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wenn [ irreduszibel ther K(X,_ ) ist. Wire das Polynom reduzibel, so
hitte es als Binom von Primzahlgrad in K(&, ) eine Nullstells b, und
ep folgte a = be mit einer p-ten Hinheitswurzel ¢; weiter b7 == a”e¥N, |,
also be N, _,; nach Induktionsannahme, ee NV, und damit e K™ nach Voraus-
gobzung; dann wire aber a<V,_,, im Widerspruch zu [Ny N, ] = p > L.

Nun sel 0 K(N,), ¢”e N, (und e M, falls p == 2 und ¢ef{N,) ist),
algo ¢ = a%d mit 0L g <p, deN,_,. Wir nehmen zuniichst ¢> 6, also
prim: zu p an und zeigen, dal das zu einem Widersprueh, fiihzt, Mit & be-
zeichnen wir die Norm von K (¥,) nach K (¥, ). Wegen Na = (--1)' g?
ergibt sich ((—=1)""'a”}? = (Ne)” d~". Tiir ungerades p ist a” domnach
p-te Potenz eines Hlements aus K(H,_ ), In Widerspruch zu

[E(N): K (V)] = p.

Im Fall p =2 wird —e® = f* mit feK (N, ), alto {eK(N,), i ¢ K (N, ),
¢t = ad = Lifd. Schreibt man ¢ = g-+ik mit g, he K (N, ), so folgt
g* =8, dh. ¢ = (1£i)g. Darans folgl g*= —e¢t/deN,_,, woiler durch
zwelmalige Anwendung der Induktionsannabme geN, ., und damib
1+ieH*M, wys zusammen mit 4¢K (N, ;) der anfangs goemachten
Voraussetzung widergpricht. '

Wir haben hiernach ¢”<¥, .. Ist 8 ein Tgomorphismus von X (N
in einen Oberkirper, der alle Elemente aus K (N,.,), nicht aber ¢ fest
I4sst, also Sa = e mit oiner primitiven p-ten Hinbeltswurzel e, so gilt
Se? = ¢”, also Se = ¢, und daraus folgt ¢ = @”b mit be K (N, ,); woiter
BPelN,_, {(und beK*M, falls ¢eX* M), also beXN,_,, nach Induktionsan-
nahme und damit ¢e N, '
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One-class genera of positive quadratic forms in at least
five variables

by

G, T wWarsoxn (London)

1. Introduction. Let f be a positive-definite quadratic form, with
integer coofficients, in any number n of variables; and denote by e(f)
the number of dlasses in the genus of f. I showed in [1] and [2] that there
existy an f with ¢(f) = 1 if and only if # < 10. Now it would be of interest
to find all the one-clags genera of positive n-axy forms for any » with
2% 010 (0 = 1 i trivial); especially for » = 2, which however seems
hopeless. _

Tging a method based on the results of [3], I break the problem up
into two parts, The second of these, which I defer to a later paper, involves
a great doal of calculation, but is considerably gimplified by using the
results of [47. The fivst part, doneforn = 3, 4in [5], [6], and forb < n» <10
in thig paper, consists in finding all the one-class positive genera that have
certain simple arithmetic properties explained in the mext section. The
namber of such genery is 1 for »n =1 and 20, 27, 14,14, 7, 5, 1, 1 for
n =3, ..., 10; and considerably greater for n = 2.

On. choosing reduced representatives of the 42 =14-...+1 of tllfase
genera that have mz B, and putting in 10 =14+14-2-6 ﬁorms with
n s 4, we obtain w list of 52 forms Fy, ..., Fy, each of Whlﬁ}.L, excel;tt
B, = o, has one of the others as ity leading (n —1)-ary section, This
foature of the result shortens both the statement (see Table 1, helow)
and.- the proof of the main resull.

2. Strongly primitive (SP) and square~free (SF) forms. We use fho
notation,

(2'1) E{w“w{mﬁ 1 1.'-'-:-: ?:A‘::::j :‘:‘_'{ ’n}

for a quadratic form (with integer coefficients ay); and for § < ¢ we write
Gy == @y, For f-ary [ and prime p we define 7,(f) as the least of fhe

7 = Adlh Ari-t-hfnetlca XEVIS
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integers # (0 << r << n) for which & form (2.1) equivalent to f can satisfy

(2.2} Play
Then f is said to be strongly primitive (SP) it ,(f} > &n for every p.

Now, from the set of forms (2.1) that are equivalent to f and satisfy
(2.2} with » =#,(f), we choose one satistying

(2.3) PEiay;
with % least possible, bub = #. Then f is p-adieally squave-free if f~u(2.1),
(2.2) with » = 7,(f), and (2.3) with } < n, ave inconsistont. And fis square-
free (8F) if it is p-adieally SF for every p. ‘

With these definitions, which are taken from [3] with a shghh change
of notation, we can state precisely the object of the present paper; it is
to investigate positive-definite n-ary quadratic forms f that are SP and
SF and satisty the conditions » =5 and e(f) =1. -

Tf the form. f is expressed as in (2.1} then its matrix 4 = A( f) is the
% % n symmetric matrix whose (4, j) element is a; if ¢ == J, 2a, i ¢ = j.
Then the discriminant of f is

(—=1)"det.A it 2n,
F(—1y-tdetd  if 24

Sinee 4 is congruent modulo 2 to a skew matrix, this definition makes
d an integer always, and see, e.g. [T], p. 21, (52),

(2.5) ‘ d=0orl(modd4) if 2n.

whenever j> 7.

whenever 4>+ and j > &,

(2.4) d=d(f) =

The } in (2.4) i in some ways mconvement, but it gives us, see [3], p. 583,
Lemma 4,

(2.6) 7o (f) :%¢P*d(f)-

Now let f be a form chogen from its class so as to gatisly (2.2) with

r = 1,(f) and (2.3) with minimal %; and define two forms ¢, », each
obvmus}y with mteger coaffmlents, by

@7 gl
(2.8) A, .., 2,)

o @) = Py, ..
= PTGy ey By PBpny vovy DBy Bpay 2oy )

= flts, SRR P Wggg s PT),

It is shown in [3] that the clmsses of g and % are nniquely determmed by
p and the elass of f, and that

(2.9) : ' ¢(f) = elg) = o(h).

" Obviously there is equality in (2.9) if f is p- a.dwa,lly SF, for then (2.8)
gives & = f; and we also have that one of r,{f), »
sum is n. Other possibilities for equality in (2.9) are investigated in [4].

1 DBy Bpgi1y v ooy D)y

i) 18 2 0, since their.
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It f is not p-adically SF then k < n and (2.8) gives

d(h) = pra(f),

whence crudely |d(h)| << |d(f)]- So by repeating the construction, with
suitable choice of p ab each step, we see that sbtarting with any given.
f we eome in finitely many steps to a form ¥ which is 8P and SF and
satisfies o(X) < e(f); further, 7 can be taken into & multiple of f by
o subm.ltutmn with integer coefficients and determinant > 1.

