Brun's method and the Fundamental Lemma, II*

by

H. HALBERSTAM (Nottingham) and H.-E. RICHTER (Ulm)

To the memory of Yu. V. Linnik

1. Introduction. Let \mathfrak{A} be a finite sequence of (not necessarily distinct nor necessarily positive) integers, and let \mathfrak{P} be a set of primes. Let $\overline{\mathfrak{P}}$ denote the complement of \mathfrak{P} with respect to the set \mathfrak{P}_1 of all primes, and let $(d, \mathfrak{P}) = 1$ signify that d has no prime factors in \mathfrak{P}. For any real numbers w and z satisfying $2 < w < z$ define

$$P(z) = \prod_{p \leq w} p, \quad P_{w,z} = P(z)/P(w)$$

and

$$S(\mathfrak{A}; \mathfrak{P}, z) = |\{a: a \in \mathfrak{A}, (a, P(z)) = 1\}|,$$

where $|\{\ldots\}|$ denotes the cardinality of the set \ldots.

Let $\omega(d)$ be a non-negative multiplicative arithmetic function on the sequence of square-free integers d which satisfies the following conditions:

$$\omega(p) = 0 \quad \text{if} \quad p \in \overline{\mathfrak{P}};$$

there exists a constant $A_1 \geq 1$ such that

$$(\Omega_1) \quad \quad \quad \frac{\omega(p)}{p} \leq 1 - \frac{1}{A_1};$$

there exist constants $s > 0$ and $A_2 \geq 1$ such that

$$(\Omega_2(s)) \quad \quad \quad \sum_{w < p < z} \frac{\omega(p)}{p} \log p \leq s \log \frac{z}{w} + A_2, \quad 2 < w < z.$$

* This paper is a sequel to [1]. A brief announcement of its results was contained in [3].
We shall write
\[V(x) = \prod_{p \leq x} \left(1 - \frac{\omega(p)}{p} \right) . \]

We postulate the existence of a real number \(X > 1 \) and an arithmetic function \(\omega \) of the above class such that the 'remainders' \(R_d := \sum_{d \leq X / \log X} \mu(d) \omega(d) \) are small on average, in a sense to be made precise in the next section. In an earlier paper bearing the same title (see [1]) we established a general form of Brun's sieve, and derived from it a rather sharp Fundamental Lemma (that is, an asymptotic formula for \(S(N; \mathcal{P}, x)/(XV(x)) \) valid in an extensive region of the \(x - \tau \) plane) under the hypothesis \((\Omega_4), (\Omega_4(x))\) and (R) \[R_d \ll X \omega(d) \quad \text{if} \quad \mu(d) \neq 0, (d, \mathfrak{P}) = 1, \]
for some real number \(K \gg 1 \). In this note we shall replace (R) by a much cruder upper bound condition together with an 'average' condition of Bombieri type (cf. condition \((R(x, \alpha))\) in [3] or [4]); and we shall indicate how the method of [1] leads, with very little modification, to an even more general form of Brun's sieve. We shall derive from this form a new Fundamental Lemma, and we shall apply this, by way of illustration, to prove the following companion result, for polynomial sequences with prime arguments, of Theorem 5 of [1]:

Theorem 1. Let \(f_1(n), \ldots, f_g(n) \) be distinct irreducible polynomials with integer coefficients, and suppose that
\[f_i(n) \neq \pm n \quad (i = 1, \ldots, g). \]
Write \(F(n) = f_1(n) \cdots f_g(n) \), let \(k \) denote the degree of \(F \), and let \(\varphi(p) = \varphi_F(p) \) be the number of solutions of the congruence
\[F(n) = 0 \mod p, \quad 0 \leq n \lt p. \]
Assume that
\[\varphi(p) < p \quad \text{for all primes} \quad p \]
and that
\[\varphi(p) < p - 1 \quad \text{if} \quad p \nmid F(0), \]
and define
\[\varphi'(p) = \begin{cases} \varphi(p) - 1, & p \nmid F(0), \\ \varphi(p), & p \mid F(0). \end{cases} \]
Let \(\nu \) and \(x \) be real numbers such that \(x \geq 3 \) and \(x^{1/\nu} \geq 2 \); and let \(g = g(x, \nu) \) (with or without suffixes) denote a number (usually referred to as a quasi-prime) having no prime factor less than \(x^{1/\nu} \). Then we have
\[\{(p: \ p \leq x, f_i(p) = q_i \text{ for } i = 1, \ldots, g)\} \]
\[= (\log x)^g \prod_{p \leq x^{1/\nu}} \left(1 - \frac{\varphi'(p)}{p - 1} \right) \left(1 + O_P \left(\frac{\varphi'(p) \log \log x - \log x}{\log x} \right) + O_P \left(\frac{1}{\log x} \right) \right) \]
moved, the expression on the right is equal to
\[\prod_{p \leq x^{1/\nu}} \left(1 - \frac{\varphi'(p) + 1}{p} \right) \left(1 - \frac{\varphi(p)}{p} \right)^{\varphi'(p)}/(p - 1) \times \]
\[\prod_{p \leq x^{1/\nu}} \left(1 + O_P \left(\frac{1}{\log x} \right) \right) \]
\[\times \left(1 + O_P \left(\frac{1}{\log x} \right) \right) \]

2. **Brun's sieve.** It will serve us best to begin with a statement of the form of Brun's sieve that is implicit in [1], in which the remains \(R_d \) are still explicit and which is therefore free of the condition (R).

