.1), and the second
term does so for ¢z 7/9 when we choose h suffieiently large. For ¢ < 7/9
(8.1) follows from the Ingham-Montgomery zero-density theorem ([T,
equation (12.9)).

The sarme caleulation occurs in the proof of

(8.6) - D No, Ty <
x1od g

where now D = ¢T'; this is almost a special case of (8.1) —put g, =@ =7

and sum over f which divide ¢ — but (8.6) can be proved directly. The

result stated by Jutila in [6] is of the form (8.6) rather than (8.1).

The exponent 27 (1L — ¢)/11 can be improved for ¢ > 7/9, but to deter-
mine the best exponent given by the present methods appears to be
tedions and complicated: — witness the fact that the simple resalt (8.1)
was overlooked by the author when preparing [51. The exponent 2{1-- o)}
for ¢ 3 5/6 has been obtained by different methods in Jutila [6] and in [5].

Dm(l—a)/ll-l-s’
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Transformations of a quadratic form
which do not increase the class-number (II)
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In memory of Yu. V. Iinnik

1. Introduction and notation. Let f be a quadratic form with integer
ooefficients, in any number # of variables. Then by ¢(f), the class-number
of f, is meant the number of elasses in the genus of f. I showed in [1] that
under certain transformations the clags-number does not increase. The
results of 17, which were used in [2] to show that ¢(f) > 1 for every posi-
tive-definite f with # > 11, will hére be improved, so as to malke possible
some further applications explained in §§ 8, 11 below. :

The transformations will be defined in a slightly different way, so that
we shall have two alternative ways of dealing with the prime number 2.
The effect of the transformations on the arithmetic properties of the form,
and. the cases in which they leave the elass-number unaltered, will be in-
vestigated more fully than in [1]. The present paper is independent of {1].

Ttalic letters, with or without accenfs and subseripts, denote integers,
o always prime, except f,g, b, used for quadratic forms (always with
integer coefficients). Latin capitals, except F, &, also used for quadratic
forms, denote sgunare matrices, I being an identity matrix. Small Latin
letter in bold type denote column vectors, with integer elements. An aceent
is used to denote transposifion of a matrix or vector. 4, is the standard
lattice in n-space, and its points arve regarded as column vectors; its.origin
is 0 = col{0, ..., 0}. MA, is the sub-lattice {Max: xed,} and md, (m=0)
means (ml).1,. '

The matrix A(f), = A'(f), of the quadratic form f is defined so that
we have the identities

11 fledy) = f(x) &' ANy -+, fl@) =@ A(fz.
The discriminant d = 4(f) is defined by
' 1) det A () it 2|,

(
(1.2) d(f): 3(—1ptdetA(f) i 21m.