3. The forms F'.,...; F,,. Thege forms are listed in Table 1, below.

Table 1
w4 i border  d(Fg) n 4 i border a(I)
11 - 1 1 630, 12 0,0,0,0,1,1 —12
9 2 1 01,1 -3 31 0,0,0,0,0,1 —16
3 3, 2 1,1, 1 —2 692, 14 1,1,1,1,1,1 -7 [
4 0, 0,1 -3 33 0,0,1,1,1, 2 —15
4 5= 30,1, 1,1 4 634, 15 0,0,0,0,1, 1 —18
8 1, 1, &, 1 5 35 0,0,1,1,1,2 —~23
0, 0,01 8 1 63 170,1,1,1,1,2 28 |
0,1, 1, 2 12 , ' ‘
637 220,000,1,1 — 27
4 9, 4. 0,0, 1,1 9 : ‘
10 0,0 0,1 12 G 38 24 0,0,1, —1,0,2 —108
5 11- &5 1,1, 1, 1,1 2 789, 250,1,1,1,1,1,1 -1 1
13 0, 00,01 4 - 40 0,0,0,0,0,0,1 —3
1,1, 1, 1, 2 6 .
741~ 26 1,1,1,1,1,1,1, —2
5 14— 6 1,1,1,1,1 3 43 - 0,0,0,0,0,0,1 —4
16 D, 0,0 0, 1 5 : 1,0,0,0,0,0,2 —5
0,0,1,1, 2 7 . _
‘ ' 7 44 27 0,0,0,0,0,1,1 © —8
5 17- 70,0, 0, 1,1 6 |
20 0, 1,1, 1, 2 10 |-74 800,0,0,0,1,1,1 -8
0,0 1,1, 2 11 |-~
0, 1,1, 0,2 12 8 46, 880,0,0,0,0,0,1,1 1
47 0,0,0,0,0,0,1,2 5
o 23 g 1,1, 1,--1,2 15 .
848 40 0,0,0,0,0,0,1,1 9
5 22 9 0,0 00,1 0 :
840 41 1,1,1,1,1,1,1, 1" &
5 28 10 1,1,1,1,2 14 . S
24 0,0, 1,1, 2 18 8 50 45 0,0,0,0,0,1,1,1 16
6 25- 11 0,1, 1, k-1, 1 —8 | 946 460,0,0,0,0,0,0,0,1 )
29 1,1, 1,1, L, 1 —4 ,
0,0 0 0,0,1 —8 | 1052 5149,00,0,000,0,1,1 —3
0,1,1,1,1, 2 —11 :
1, 1,1, 1, 2 —12
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The table needs a little explanation. Except for By = a, each F; is
a form of rank n = x(i) =2 whlch redunees on pubting m, = 0 to I, for
some § < 4, with n(j) = n(é)—1, shown in colmn 3. To complete fhe
definition. of ¥; we need only the coefficients of =, @u,, ..., a% and
these are shown in column 4.

4. Notalion; snd two lemmas. The letters f, g, b, I, v, v, 0, plain
or embellished, denote quadratic forms, with integer coefficients unless
otherwize shated. Except in dealing with p-adic properties, all quadratic
forms are assumed to be positive-definite. f ~ g, f5 g mean that f is
equivalent to g over the rational, p-adic integery respectively, p any prime.
f =g, f > ¢ mean that f represents g over the rafional, p-adic integers;
Wo sha,ll be concerned mostly with easey in which the representation is
proper. We recall that two forms f, ¢ in the same number of variables
(and so, sinee both are positive-definite, equivalent over tThe real field)
are in the same genus, in symbols f o~ g, if fo7 ¢ for every p. e(f) =1
means that f ~ ¢ implies f ~¢. :

An n-ary form with dizcriminant & will often, for brevity, be denoted
. by (#, d); a disjoint form, say g(my, - .5 Bu) P (@pgrs oo 8,), O <k <n,
by g+vw. Combining these abbreviations, for example, I, iy (3, —2)-}
+(2, —8). Using this notation, and (2.6), we may redefine »,(f) by

(4.1) 7, (f) =max{r: fo (r, &) # pid,}.
‘We note algo, see [7], pp. 51-52, Theorems 29, 30, thad
(4.2) it dd’ is the square of a p-adic unit then (%, d) 3 (w, d').

The hypothesis means (dd'|p) = 1 (Liegendre gymbol) if p> 2, dd’
=1(mod8) if p =2. '

If f is an w-ary form, p-adically BF and with. 7, (f} = r, then (seo 1],
PR ’».32—003) we have

(4.3) fe, dy+pln—r,d”), prdd’,
exeept possibly if

(4.4) _ p=2, 2n, and 2tr,

in which ocase '

(4.8) fa (r—1,1)+[a, 2b, 20]+2(n—r—2,1), 2tac,

It is to e undersbood that (0, d) is meaningless unless d = 1, in which

case it is idenﬁically 0. In (4.5), and later, we write [0y, 4., @y ] for the

case # =2 of (2.1). In cage 2+b, in (4.5), we may if we pleage replace
@, 25, 20] by {2, 0,¢'], ad’ =1 (mod 4),
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Now we define, for n-ary fand b =1,...,»,

(4.6) Jo =Fel@y oo @) = flaa, o0y @, 0,000, 0),

(4.7) _ &y = &) = 4{f2);

Fur & = f @(F). We shall consider f as Hermite-reduced if it has the
property (for & ==1,...,n—1)

(48) idlc(.f)l == Hlin-{ldlc(f’)l: I Nfa dm(f,) = dm(f) for all m < k}'

Whether f is reduced or not, if f, i3 given (up to eguivalence) then
in general d,,, is restricted fo sabisfy certain congruence conditions. These
will he needed later, so we prove:

Tmmma L. With the foregoing notation, 4f 2
a (k—1y-ary form (k—1, d_;} with

, (mod d) if 20k,
(4.9) G =y .
(mod. 4d,) 4 2 +k.

< ko<, then f,, represents

Proof. By suitably transforming the variables @y, ..., %, Wwe may
suppose that the lash row of 4, = 4 (fiy) 18 0 , 0, @, 2b, where a and
b are integers; trangposition gives the last eoluum In deLA wr1s the cofactor
of 2b i3 detd,; so on reducing modulo 2detd, we find detAk,,l
o —atdetd,.;. Referring bo (2.4), we have (4.9) with a?d,_, for &
Obviously f, = (k~—1, a*dy_,) (properly if a == 1) the lemnma follows.

- Another lanum restricts f,_, but not &, ,-

oA 2. Suppose n 2= 3 and let a be an integer with @ = 0 or 1 (mod 4),

(@ip) = ~1 if p>2, ¢ = —3 (mod 8) if p = 2. Suppose a,lso that the
disjoinit form
(4"10) f(wl, M n) ( [ mm—-z)

is equivalent over the p-adic rationals to
{(4.11) ‘ By g - Mg+ v

Lhen f >y s Salse.