Theorem 2 \((\Omega_4), (\Omega_4(x))\): Let \(b \) be a positive integer, and \(\lambda \) be a real number satisfying
\[0 < \lambda^{d+1} < 1, \]
and let
\[B = \frac{1}{2} A_3 \left(1 + A_1 \left(\frac{\lambda + A_2}{\log 2} \right) \right). \]
Define
\[A = \frac{2 \lambda}{\lambda + 1}, \quad \epsilon = \frac{1}{200 e^B}, \]
and let the sequence
\[\lambda = \lambda_1 < \lambda_2 < \ldots < \lambda_s < s \]
be given by
\[\frac{\log \lambda_n}{\log x} = e^{-\lambda_n} \log x \quad (n = 1, \ldots, r - 1). \]
For \(\nu \geq 1 \) or 2, for each \(n = 1, \ldots, r \) and for each positive divisor \(d \) of \(P(x) \) put
\[\chi_n(d) = \begin{cases} 1 & \text{if } \nu(d, P_{a,n}) \leq 2b - \tau \sum_{n
(1) Throughout, \(\nu(n) \) denotes the number of prime factors of \(n \).
and

\[
S_{\mathfrak{A}}(\mathfrak{P}, \mathfrak{B}, x) \geq XV(x) \left\{ 1 - \frac{\zeta^{2b} \delta^{3}}{1 - \frac{2}{B} \delta^{2} \log(\pi)} \exp \left((2b + 2) \frac{B}{\lambda \log \pi} \right) \right\} - \sum_{d \mathfrak{P}(d)} \chi(d) |R_d|;
\]

moreover, for any constant \(A \geq 1 \), we have

\[
\sum_{d \mathfrak{P}(d)} \chi(d) A^{\epsilon_{0}(d)} = O \left(x^{2b+1-\frac{2}{B} \frac{\log(x)}{1^{2}} - \frac{2}{B} \frac{\log(x)}{1^{2}}} \right),
\]

where the implied \(O \)-constant, while it may depend on \(A_{1}, A_{2}, x \) and \(A \), does not depend on \(x \) and \(\lambda \).

We now introduce in place of (B) a pair of new conditions on the remainders \(R_d \). We shall suppose first that there exist a real number \(K \geq 1 \) and a constant \(A_{4} \geq 1 \) such that

\[
|R_{d}| \leq K \left(\frac{X \log X}{d} + 1 \right) A_{4}^{\epsilon_{0}(d)} \quad \text{for} \quad \mu(d) \neq 0, (d, \mathfrak{P}) = 1;
\]

and we shall suppose also that for some constant \(a \) (\(0 < a \leq 1 \)) there exist constants \(C_{6} \geq 1 \) and \(C_{7} \geq 1 \) such that

\[
|R_{4}(s, a)| d \sum_{d < X \log^{-a} \mathfrak{p}^{-a}} \mu(d)^{2} |R_{d}| \leq C_{1} \frac{X}{\log^{a+\frac{1}{2}} X}.
\]

It is clear that (R_{6}) is, in general, much weaker than (B) (take, for example, the common case when \(\omega(p) \leq A_{4} \) for all \(p \)), and that (B) implies a condition of type \((R_{4}(s, 1))\). We shall see in Section 4 that both conditions are satisfied in the case of Theorem 1.

We shall now apply the new conditions \((R_{4})\) and \((R_{4}(s, a))\) in conjunction with (2.8) to the remainder terms in (2.6) and (2.7); we have, for \(\nu = 1 \) and \(\nu = 2 \) that

\[
\sum_{d \mathfrak{P}(d)} \chi(d) |R_d| \leq \sum_{d < x \log^{-a} \mathfrak{p}^{-a}} |R_d| + K \sum_{d \mathfrak{P}(d)} \left(\frac{X \log X}{d} + 1 \right) A_{4}^{\epsilon_{0}(d)} \chi(d)
\]

\[
\leq C_{1} \frac{X}{\log^{a+\frac{1}{2}} X} + 2KX^{1-\frac{1}{2} \log \log(\pi)} \sum_{d \mathfrak{P}(d)} A_{4}^{\epsilon_{0}(d)} \chi(d)
\]

\[
= O \left(\frac{X}{\log^{a+\frac{1}{2}} X} + KX^{1-\frac{1}{2} \log \log(\pi)} \right).
\]

