ACTA ARITHMETICA XXVI (1975)

wenn f irreduzibel über $K(N_{s-1})$ ist. Wäre das Polynom reduzibel, so hätte es als Binom von Primzahlgrad in $K(N_{s-1})$ eine Nullstelle b, und es folgte a=be mit einer p-ten Einheitswurzel e; weiter $b^p=a^p\,\epsilon\,N_{s-1}$, also $b\,\epsilon\,N_{s-1}$ nach Induktionsannahme, $e\,\epsilon\,N_s$ und damit $e\,\epsilon\,K^\times$ nach Voraussetzung; dann wäre aber $a\,\epsilon\,N_{s-1}$, im Widerspruch zu $[N_s:N_{s-1}]=p>1$.

Nun sei $c \in K(N_s)$, $c^p \in N_s$ (und $c \in K^{\times}M$, falls p=2 und $i \in K(N_s)$ ist), also $c^p=a^qd$ mit $0 \leqslant q < p$, $d \in N_{s-1}$. Wir nehmen zunächst q>0, also prim zu p an und zeigen, daß das zu einem Widerspruch führt. Mit N bezeichnen wir die Norm von $K(N_s)$ nach $K(N_{s-1})$. Wegen $Na=(-1)^{p-1}a^p$ ergibt sich $((-1)^{p-1}a^p)^q=(Nc)^pd^{-p}$. Für ungerades p ist a^p demnach p-te Potenz eines Elements aus $K(N_{s-1})$, im Widerspruch zu

$$[K(N_s): K(N_{s-1})] = p.$$

Im Fall p=2 wird $-a^2=f^2$ mit $f \in K(N_{s-1})$, also $i \in K(N_s)$, $i \notin K(N_{s-1})$, $e^2=ad=\pm ifd$. Schreibt man e=g+ih mit $g,h \in K(N_{s-1})$, so folgt $g^2=h^2$, d.h. $e=(1\pm i)g$. Daraus folgt $g^4=-e^4/4 \in N_{s-1}$, weiter durch zweimalige Anwendung der Induktionsannahme $g \in N_{s-1}$ und damit $1\pm i \in K^\times M$, was zusammen mit $i \notin K(N_{s-1})$ der anfangs gemachten Voraussetzung widerspricht.

Wir haben hiernach $e^v \in N_{s-1}$. Ist S ein Isomorphismus von $K(N_s)$ in einen Oberkörper, der alle Elemente aus $K(N_{s-1})$, nicht aber a fest lässt, also Sa = ae mit einer primitiven p-ten Einheitswurzel e, so gilt $Se^p = e^v$, also $Se = ee^r$, und daraus folgt $e = a^rb$ mit $b \in K(N_{s-1})$; weiter $b^v \in N_{s-1}$ (und $b \in K^\times M$, falls $e \in K^\times M$), also $b \in N_{s-1}$, nach Induktionsannahme und damit $e \in N_s$.

Literaturverzeichnis

- [1] A. S. Besicovitch, On the linear independence of fractional powers of integers, J. London Math. Soc. 15 (1940), S. 3-6.
- [2] L. J. Mordell, On the linear independence of algebraic numbers, Pacific J. Math. 3 (1953), S. 625-630.
- [3] C. L. Siegel, Algebraische Abhängigheit von Wurzeln, Acta Arith. 21 (1972),
 S. 59-64.

One-class genera of positive quadratic forms in at least five variables

by

G. L. WATSON (London)

1. Introduction. Let f be a positive-definite quadratic form, with integer coefficients, in any number n of variables; and denote by e(f) the number of classes in the genus of f. I showed in [1] and [2] that there exists an f with e(f) = 1 if and only if $n \le 10$. Now it would be of interest to find all the one-class genera of positive n-ary forms for any n with $2 \le n \le 10$ (n = 1 is trivial); especially for n = 2, which however seems hopeless.

Using a method based on the results of [3], I break the problem up into two parts. The second of these, which I defer to a later paper, involves a great deal of calculation, but is considerably simplified by using the results of [4]. The first part, done for n=3, 4 in [5], [6], and for $1 \le n \le 10$ in this paper, consists in finding all the one-class positive genera that have certain simple arithmetic properties explained in the next section. The number of such genera is 1 for n=1 and 20, 27, 14, 14, 7, 5, 1, 1 for $n=3,\ldots,10$; and considerably greater for n=2.

On choosing reduced representatives of the $42 = 14 + \ldots + 1$ of these genera that have $n \geq 5$, and putting in 10 = 1 + 1 + 2 + 6 forms with $n \leq 4$, we obtain a list of 52 forms F_1, \ldots, F_{52} each of which, except $F_1 = x_1^2$, has one of the others as its leading (n-1)-ary section. This feature of the result shortens both the statement (see Table 1, below) and the proof of the main result.