1’1-0 of. Temporarily, let ~ denote equivalence over the p- -adlie
rationals; and mete that (4.11) means (2, a)--p(2, ) i o= 3. From
(4.10) ~ (4.11) it follows theb d(f)d(g) is a p-ndie pquare. Now suppoye
f 245 then | ~ g--¢ for some 2-ary 0 with d{0) a p- -adie. square, Bo
0 N(z 1)y == oy, By (11,1.g0m.117mg g and using the obvious ea? - oy
~ @y ty TOr 0 A O gmg ~ (2, 1) 4 (2, 1) 00 (_4"10) ~

(4.12) Py By A= Wy g 4= -

e Wy g Bay g+ (2, @)+ (2, a).

oo By Brnn s

We now have (4.11) ~ (4.12); and by a well known theorem, due
to Witt, we can cancel (if » 2 4), and so obta,ip (2, a)+p (2, @) ~ By &+ Ty By,
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which however is false since the left member is not a zero form. This eon-
tradiction completes the proof,

5. Statement of vesulis. The forme I, ..., ¥y, in Table 1 represent
52 different genera. To see this we need only consider pairs with fhe same
n, d; there are Just four such pairs, all with d = 4:3 (mod 9). That implies,
taking p, # = 3, n—1in (4.3), that one of d, , =1, —1 (1nod 3) is incongis-
tent with (n,d) > (n—1, d,_1). Looking at column. 3 of Table 1, or putting
'@, = 0 in Fy,, Py, we find each pair S-adically inequivalent.

‘ The forms Fy, .
is trivial for # = 2 and proved for w = 3,4 in [6], [6]. Fyy,..., I, ave
all SP and SF. To see this, use (4.3)-(4.5). It is treivial that #,(f) = n or
n—1, and f is p-adically ST, unless p2|d(f), which for f = I, (11 <3 ¢ «1B2)
gives p < 3; and the proof is easily completed. Now we staté the main
result,

-TEEOREM 1. Let f be a positive-definite n-ary quadratic form with inleger
coefficients, n = 5, which 48 squarc-free and strongly primitive. Then f has
class-number L if and only if f is equivalent to one of the last 42 of the forms
listed in Table 1 above. : 0

For the ‘f of Theorem 1 we shall need

TuroREM 2. Wilh the notation of (4.6), (4.7), let F; be the form defined
in the i-th row of Table 1; and let f be a form with the same number w of
variables as T, satisfying the condition

(5.1) d(J) = dp (F)  for
Suppose -also that f is SF; then f ~ T, .
The forms ¥; have been chosen from. their elasses so as to be Hermito-

E=1,2,...,n.

reduced; but it turns out that they have the following property, stronger

and gimpler than (4.8):

{5.2) [ =By= ld (Nl = d,(Fy)|  foxr k=1,...,n.

Since Table 1 shows that d,(¥;) =1, —3 for & = 1, 2, and all 4, we see
using (2.5), that (5.2) i§ trivial for % = 1, 2. For & = 8, wo mnobe fhat
{3, —1) does not exist (its miniraum wonld be less than 1), and dy(#)
is always either —2 or —3, 8o 'we have only to find a p with 7, (3, -2)
in each ease in which dy () = 3. To do this for Ky = (5, 14), we uso
Lemma 2 with p = 2 and g = (3, —2). Other cages are eagier; for oxample,
Ty == (3, 18) = My > (8, —4), 50, by (4:3) with p = r =3, I, (3, ~2)
The argument is similar for & = 4, 5, ... '

6. Proof of Theorem 2. We shall deduce f ~ ¥, from (5.1) and.
{6.1) either f is 8F or I; = Fy(ay, ..., %,, 0) for some 1> 4.

‘We notice also, see Table 1, that F;(w,,..., s, ,, 0) = T, for some j < i. -

oy Iy are all ST and SF, with clags-number 1. This
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Now we can use induction on n; the case »n = 1 is trivial. For » > 2 the
inductive hypothesis permits us to replace (5.1) by :

62) faa By = By 2, 0 AUF) = A(F);

and it suffices to prove that (6.1) and (6.2) detetmine f uniquely up to
equivalongce. :

Denote by 4, B the matrices of f, f,, with f,., ~ F; o be chosen
later. Write col{a, 2b}, (@', 2b) for the lagt eolnmn and the last row of
A, where b is an integer and the column vector e and its transpose af
have integer elements. Then (6.2) gives

whence b iy determined if e is given, and @ hag to satisfy
{6.4) a' (adjB)a = —det A (F,) (mod 2det B).

"What we need therefore is to show that with suifable normalization a is

" determined uniquely by (6.1) and (6.4). As in Lemma 1, (6.4) is & con-

gruence modulo 44 (F,) if » is even, but 2 cancels out and the modulns
becomes A(F;) if n—1 is even, -
Normalization of @ ean be done in two stages. First, we may, without
altering the class of f, replace a by @ - Bt for any ¥ with integer elements.
Secondly, if 8 is any integral automorph of Fue1y we may transform f by
diag[9, 1] and so replace @ by e (8 being the ﬁraafxspo.sg gf 8), Often
8 = —I (I for identity) is all we need; but when I is disjoint (aJnd. wo
choose f,_, ~ Fy 50 a§ to preserve the disjointz_less) ﬂflere are o‘rjher obvious
possibilities, with § eithel a permutation matrix or c“ngon@l, with elernents
1.
¢ As an example, take n =3, ¥ = (4,5) = F,, whence as noted
above 2 cancels from. (6.4). We mzi‘.%hchoose fy ~ T, 80 as to have B =
= diag[(, 07, for some ¢, B+det ¢, adjB == diag[0, 0, 0, ¢] (mod 5),
whore ¢ == dot (. Now (6.4) reduces, writing ¢ == eol{ay, ...y @}, tO 2 con-
gr‘ué:[.mo of the shape @ =z ¢ (mod ). Normalization of @ by @ — a-- Bt
with € == (adjB)w, BE = Bu permits us to reduce the e; modulo 5. Then,
obviously, with other choices of €, we can have &, == (g = ty =0, B0 wo
have at mosh two possibilities foxr @ when d(F) is given; and N == —I
vornoved the wmbiguiby.
mmoNYoiv take B E« (J’z 18) == Py, F; can only .be (6., -—1(_)8) = FS%, and
fig BF gince the recond part of (6.1) is impogsihble, Oh_oosm.g B .su.l.ta,lzly,
we can normelize go as to have ay == @y = day = 0 (mod 3), with (b‘.et-)
implying o} == af (mod 3). Now to make f 8T we need 7y(f) = 3, which
is false if 31 a, 4y, 50 3@ and (6.4) simplities to & congruence module 8.
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It may next be noted that a disjoint F; presents no difficulty when
its summands have been dealt with, so we need only (Ssee column 3 of
Table 1) consider the 14 possible #,; that are not disjoint. Of these, one
is #'y, see above, and ten others can be dealt with just like (4, 5). The
three that remain-are Fy = (4, 4), Fy = (4, 12), and Fy, = (6, —4). F, and
Iy, ave well known foring with numerous automorphs, and #, has leading
section (3, —2), also with numerous automorphs. Ho these three cnges
can be dealt with by suitable choice of §; the detinils are loft to the reader.