If now we adopt the convenient notation

\[
u = \frac{\log X}{\log \pi},
\]

and if also we recall from \((1)\) (inequality (2.3)) that

\[
1/V(x) = O(\log^{a}(x)),
\]

we arrive at the estimates

\[
\sum_{d \mathfrak{P}(d)} \chi(d) |R_d|
\]

\[
\leq XV(x) \left\{ \frac{\nu^{-\epsilon}}{\log X} + \frac{\nu^{b} \log \log(\pi)}{\log X} \right\} \quad \text{for} \quad \nu = 1, 2.
\]

From Theorem 2 and (2.10) we now obtain

**Theorem 3 (\(\Omega_{1} \)), \(\Omega_{2}(x), (R_{4}), (R_{4}(s, a)) \): Let \(b \) be a positive integer, let \(\lambda \) be a real number satisfying (2.1), let \(B \) be as defined in (2.3) and write

\[
u = \log X/\log \pi.
\]

Then

\[
S_{\mathfrak{A}}(\mathfrak{P}, \mathfrak{B}, x) \leq 1 + 2 \sum_{d \mathfrak{P}(d)} \left(\frac{X \log X}{d} + 1 \right) A_{4}^{\epsilon_{0}(d)} \chi(d)
\]

\[
+ O(KX^{1-\frac{1}{2} \log \log(\pi)} \log \log(\pi)) + O(\nu^{b} \log \log(\pi))
\]

and

\[
S_{\mathfrak{A}}(\mathfrak{P}, \mathfrak{B}, x) \leq 1 + 2 \sum_{d \mathfrak{P}(d)} \left(\frac{X \log X}{d} + 1 \right) A_{4}^{\epsilon_{0}(d)} \chi(d)
\]

\[
+ O(KX^{1-\frac{1}{2} \log \log(\pi)} \log \log(\pi)) + O(\nu^{b} \log \log(\pi))
\]

where the \(O \)-constants, while they may depend on \(A_{2}, A_{1}, A_{4}, x \) and \(a \), do not depend on \(\lambda \) or \(b \).

To illustrate the effectiveness of Theorem 3, let us apply it to the 'prime twins' problem. We take \(\mathfrak{A} = (p+1: p < x) \) and \(\mathfrak{B} = (p: p > 2) \), so that \(\mathfrak{P} = (2) \). Then if \(d \) is square-free and odd,

\[
\sum_{d \text{prime}} 1 = \sum_{d = 1 \text{mod} 2} 1 = \pi(x; d, -2) = \frac{\pi(x)}{x} + R_{d};
\]

accordingly we take \(X = \pi(x), \omega(p) = 0 \) if \(p = 2 \) and \(\omega(p) = \frac{p}{p-1} \) if \(p \) is odd, and we find that \((\Omega_{3})\) is then satisfied with \(A_{1} = 2, (\Omega_{2}(x)) \) with
3. A Fundamental Lemma. We may now deduce from Theorem 3
THEOREM 4 \((\Omega_1), (\Omega_4(x)), (B_0), (R_1(x, a))\): \(L \gg x\) and write
\[u = \frac{\log X}{\log z}. \]
Then
\[S(\Psi; \mathbb{P}, z) = XV(z) \left(1 + O(e^{-\log u - \log \log u - \log(\log u)^2}) + O(K \log X) \right), \]
where the \(O\)-constants depend at most on \(A_0, A_1, A_2, z, a, c, C\).

Proof. We follow the argument of the proof of Theorem 4 of [1].

The result is of interest only if \(u \to +\infty\), and we concentrate therefore on the case of \(u\) large (although we can deal also with small \(u\) as in [1]).

For \(u \gg \log z\), that is to say, \(\log z < \log X\), we can easily check that the analogues of Theorems 1 and 2 of [1] are respectively
\[S(\Psi; \mathbb{P}, z) = XV(z) \left(1 + O(\log X) + O(KX^{-1} \log X^2 + X (1 + A_0)^{n(2)}) \right) \]
and
\[S(\Omega_1; \mathbb{P}, z) = XV(z) \left(1 + O(\log X) + O(KX^{-1} \log X^2) \right); \]
and that both these are better, in their limited ranges of effectiveness, than the stated result.

This allows us to suppose that
\[u < \log z, \]
and here an application of Theorem 3 with
\[b = \left[\frac{a}{2} - \frac{2}{3} \log u \right], \quad \lambda = \frac{e^\delta}{a} \log u \]
leads readily to the result.

