Addendum to the paper “On the product of the conjugates outside the unit circle of an algebraic number”

by

A. SCHINZEL (Warszawa)

The aim of this Addendum is to formulate two theorems which go further than Theorems 2 and 3 of [1] (*) and have been practically proved in that paper, but the fact has been overlooked by the writer. The notation of [1] is retained. In particular for a given polynomial \(F \) we denote by \(\deg F \) its degree, by \(C(F) \) its content and by \(\|F\| \) the sum of squares of the absolute values of the coefficients.

Theorem 2'. Let \(K \) be a totally real algebraic number field or a totally complex quadratic extension of such a field and \(F \in K[z] \) a polynomial with the leading coefficients \(p_0 \) such that \(z^{\deg F} F(z^{-1}) \neq \text{const} \cdot P(z), \; P(0) \neq 0 \).

Let \(|K| \) be the degree of \(K \); \(P(i) \) (\(i = 1, \ldots, |K| \)) the polynomials conjugate to \(F(z) \) and \(\alpha_0 \) the zeros of \(P(0)(z) \) then

\[
\prod_{i=1}^{|K|} \prod_{|a_i| \geq 1} |a_i| \geq \begin{cases}
\left(\frac{1 + \sqrt{5}}{2} \right)^{|K|/2} \left(\frac{N_{K \to P(C)^{1/2}}}{p_0} \right) \cdot \left(\frac{N_{K \to C(F)^{1/2}}}{p_0} \right)^{|\alpha_0|/2} & \text{if } |P(0)| \neq |p_0|, \\
\left(\frac{1 + \sqrt{17}}{4} \right)^{|K|} \left(\frac{N_{K \to (P(0)C(F), p_0C(F))^{1/2}}}{(p_0 \alpha_0)^{1/2}} \right) & \text{if } |P(0)| = |p_0|.
\end{cases}
\]

Corollary 1'. If \(z^{\deg F} F(z^{-1}) \neq \text{const} \cdot P(z), \; P(0) \neq 0 \) then

\[
\prod_{i=1}^{|K|} \prod_{|a_i| \geq 1} |a_i| \geq \left(\frac{1 + \sqrt{5}}{2} \right)^{|K|/2} \frac{C(F)}{p_0}.
\]

(*) Misprints of that paper are listed at the end of the Addendum.
THEOREM 3'. Let K satisfy the assumptions of Theorem 2', L be a subfield of K, $f(z) \in L[z]$. The number n of irreducible factors P of f such that $z^{[L]} P(z^{-1}) \not\equiv \text{const} P(z)$, $P(0) \neq 0$ counted with their multiplicities satisfies the inequality

$$(*) \quad (1 + \frac{1+V^2}{2})^{n[\mathbf{L}]} + (1 + \frac{1+V^2}{2})^{-n[\mathbf{L}]} \leq N_{K/L} \|f\| N_{K/L}^{-2} C(f)$$

with the equality attained only if either $L = Q$, $f(z) = c(z^{[L]} - 1)$ or $K \subset Q(V, \zeta_m)$, $L = Q$.

(4') $z^{[L]} f(z) f(\frac{1}{z}) = c \left(z^{[L]} - \left[\left| \frac{1+V^2}{2} \right| z^{[L]} + \left| \frac{1-V^2}{2} \right| z^{[L]} \right] - z^{[L]} \right)$

for l, m integers, m odd.

COROLLARY 2'. The number n occurring in Theorem 3' satisfies the inequality

$$n \leq \frac{\log (N_{K/L} \|f\| N_{K/L}^{-2} C(f))}{[L] \log \frac{1+V^3}{2}}$$

where the constant $\frac{1+V^3}{2}$ is best possible.

To see Corollary 1' it is enough to note that by (28) on p. 394 of [1] $P(0) \| f \| P(0)$ is an integer divisible by $C(f)$.

(In particular if $P(0) C(f) = \langle P_0 \rangle C(P)$ then $P_0 \| f \| P(0)$ is divisible by $C(P)$.

Hence:

$$|N_{K/L} a_0| \geq N_{K/L} \frac{C(P)}{\langle P_0 \rangle P(0)}$$

and the assertion of Theorem 2' in the case $|P(0)| = |P_0|$ follows from the formula

$$\prod_{j=1}^{[L]} \prod_{a_j=1}^{[L]} a_j = \prod_{j=1}^{[L]} a_j^{-1} \geq \left(\frac{1+\sqrt{17}}{4} \right)^{[K]} N_{K/L} a_0^{-1} 1/4$$

(see [1], p. 394, line 10 from below). The case $|P(0)| \neq |P_0|$ has been settled in [1].

To see Corollary 1' it is enough to note that

$$\left(\frac{1+\sqrt{17}}{4} \right)^{[L]} N_{K/L} \frac{C(P)}{\langle P_0 \rangle P(0)} \geq \left(\frac{1+\sqrt{5}}{2} \right)^{[L]} N_{K/L} \frac{C(P)}{\langle P_0 \rangle P(0)}$$

Theorem 3' follows from Corollary 1' in the same way as Theorem 3 from Theorem 2 in [1] under the assumption about prime ideal factors of $\langle f_0, f(0) \rangle C(f)^{-1}$, where f_0 is the leading coefficient of f.

Corollary 2' follows directly from (4') and the existence of polynomials satisfying (4'), e.g.

$$f(z) = z^{[L]} - \left[\left| \frac{1+V^2}{2} \right| z^{[L]} + \left| \frac{1-V^2}{2} \right| z^{[L]} \right] - 1.$$