7. Representation by SF forms. We shall prove three lemmas.

_ Levwma 3. Let f, g be positive-definite farms, and SUPPose f =4 for
every p, then ' = g for some ' o= f; whence, of ¢(f) =1, fo g

Proof, The result is well known; see, e.g., [_13], P 101, Lenuma 6
{for a reference).

Luvua 4. Suppose f, g, 40 n, s variables vespectively, are both p adwadla
8F. Then any one of the followwg eonditions implies f >y '

. (1) § << min (’.'?: —.‘2 9) (9 = 7_11 (f));

(i) prdiyg) and & < r; '

(i) s < n—3, r,(g) <7r and s—7 (g)-\nww,

(iv) & =n-—2, 7.7,(g) <r ond 4(f)dlg)

(V) p =2,8=8 n =20, r =3, ‘

Proof. For the sufficiency of (i), (ii), (ili) see [1], p. 555, Lenuna 2,
(4.13), (4.14). Using the sutficienoy of (i) and (iii) we may for (v) RUPJORE
r =3, and 2+d(g). Then we may suppose, see (4.3), that g = z,x, -+ ox,
2te; which with f satisfying (4.5) gives the result.

) w0t @ p-adio square;

It remains to prove the sufficiency of (iv). As in the proof of the

lemma quoted above, if > 3 we have, for some f/,
fo wyma ' 2 7 Py +fs

80 We may supposer —r,(g) < 2. Ii‘jM foot-f" and g 5 b+ g then d(f)d(k')
is not a p-adic Sqllcbre, 80 we may . use industion, 011 n. For p == 2, taking
B s xlcrz or (2, —3), this tells nus that we may suppose ru () 5 1. Bud
for p > 2, taking o= axf; pra, we may Suppose rulg) = () Similarly
using a suitable 4 with divisor p, we suppose min (e 1y e 2 N
i p=2<1if p>2 For p>2 this gives w3, for which soe (5]

Lemma 4. So suppose p = 2, and # < 5, with ¢ = 3, 1y (g) == 1 in the oase’
# = b. I now omit some details. '

With » = 5, .see (4.3), we have faw, ) 2 awi — axi, for any
odd @, so py.ta.kmg h = ax} for suitable o we have an induction from
B = el-: .A similar. argument, using also (2, —38) > ari+axy, 24a, can be
uged if n — 4 and r(9) =1. Tf % =4 and ry(g) = 0, then » == 2 and

s
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£ 05 (2, @)-2(2, b), 2(2, ¢) with @, b, ¢ each T or —3, and abe = 1 (mod 8).
So a; == ] o1 b == ¢, and in either case f= g. The case n = 3 is straight-
forward. i

Limama 8. With the notabion of {4.6), (4.7), suppose f> g, f d g, for
some { the greatest of whose successive minima is m. Then after suitable
transformation of @y, .o B

m | d| Jor even k,

7.1 ol =
(1) e dmid,  for odd k.

;S’?rpgpoea that ki 2 -3 and squality holds in (7.1). Then for some t-ary
SJorm B, 4= 8, whose swocessive mindme wre all equal to m,

(7.2) JTolidhoyg.
Proof. (4.8) gives
(7.3) Foo= Lot Ty ooy b ) 9 (Bgr s ey @)y

where » is a rational guadratic and the L, are rational linear forms in
Wpesyy oo vy W We 0y suppose that the leading coefficient of yisits minimum,
min v, and

: 2
(7.4) Jor = Jo(@ 4+ s ooy O 0] -+ (MINLY) @5 41

with rational constants ;.

Using (2.4), we have {7.1) with strict inequality if miny < m. So we
suppose miny = m. Now by hypothesis, if ¢ has s variables, g takes val-
ues <5 ab & linearly independent points (with integer coordinates).
Sinee f = g, f takes values =< at s linearly independent points. One
of these points has @y, ..., #, = 0,...,0; otherwise f = g would imply
fi= ¢. So there ave integers @y, ..., @, satisfying f<m and ; # 0 for
gome ¢ > k. 'With miny 3= m, this is possible only if mmy) = m and the
inbegers w1, .., &, sabisfy

o ) = 0 (1riod 1)
for  4o=1,.., k.

(T.8)  p(@ppyy e-er @) m=m and  Ly{dy, ..

Turther, ming = m gives ug (7.1), with ==, BO W6 ey Suppose kzn—38.
It (7.5} hee fewer than # —F linearly independent solutions we may |

© guppose that it implies @, = 0; then all the hypothesos hold good with

Fltyy oovy @y, 0) in place of f. We may therefore suppose that (7.5) holds
at.n ~ & points with determinant D > 0. It is well known that a positive
form. in three or fewer variables cannot take ibs minimam value at a set
of points with determinant > 1. So .D = 1.
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Now each linear form L; takes an integral value at # — k points with
determinant 1; so the coetficients of L, must be integers. A frivial trang-
formation now takes the vight member of (7.3) info the disjoint form
fo-+% (and so v has to have integer coefficients). This gives (7.2).

COROLLARY 10 LmmMMA 5. With the hypotheses of the second pert of

- the lemma, g ~ ¢ 4B, with ¢’ < f and ' < hy where 1, in 1, 2, or 3 varia-
bles, has all its successive minima < M.

Proof. f,-+h has to take valnes < m ab integer points (@, ..., #.,,)
corresponding to a set of ]inem']y indepondent solutions of g < m. Since
minh == m, any such point (@, ..., @,) hag to have either all tlm variahloes
of f;, or all those of %, equal to 0 The result follows.

8. Disjoint and perfect forms. We need-thres lemmag.

Immpra 6. A digjoint form g-+h cannot represent a perfect form ¢, with
aminimusn 1, wnless either g = ¢ or h = ¢. If g--h represents the disjoint
Jorm ¢ +¢'', each of ¢, ¢ perfect with minimum 1, then either one of g,
h represents ¢ +o”, or one of them represents ¢ and the other ¢''.

‘Proof. [1], p. 566--5b7, Lemmas 3, 4.

LemmA 7. Let f be positive, ST and SP, wzm nzT and 7,(f)s<n—3
Jor at least one prime p. Denole by ¢ the product of the p for which ry(f) is
minimal. Then there emist a d-ary form g ond an (n—4)-ary form h, each
SF and 8P, such that .