2. Strongly primitive (SP) and square-free (SF) forms. We use the notation

(2.1)
$$\sum \{a_{ij} x_i x_j \colon 1 \leqslant i \leqslant j \leqslant n\}$$

for a quadratic form (with integer coefficients a_{ij}); and for j < i we write $a_{ij} = a_{ji}$. For n-ary f and prime p we define $r_p(f)$ as the least of the

integers r ($0 \leqslant r \leqslant n$) for which a form (2.1) equivalent to f can satisfy

$$(2.2) p|a_{ij} \text{whenever} j > r.$$

Then f is said to be strongly primitive (SP) if $r_p(f) \ge \frac{1}{2}n$ for every p.

Now, from the set of forms (2.1) that are equivalent to f and satisfy (2.2) with $r = r_n(f)$, we choose one satisfying

(2.3)
$$p^2 | a_{ij}$$
 whenever $i > r$ and $j > k$,

with k least possible, but $\ge r$. Then f is p-adically square-free if $f \sim (2.1)$, (2.2) with $r = r_p(f)$, and (2.3) with k < n, are inconsistent. And f is square-free (SF) if it is p-adically SF for every p.

With these definitions, which are taken from [3] with a slight change of notation, we can state precisely the object of the present paper; it is to investigate positive-definite n-ary quadratic forms f that are SP and SF and satisfy the conditions $n \ge 5$ and c(f) = 1.

If the form f is expressed as in (2.1) then its matrix A = A(f) is the $n \times n$ symmetric matrix whose (i,j) element is a_{ij} if $i \neq j$, $2a_{ii}$ if i = j. Then the discriminant of f is

(2.4)
$$d = d(f) = \begin{cases} (-1)^{4n} \det A & \text{if } 2 \mid n, \\ \frac{1}{2} (-1)^{4n-4} \det A & \text{if } 2 \mid n. \end{cases}$$

Since A is congruent modulo 2 to a skew matrix, this definition makes d an integer always, and see, e.g. [7], p. 21, (52),

$$(2.5) d \equiv 0 \text{ or } 1 \pmod{4} \quad \text{if} \quad 2|n.$$

The $\frac{1}{2}$ in (2.4) is in some ways inconvenient, but it gives us, see [3], p. 583, Lemma 4,

$$(2.6) r_p(f) = n \Leftrightarrow p \nmid \bar{d}(f).$$

Now let f be a form chosen from its class so as to satisfy (2.2) with $r = r_p(f)$ and (2.3) with minimal k; and define two forms g, h, each obviously with integer coefficients, by

$$(2.7) g(x_1, \ldots, x_n) = p^{-1} f(px_1, \ldots, px_r, x_{r+1}, \ldots, x_n),$$

$$(2.8) h(x_1, ..., x_n) = p^{-1}g(x_1, ..., x_r, px_{r+1}, ..., px_k, x_{k+1}, ..., x_n)$$

= $f(x_1, ..., x_k, p^{-1}x_{k+1}, ..., p^{-1}x_n).$

It is shown in [3] that the classes of g and h are uniquely determined by p and the class of f, and that

$$(2.9) c(f) \geqslant c(g) \geqslant c(h).$$

Obviously there is equality in (2.9) if f is p-adically SF, for then (2.8) gives h = f; and we also have that one of $r_p(f)$, $r_p(g)$ is $\geq \frac{1}{2}n$, since their sum is n. Other possibilities for equality in (2.9) are investigated in [4].

If f is not p-adically SF then k < n and (2.8) gives

$$d(h) = p^{2k-2n}d(f),$$

whence crudely |d(h)| < |d(f)|. So by repeating the construction, with suitable choice of p at each step, we see that starting with any given f we come in finitely many steps to a form F which is SP and SF and satisfies $c(F) \leq c(f)$; further, F can be taken into a multiple of f by a substitution with integer coefficients and determinant ≥ 1 .