4. Proof of Theorem 1. We take \(\Psi\) to be the sequence \(\{F(p): p \leq x\}\) and \(\mathbb{P}\) to be the set \(\mathbb{P}_1\) of all primes. Then, if \(\mu(d) \neq 0\),
\[\sum_{a=\mod d} 1 = \left(\{p: p \leq x, F(p) \equiv 0 \mod d\} \right) = \sum_{d=1}^{\theta} \sum_{F(p) \equiv 0 \mod d} \sum_{a=\mod d} 1 \]
\[= \sum_{p=\mod d} \pi(x; a) \cdot 1 = \sum_{p=\mod d} \pi(x; a) + O(e(d)), \]
\[0 \leq \theta < 1; \]
writing
\[E(x; d, l) = \pi(x; d, l) - \frac{\log x}{\varphi(d)}, \]
we obtain
\[
\sum_{a=0}^{d-1} 1 = \frac{\log x}{\varphi(d)} \frac{\varphi'(d)}{\varphi(d)} d = \sum_{a=0}^{\varphi(d)} E(x; d, l) + B(x; d, l),
\]
where \(\varphi'(d) \) is the number of solutions of
\[\mathcal{F}(n) = 0 \mod d, \quad 0 \leq n < d, \quad (n, d) = 1, \]
so that \(\varphi'(d) \leq \varphi(d) \), and where
\[E(x; d, l) = \max_{\substack{1 \leq d \leq x \mod l \leq d \leq x}} |E(x; d, l)|. \]
It is not hard to prove that \(\varphi' \) is a multiplication function, and therefore an appropriate choice of \(X \) and \(\omega \) here is
\[X = \frac{\log x}{\varphi(d)}, \quad \omega(d) = \frac{\varphi'(d)}{\varphi(d)}; \]
we may clearly assume that \(X > 1 \). It follows that
\[E(x; d, l) \leq \frac{\log x}{\varphi(d)} \varphi'(d). \]

In order to apply Theorem 4, we must check that the basic conditions are satisfied. From a well known elementary result we know that
\[\frac{\varphi'(p)}{p} \leq \frac{1}{k+1} \]
whenever \(\varphi(p) < p \), whence, by (1.4),
\[\frac{\varrho(p)}{p} = \frac{\varphi'(p)}{p} = \frac{\varphi(p)}{p} - 1 \leq 1 - \frac{1}{k+1} \quad \text{for all } p; \]

hence \(\Omega_1 \) holds with \(A_1 = k+1 \). Next, \(\Omega_2(x) \) is satisfied with \(k = g \) and \(A_2 = O_p(1) \) by virtue of a classical result of Negul [6] (see the proofs of Theorems 4 and 6 in [4]). We come to verify \(R_2 \) and \(R_2(x, a) \), and here we base ourselves on (4.2). Since \(\varphi(d) \leq k^{\varphi(2)} \) for square-free \(d \), the second

of these two conditions follows from (4.2) by Bombieri's theorem (as is demonstrated in full detail in the proof of Theorem 6 of [4]), with \(x = g, \ a = \frac{1}{k} \) and taking (as we may do) \(C = 1 \). As for the first condition, we have
\[|R_2| \leq |E(x, d, l) + 1| \leq \frac{x}{d} + 2, \quad k^{\varphi(2)} \leq 2 \left\{ \frac{1}{\log x} + 1 \right\} k^{\varphi(2)}, \]
so that \(\Omega_2 \) holds with \(X = 2 \) and \(A_2 = k \).

We may therefore apply Theorem 4. Here we take \(x = \frac{x}{\log x} \), so that by (4.1) and because \(x \geq \frac{21}{2} \) by hypothesis,
\[u = \frac{\log x}{\log x} = \frac{\log \left(\frac{x}{\log x} \right)}{\log x} \geq \frac{\log x}{\log x} = \frac{1 - \log x}{\log x} \geq \frac{1}{2}; \]

hence, by (4.1) again, (1.5) follows at once from Theorem 4.

As for the last statement in the theorem, we have
\[1 - \frac{\varphi'(p)}{p} = \left(1 - \frac{1}{p} \right)^{-1} \left(1 - \frac{\varphi(p)}{p} \right), \]
and therefore the product on the right of (1.5) is equal to (see [3], Lemma 2, (2.12), noting that condition \(\Omega_2 \) on p. 24 and \(\varphi(p) = \varphi(p) + 1 \) is satisfied with \(k = g+1 \) and \(A_2 = O_2(1) \), \(L = O_2(1) \))
\[\prod_{p} \left(1 - \frac{\varphi'(p)}{p} \right)^{1 - \frac{1}{p}} \leq \exp \left(- \frac{1}{p} \log \varphi x \right) \left(1 + O_2 \left(\frac{u}{\log x} \right) \right); \]

this completes the proof of Theorem 1.

References

Received on 4. 4. 1973