(8.1) O alg) = ¢ le) =24 plg, 4 if pro;
S - [ (A =2 if * »plg,
(8.2) a(h) = ¢ df), By =17
| B AT EVRR
and
(8.3) =gtk

"Proof. See [1], p. 560, Lemma. 9, for the existence of g satisfying
(8.1); then [1], p. 554, Lomma 1, for h satisfying (8.2), (8.3).
- Lemma 8. With hypotheses of Lemma T, suppose further that ¢(f) = 1.
Then n<C 8, ¢ =2, 7(f) =4, and h o (2, »-»«3)
Proof. If n = 11 then for ¢(f) > 1L see [1], p. 649, Theorem 1. For
= 9 and f of the gshape (8.1)~(8.3), ¢(f) > L by [1], p. 662, Lemumsa 12.
So 7 < 8. Now suppose «,(f) > 5 for p|g. Then Lemma 4 gives I= = for
every 4-ary ¢, and so by ¢(f) = 1, Lemm& 3, and (8.3), g-+h = ¢ In par-
ticular we may take ¢== (4, 4) or ( 3) (= Fy or Fy), each of which is well
known to be perfect-mth minivoum 1. Then by Lemma 6, cither g or
© ho= (4, 4) and either g or b (4, B), 80 g4k > (4, 4)+(4, B) which gives
75 (F) > 6=n—2 for every p. This contradiction proves r,(f) =4 for
?lg '
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Again appoealing to Lemmas 3, 4, 6 with (8.3), and noting that (3, —2)
is also perfect with minimum 1, either ¢ or = (3, —2). In either case,
{8.1) and (8.2) give r,{y-+h) = ﬁ for p> 2, so with #,(f} =4 when p|g
we have g = 2.

Now #,(g-+h) > 4 {or p > 2 shows that f o ¢ is true for every 4-ary
@ with f2 ¢ So cither f= (4,5) or f= (4,9). The first of these gives
a contradiction s above; 8o f~g-th o (4,9) = (2, ~3)4(2, —~3).
Applying Lemma 6 with ¢ = ¢" = (2, —8), if P (2, —3) then g
= (4, 4) = {4, 9), which ig impossible. 8o % » (2, ~3) and the proof is -
complote. '

9. Incqualities for veduced forms. In this section f iy a positive form
which is ITermite-reduced, and we make ugse of (4.6)-(4.8). We express
fin the shape (7.3), and (2.4) gives

(©.1) (@ed ()" a(f) =1, —4& dfor k(n-—k) even, odd.

‘We algo have (7.4), and this gives

(8.2) ditdy,,. = miny, ~dminyg - for & even, odd.
1 .

We have a bound for d,., in terms of k, i, n, & i wo can estimate miny;
for thig the following two formulae will suffice:

L

(9.8 (ming) " |d(y)| = 3,2,4,2,8;1,1

tor n—%k =2,3,4,5,6,7,8;
{9.4) ‘ 3(1'ni11.1,'))2£ i dyral - fox w2 k42,

The first of theso is well known, and (9.4) follows on using mm«p miney,,
where 9 = 9 (@E1s Pepar 05 0oy Oh

The labour of proving the 47 of Theorem 1 by caleulation, using the
foregoing und Theorvem 2, can be shortened in three ways. First, [2] gives

(9.5) 0(Fgy) == o(Fg) =1,

50 We may suppose # =5 8, Noxt, reference to [8] would dispose of many
of the oasier onses. Morve usefully, sineo the small & give most trouble,
wo make nge of the table of rednced quﬂd.emmry formy given in [9]. From
that table we find

(9.6) : < 9L = o(d, £) =1,
which is hest possible since
(9.7) (8, —2)+ 3% o (2, —3) +u} + 245,

‘a8 i cagily verified by means of (4.2) (for p> 3), (4.3), (4.5). We ghall

prove, using [9]:
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LeMma 9. Suppose f ~F, (11 < i< b2, see Table 1}, and let f be
Hermite-reduced; then f, is equivalent to one of ¥y, ..., Ty, '

Proof. Using (9.5} and (9.3) (with k = 0, » = [}, we find d, = minf
< 2, = 1. Then by (9.1)(9.3), with % = 1, |d;| < 7 in all cases; so with
dy == 0 or 1 {(mod4), d, <0, we have d, = —3 or —4. Then (9.1)-(9.3)
give |dy) =5 6, d, =< 29, d; < 36. Inthe troublesome case [ = (6, —108) o= Hyy,
we have 181&;, 80 d; = 18; whence a sharper estimate for d, can be had
by using (9.4) instead of ( 3). Thus we find dy = 25, which referring
to [9] gives |dy] < 4, whence on caleulating we find d, < 20. From [9]
this gives either 2 < jdy| = 3 or dy = —4, d, = 16, 4|dy. The latter eose,
in which f, is & swun of four squares, con’m‘adict’q (9.1)-{9.8) for nz 6
or d<12, leaving one cage (i = 20) in whieh it contradicts f ~ F,. So
|y < 3 |

Supposing first d, = —3, we calculate d, < 16 but besides d,.== 0
or-1 {mod 4), see (2.5), we have d, = 1 (mod 3) by Lemma 1, go d, < 12.
It dy = —2 we ocaleulate d;< 18, with equality -only for (5, 18), for
whieh obviously 3|d,. So again d, < 12; and this, by [8], gives the result.

10. Proof of the ‘f’ of Theorem 1. We assume f to be reduced and
in the genus of one of the forms Fyq, ..., Iy, of Table 1, scw I, and we
have to prove f ~ F;. We may by (9.5) suppose n < 8, ¢ L 50; and we
take first n =5, 4= 24. By Lemma 9, we have six cases to conbldor

Birgt, fy == Fy; = (4, 4). In this case d =0 (mod 2) by Lemma 1,
Theorem 2 gives f ~ Fyy, Iy, or Fyy if d< 6, and other d are excluded
by (3.2} '

Next, f, = Ly = (4, 5). Heve 42> 3 by (9.2) and (9.4), with % = 3,
and d % 1 (mod 5) by Lemma 1. Of the possibilities for & = d(F)),
these restrictions exclude all but 3, 5, 7, giving f ~ ¥y, Fys or F,, by
Theorem 2, and 9, 10, 12, 15, 18, excluded by (5.2).

The next two cages are similar. The case f, = {2, ~3)+(2, —8) = &,
needs a little more than one can get from (9.1)—(9.4); we ]uwe 3\d, d:» h,
d 12, 15 by (5.2), f ~ Fp, if d = D, We need to exclude the case d =
Bordering (2, —-3)+(2, —3) as in. the 1}r00£ of Theorem 2 o give (f‘), (;)
we easily find (B, 6) (2, =3Y+(3, —2) = (4, 8). Similarly for- f,
= (2, —3)+(2, —4). So we have '

(10.1) iy = —3 and dy =9,712 = d; 29, 12 respoctively.

As in the proof of Lemma 9, and using (5.2), we find d,, ..., dg =1,
—3, —3, —12, 18 in case f == (6, —108), whence f ~ Fy, by Theorem 2,
We may therefore suppose 2 6 and d # 108, and we need to prove
that f; is equivalent to one of

PPFIFF = (5, 2), (5, 4), (5, 3), (5, 5), (3, —2) +(2, ~3).
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With n, d a8 above we find that dy = —2 implies @, = 8. d, = —3,
d, = 12 is impossible, for wsing (9.3) it gives dy < 12, contradicting (10.1).
Ho dy=< 9. I dy == 9 we find dy=2 9 by (9.3), with equality by (10.1), and
S0 fy ~~ Fyp, and we may suppose dy = -2, d, =5 8, I dy = 4, (5.2) gives
us |d| =2 16, whence we caleulato d; <2 6, and with 2|d; by Lemma 1. we
have dy =2 or 4 ns roquired. If d4h = B, then d; = 3 and = -£1 (mod 5),
ag for » =2 B; woe caleulato dy < 7 and have dg = 3 or 5 a8 required. If
dy = 8 1‘,h(m dy e 6y 55 L1 (mod 8), 80 dy = 6, as required, if we use
(6.2) to exolnde n w0, [d] 3 24 by considering the p-adic behaviour of
(6, —27), (6, ~28) for p = 8, 7.

We now finigh the argument for » = 6 as for n = 5, 8o wo assume
ne=T or & which gives befier bounds for min v and so excludes some of
the fm'eg'oin pogsibilities for fi, leaving only (5, 2), (5,4), (5,3), (3, —2)+-
(2, ~3). Wo next show thal f" is equivalent to one of Fy == (6, —3),
VYRS ((': w8); Hyg = (4, 4) (2, =3).

Tor d; == £ wo hawve d; % (mod §), 80 on caleulating |d,| < 8 we have
what is required. Fov dy = 4, wo note that (9.4), with & = 4, d, = 4, gives
|dg! 22 12, On the other hand (9.3), with & == D, gives |dy| < 16, and Lemma
1 gives 2]dy, 80 rzﬂ w12, fy e Fyy. With dy = 3 wetind d, z 1 (mod 3),
|dol 22 7, << 12, »: 75 and then |dy|z 4, dg=16 (it » =8); otherwise
|l < 7. In t]w ,[’we rofmaining cases, F (6, —T7} ig false for p = 2, 5,
2,9 2 '

‘ﬁo dy o 3. T8 f == (3, —2)}+(2, —3) we have t0 have |d,] > 12, < 16,
dy #% 1 (mod 8), dy = —15. Then we find f5 ~ (4, 5)-+(2, —3), d,< 5,
contradietion. Now the possibilities for f, are as stated; so we can finigh
the proof for # = 7, and also for » > 8 (for n = 9, 10, see (9.5)), if we can
ghow that for % =8 f, must be one of Fy, = (7, —1}, Fy == (T, —3),
By o= (7, =2), Fys = (T, —8). We can exclude dy = —8, because d; =
gives dy| - 8 unless dy == 16, and ¥y, P (5, 2). Similarly, we avoid dy =12
anless @, == 18, and then |d,| < 16, =0 (mod 8). Now (8, 16} :ID (6, —3),
(6, —4) 18 easily verified, and by using |dq = 9 when dy = —3 or —4 the
proof is easily completod.

11. Posgibilities for d,, ..., d;, when o(f) == 1. From now on, sinco
we have oply tio Irmws the ‘only if? of Theorem 1, fiy asswned to be SP
drnd. qI, with noz 5, o(f) =1, and so v 10 bv (1), With. #,(f) 5= 4,

2 3, :fm‘ mmtmy' p, and n 3 b, Lemmag 3 and 4 (i) give f = ¢ for every
A a.w ¢ To particolar, f» (2 —3), whenee, taking f to be reduced, d; = 1
and d, == —3, _

Next, we have f = (2, ~4) = & +23. So we can appeal to Lemma
B owith k == 2, f, = (2, —3), and ¢ = (2, —4), m =1, Now (7.1), gives .
ldy] 5 8, and da ﬂ;»‘- ~1 (nod 3) by Lemma 1L, so dy = —2 or -3, and
Theorem 2 gives f, ~ Fy = (3, ~2). or F, = (2, —3)-+af.
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Tn the case f, = (3, —2), J; cannot represent the 2-adic zero form
(2, —7) = 22 d oy w225, So we can appeal again to Lemma B, with
fr = (3, =2}, ¢ = (2, —7), m = 2. From (7.1), with striet inequality by
the Corollary to Lemma 5, d, < 16. By Lemma 1, d, # 1 (inod 8), so
d; =4, 3, 8, 12 or 13. For d;, see Table 2, below.

In the other case, f; = (3, —3) P (2, —8) which i3 a 8-adic zero
form. 86 Lemma B, with m = 2, gives d, < 24. We may however exclude
dy = 24 by using (9.7), and ¢(f) = 1, to soe that f = (4, 24) = (3,—3)=d,
= —2. We have moreover d, % 1 (mod 3} by Leémma 1, and 4,29,
otherwise (9.4) with k = 2 would give |dy << 3. 80 d; = ), 12, 17, 20,
or 21. For d;, again soe Table 2 -

Table 2
& | & | o FEET Y | s>
-2 4 [1,1, 2] 2 7 1{2) 2
5 [2, 2, 2] 2 9 +1 (5} ' 3
8 [3, 0, 3] 3 24 +1(8) i
12 |, [21,2] 3 23 ~1(3), 1 (4) 14
13 [3,8,4] 13 51 — 1w
—3 8 "I1,0,2] E) 18 | £1(3) T 0, see (10.1)
12 . [2. 2, 3] 2 85 1(3), —1(4) 12, sec (10.1)
17 [2, 2, 9] 7 | 153 - -
20 [2, 2, 21 "3 40 _ - 25
21 [2, 2, 2] 2 42 - 28

If ¢ is the binary form shown in column 3 of Table 2, then f= ¢
as noted above, but f; $ g because Lemms 2 ghows that f, 2 g is false
for the p of column 4. S¢ on appealing to Lemma 5, with m = g(0,1),
we have d; < d,g(0,1); in some cases there is strict inequality by the
Corollaxy to Lemma 5. Hence the entries in column. 5. a(b), under
d; 55, means d; # o (mod ) and is proved by Lemma 1. The lower bound
for d; in column 7 comes from (9.4) with % = 8, nnless otherwise stated.

Studying the ta.ble, and noting that if #,,(f) = 3 then p|d, and pt|d;,
wo see tha.t : '

(11.1) - XGETE

For the only possible excepfion, by the inequalities in the table, is

dy = —3, dy =20, ds = 20. It so, however, by using Lemma 4 {ii), (iv)

and (3, —3) 3 (3, —2), see (4.2), we have the contradiction d; =« —2.
We next show that '

(11.2) ro(f) =3 dy = -3  and

for all p = 5.

dy =9 or 12.
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Tor when ry = 7~ 2 we can find % so that f ~ (2, —3) + %, see the references
given for Lemma 7. And then if f 5 (3, —2) Lemma 6 gives ko (3, —2),
whence o of 4 (3, —2) = (4, 8) and. g0 73(f) = 4. This gives the firsh
implication. For the socond, exclude d, = 21, with 9 ld; giving d; = 36,
by wsing f, = (3, —7) 3 (3, —4). With this, Lemmﬂ. 4 gives fo (3, —4)
and by using (3, —4) 11151104-(1 of {2, —8) in Lemma B we find the con-
traciction &, < 4 |dy).

Congider ‘nhe cagoy dy = —2, dy == —12, 13. In each, fo (3, —4)
= gt Ay - would, uging Le:mma. with, f;, = (3, —2), give the contra-
diction d, <3 8. 50 f b (3, ~4}, and by Lemma 3 and o(f) = 1, 33, —4)
is fq:lse for some p; but not for odd p, for which we can wuge {11.1)

r (11.2) and Lemma 4 (ii). So f =I: (8, —4); and by Lemwma 4 (iv), {v),

n = and —d; I8 a 2-adic squa.re A similar argument, nsing (3, —3),
3 in place of ( —4), 2, shows that —3d; is a 3-adic square. It follows
that either dg == (mod 72) or dg = 60 (mod 288), giving d; = 15 or 60;
but ds = 60 on].y .lt r9(f) = 3, implying 2|d,, d, = 13. So from the ine- :
gualities in the table we must have d, = 12, d; == 16, n = 5, then f ~ #,,
by Theorem 2.

A similar but simpler arg“ument, involving the forms (3, —2) and
(8, —4), and leading to the contradiction that ~—dy and —2d; are both
Z-adie squares, shows that 4, 12 in cage d = —3, Now five rows of
Table 2 have been disposed of, and the others need to be dealt with one
by one.

d, = 4 gives dy = 2,4, or 6 'a.ncl 80 f By, I’1L2 or Fy it # = 5.
In case n =6, fo (3, -~3) a8 above, f,$ (3, —3) since r,(4,4) =2, so
Lemma b With fo == (4, 4) gives dy<< 4, = 2 or 4. : '

It d, =5 then f, $ (3, —4) and so we find either f> (3, —4) and
dy <pB, or'n =0 and —d; & 2-adic square. So dr, =38, b, or 7, fy ~ Fpq,
Ay oor Fog, with d5 = 3 or 5 when # = 6.

I @ =8 and f3 (8, —7), = ab (2, ~T), then @ =15, dy = 21,
f;, = (B, 21) = (4, 9) for all p iy easily verified, and Lemma 5§ with

(4 9) (,z -3) f- ( ~3) gives the contradiction d; < 8. 8o f > (3,
) gives. dy < 16, Hxcluding dy = 13,
14 by cajloulatmg' Mm’r f,, 2 {4, L‘;) T (4, 4), for all p, d; =86, 8, 10, 11
or 12, This gives what we nood for n == B, gince then f 8T and 8P implies

Cobviowsly 844, So suppose w36 (then dg most be 6, bubt the other

pogsibilities can be execluded more eagily later). ‘

When dy = 9 we have d; == 9, 12, 15 or 18. For d; = 12 or 15 it is
oasily seon. that f 2 (3, -2} for every p, giving the confradiction dy = —2.
With dy == 18, fﬁ(ml, 0, 2,0, @) = o} 23205 = (3, —8) 3 (3, —2) leads
to the same contradiction, So dg =9 and f5 ~ Fy,.
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Now suppose dy = —3, d, =12, I 9rd; then f (3, —2) gives

n =15 and d; = —2 (nmod 16); so the bable gives d; =14, 30, 18 or 27. -

But we gee now that f o (3, —7), so d; =< 2d, and we have d; = 14 or
18, fo ~ Fay or Ty If n = 6, dy == 18 is the only possibility.
We have now completed the proof of Theorem 1 for » =5.

12. Table 3, below, is constructed on the lines of Table 2 to give,
for o = 6, a fabrly small number of possibilities for d = d4, for each of
the possible f, found in § 11. Let g be the ternary form shown in column
43 in each cage, § = [y, Mra;s dea Uea| 18 disjoint, with no terms in wym,
or m,my; and fy B g comes from Lemma 2; with the p of columm &.

Table 3
'EARS fi b o oz | aw NE
-2 4| 3 [1,1,2;2] 2 16 1(8) 3
4 [1,1,2;1] 2 31 1(2) 12
—s T ETT s ILL 1 2 3 | .24 1 (3) Ty
‘ 5 [2, 2, 2; 1] 2 39 +1(5) 15
—2 1 8 & 05 2, 2; 11 3 47 1 (3), 5 (8) 15
8 [, 1, 2: 2] 2 64 1 (2y 24
10 [, 1, 1;2) 9 80 41 (6), 5 {8) 30
11 13,0, 3;1] 3 132 1,8, 4,5, 9 (11) 47
12 1,1, 15 2] 3| o6 1(8),1(2) 56
—3 | 8| o {1, 1, 4; 3] 3 [ 144 a7)d 27
~3 12| 18 [1,1,1; 3] 3 | 218 974 80
N

The only peint that needs explanation is that with the chosen ¢'s
we have always f 2 4 for every p. Supposing the contrary, we seek a con-

tradiction. Referring to Lemma 4, we have p > 2 by (v), p+digk by
(iti), and v, (f) < 3 {obviously with equality) by (ii); so (11.1) gives p = 3.
Now (11.2) gives d, = 9 or 18, whence the table gives 31d(g), a contra-
diction. We note also that ,(f) = 3 implies 27+d. In the lagt two rows,
27+d would give the contradiction f = (8, —2).

We éan cut down the number of possibilities in the table as in §11.
For example, in rows 3-11 we have to have 5 (4, 4), and we seo from.
Lemmas 3, 4 and ¢(f) = 1 that f$ (4, 4) implies either r,(f) == 4, p*|d,
p|d;, for some odd p, or & iy a 2-adic square. In the latter case either
d =1(mod 8) or r(f) =4 and @ = 4 (mod 32), which implies 2|d;.
It will be convenient to put these arguments foo into tabular form, see
Table 4. Lo

- ‘When column 3 of Table 4 asserts f=$ ¢, ¢ 4-ary, we must asswme
f = gand deduce a contradiction. d(g) < d,, for the ¢, in column. 1, gives
an obvious contradiction; in other cases we have d(g) > d,. Now in many
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cases Lemma 5, with &k = 4, would contradict the value of d, shown in
colurnn 2. In three cases in which no such contradiction arises, we verify
that f; » g and use Lemma 5 with % = 5, giving a bound for |5 and
in column 3 woe make the further assnmption that |d| exceeds this bound.
Then in using Lemmas 3, 4 to exclude some d when £ 3 g, we argue ag
above.

Table 4
Alal o ge .
Al 2| (4,9 it d= ~10
|4 (48) i jd| = 16 24 a 2-adie square
3 3] (4,4 ) 014 or d = 1 (mod 8) R
5| (4,4 e 251d or d =1 (mod 8)

“91d or & a 2-adic square;
914, d = 4 (mod 16),

o
=
—_
s
=
SEeEeEe

or d = 4.0 (mod 25),

8 | (4, 4), (5,4 d a 2-adie square, d % —28,
10| (4,5), (4, 4), (4, 9) =4 (mod 16) or -5 (mod 25),
[use fi b (4, 9)] w20+ d; d a 2-adic square;
: d w1 (mod 8)
11| (4, 4), (4,9), 4,0 11%d or @ == 1 (mod 8),
1 (mod 3}, and 5 (mod 25)
12 | (4, 4), 9|d or 4 a 2-adie square; .
(2, =34 (3, —4), d % —72, —92, 80 d = —60;
m(‘t.L, ’i), (4, ) d = 1 {rod 3) or 45 (mod 28)
8 9 |{2, ~3)--2(2 —8)il|d| =72 | d % 1 mnod 8) (Lemmsa 2)

1271718 | (4, 9) d = 4 (mod 16)

In dealing with the case d, = 8, d; = 12, we do not need the forms
(4, D), (4, @) excapt for #,(f) = 4, in which case f 2 {4, 8), (4, 9) are both
false.

Now there apre 14 sets (dy, ..., ds, d) for which Theorem 2 gives
us f o~ &, for some ¢ (208 <4 = 38), If we exclude these, Tables 3 and
4 show that there remain only o few cases, e.g. dy, d = 9, —108, in which
fis.not 81, So the prook of Theorém 1 is cormplote for = == 6,

13. Completion of the argument for # == 7, 8, 9, 10, We first disposo
of the case »,{f) =5 n—3 for some p, in which, by Lemmas 7, 8 and ¢(f) == 1,
wa have o« 8 and
(13.1) e d)+h, k> (2, —-3).
We seo from (13.1), and (4, 4) = (2, —3), that f 2 (4, 9), whence f 2 (4, 49)
= {2y —T)--(2, ~T7}); and since v, (f) 2 5 for all p + 2, we have f 2 (4, 49)
for all » by Lemma 4, fo (4, 49) by Lemma 3. But (4,4) (2, —8)

8 — Acta Anlthunetioa KXVLI



826 ‘ G. .. Watson

P (4, 49), by Lemma 2; so Wo can appeal to Lemma § with f, = (4, 4) -
+(2, —3), g = (4,49), and m = 2, since (2, —7) ~[1, 1, 21, (7.1), with
equality excluded by the corollary to Lemma 5, gives |d| < 24.

We must have 8|d,, since r,(f) = 4, and we cannot have d, = —1
(mod 3); by Lemma 1, so d, = —8. This, by Theorem 2, gives f; ~ Ty,
50 we may suppose n = 8; and k= (3, —2). The foregoing argument
can be repeated, with f, ==-{4, 4) (3, —2) and g == (4, 49) - @%; and it
gives d = dy < 64, 7,(f) == 4 gives 164, 30 ¢ = 16, 32, or 48. In the firsh
case we find f ~ F,. In each of the others, using (4.3)-(4.5), we find
the contradiction r,(f) > 4. _

Now we assume 7, (f) = n—2 for all p; whence ¢(f) = 1 and Lemmag
3, 4 give f = g for every {(n—3)-ary (positive} g. The argument is like that
for % = B, 6, but simpler, and is condensed into Table & below‘

Tahle 5
.. o | < in (7.1), =in (7.1),
k| dy e 3 _ .y 7 B = | 7o
T 4| 4!(4,5) : 1(2), |2 _ -
5| 2| —3)+(2 -3 1(8) -3, —4 (6, 2)4- (2, —8)
6 -8 —71+2 ~3)| 13 —1, —8, (~4) -
61 =412 -N+(2 4| 1(4 | {1}, —2, —4, =5 ~G -
s 5| 2059 1(8) | —3, —4 . -
16|85 4 1) | =1 (7, —3)
6| —4 (55 1(4) | {—1} —2 (7, —4)
-2 ({3, —2)+(2 -T)| 5B} | {1}4 -
7| -8 (8 —2)+(2, —3) |—1(3) {1,4}, 9 ) -
-4l —a+@ =] 12 | {48}, 12,.:., 28
o6 [—3](6 —4) 13y | —1 -
{7 =1] (4 4)+(2 —3) - 1 _ S B A S R R )
07117, -2 - 1 -
81 1| {& 4+ ~T - | --
Al &a+6 -7 ooz e T E DR -8

If ¢ is the form shown in column 4, then we have fo y, g being
(n—3)ary, and f=> (n—3, d,.5), 88 explained above. f, 3 ¢ follows from

foPg with p =3 for n =8 k=26, 7, d = —3, p =2 otherwise.

T 213 g is either strmghtforwzhrd or proved by Lemma 2. Lemmsa 5§ is
auppl:led_wﬂ,h m = 1 or 2; it is easy to see which. Values of d,, 3 that f can
be excluded by the reductlon inequalities or, fok & = # -1, make not
SF, are enclosed in { }, () respectively in column 6. Blank entries in

icm
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column T are justified by either Lemma 6 or the corollary to Lemma 5.
The forms (7, d,), dy == —3, —4, in column 7, and columns 2, 3, are
(6, d;) 4%, by Lemma 5. :

Studying the table, wo fee at once that the ‘only if® of Theorem 1 is
trve for » = 7. Tor n = 9, all we need is o nofice that (7, —1)-+(2, —3)
¢ (8, 1)--8af; for this we may use Lemima 4. For » = 10, note that in
the cases d = —4, -7, -8 that we have Lo exclude fo (8, 1)-+2a2.
With o(f) = 1 this gives f> d,, where ¢, == (9, 2) ~(8, 1) 22 is
poerfect with minimum 1. See [11], p. 559, Lemma 8, and p. 563, Theorem. 3.
With g = @, and m == 1, Lemma 5 gives |d] < 4.

Finally, for n == & we have to exclude d = 12, ..., 28 when f, = (6,
~4)-- w3, Wo can do so by using Lemmag 3, 4 and ¢(f) = 1 to show
that f represents in each case at least one of the perfect forms (6, —3),
(6, —7), oxcept for 4 =16, which however makey f not ST,
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