3. The forms F_1, \ldots, F_{52} . These forms are listed in Table 1, below.

Table I

n	i	j	border	$d\left(F_{i}\right)$	n i	j border	$d\left(F_{i} ight)$
1	1	-	1	1	6 30,	12 0, 0, 0, 0, 1, 1	-12
2	2	1	1, I	3	31	0, 0, 0, 0, 0, 1	-16
3	3,	2	1, 1, 1	-2	6 32,	14 1, 1, 1, 1, 1, 1	-7
	4		0, 0, 1	-3	33	0, 0, 1, 1, 1, 2	-15
4	5-	3	0, 1, 1, 1	4	6 34,	15 0, 0, 0, 0, 1, 1	-15
	8		1, 1, 1, 1	5	35	0, 0, 1, 1, 1, 2	23
			0, 0, 0, 1	8	6 36	17 0, 1, 1, 1, 1, 2	-28
			0, 1, 1, 2	12	.		OH.
			0 0 1 1	9	6 37	22 0, 0, 0, 0, 1, 1	-27
4	9, 10	4.	0, 0, 1, 1 0, 0, 0, 1	12	6 38	24 0, 0, 1, -1, 0, 2	108
-,			1, 1, 1, 1, 1	2	$\frac{-\frac{0.38}{7.39}}{}$	25 0, 1, 1, 1, 1, 1, 1	-1
5	11- 13	5	0, 0, 0, 0, 1	4.	40	0, 0, 0, 0, 0, 0, 1	3
	10		1, 1, 1, 1, 2	6	***	0, 0, 0, 0, 0, 0,	~
			1, 1, 1, 1, 1,	Ů	7 41-	26 1, 1, 1, 1, 1, 1, 1, 1,	-2
5	14-	6	1, 1, 1, 1, 1	3	43	0, 0, 0, 0, 0, 0, 1	-4
	16		0, 0, 0, 0, 1	5		1, 0, 0, 0, 0, 0, 2	-5
			0, 0, 1, 1, 2	7			
			•		7 44	27 0, 0, 0, 0, 0, 1, 1	-6
5	17	7	0, 0, 0, 1, 1	6			
	20		0, 1, 1, 1, 2	10	7 45	30 0, 0, 0, 0, 1, 1, 1	-8
			0, 0, 1, 1, 2 0, 1, 1, 0, 2	11 12	8 46,	39 0, 0, 0, 0, 0, 0, 1, 1	1
			0, 1, 1, 0, 4	1.4	47	0, 0, 0, 0, 0, 0, 1, 2	
5	21	8	1, 1, 1, -1,	2 15	34.	2, 2, 2, 1, 2, 2, 2, 2, 2	
					8 48	40 0, 0, 0, 0, 0, 0, 1, 1	9.
5	22	9	0, 0, 0, 0, 1	9			
					8 49	41 1, 1, 1, 1, 1, 1, 1, 1, 1	4
5	23,	10	1, 1, 1, 1, 2	14			
	24		0, 0, 1, 1, 2	18	8 50	45 0, 0, 0, 0, 0, 1, 1, 1	
6		, 11	0, 1, 1, 1, 1,		9 51	46 0, 0, 0, 0, 0, 0, 0, 0	, 1
	29		1, 1, 1, 1, 1,				
			0, 0, 0, 0, 0,		10 52	51 0, 0, 0, 0, 0, 0, 0, 0), 1, 1 —3
			0, 1, 1, 1, 1,				
			1, 1, 1, 1, 1,	z -1z	l		

The table needs a little explanation. Except for $F_1 = x_1^2$, each F_i is a form of rank $n = n(i) \ge 2$ which reduces on putting $x_n = 0$ to F_j , for some j < i, with n(j) = n(i) - 1, shown in column 3. To complete the definition of F_i we need only the coefficients of x_1x_n , x_2x_n , ..., x_n^2 and these are shown in column 4.

4. Notation; and two lemmas. The letters $f, g, h, F, \varphi, \psi, \theta$, plain or embellished, denote quadratic forms, with integer coefficients unless otherwise stated. Except in dealing with p-adic properties, all quadratic forms are assumed to be positive-definite. $f \sim g, f_{\overline{p}} g$ mean that f is equivalent to g over the rational, p-adic integers respectively, p any prime. $f \supset g, f_{\overline{p}} g$ mean that f represents g over the rational, p-adic integers; we shall be concerned mostly with cases in which the representation is proper. We recall that two forms f, g in the same number of variables (and so, since both are positive-definite, equivalent over the real field) are in the same genus, in symbols $f \simeq g$, if $f_{\overline{p}} g$ for every p. c(f) = 1 means that $f \simeq g$ implies $f \sim g$.

An *n*-ary form with discriminant d will often, for brevity, be denoted by (n, d); a disjoint form, say $g(x_1, \ldots, x_k) + \psi(x_{k+1}, \ldots, x_n)$, 0 < k < n, by $g + \psi$. Combining these abbreviations, for example, F_{17} is (3, -2) + (2, -3). Using this notation, and (2.6), we may redefine $r_p(f)$ by

$$(4.1) r_p(f) = \max\{r \colon f \supset (r, d_r) \neq p \mid d_r\}.$$

We note also, see [7], pp. 51-52, Theorems 29, 30, that

(4.2) if dd' is the square of a p-adic unit then $(n, d) \sim (n, d')$.

The hypothesis means (dd'|p) = 1 (Legendre symbol) if p > 2, $dd' \equiv 1 \pmod{8}$ if p = 2.

If f is an n-ary form, p-adically SF and with $r_p(f)=r$, then (see [1], pp. 552-553) we have

$$(4.3) f \sim (r, d') + p(n-r, d''), p + d'd'',$$

except possibly if

$$(4.4) p = 2, 2 \mid n, \text{and} 2 \nmid r,$$

in which case

$$(4.5) f_{2}(r-1,1)+[a,2b,2e]+2(n-r-2,1), 2rae.$$

It is to be understood that (0, d) is meaningless unless d = 1, in which case it is identically 0. In (4.5), and later, we write $[a_{11}, a_{12}, a_{22}]$ for the case n = 2 of (2.1). In case $2 \nmid b$, in (4.5), we may if we please replace [a, 2b, 2c] by [a, 0, c'], $ac' \equiv 1 \pmod{4}$.

Now we define, for n-ary f and k = 1, ..., n,

$$(4.6) f_k = f_k(x_1, \ldots, x_k) = f(x_1, \ldots, x_k, 0, \ldots, 0),$$

(4.7)
$$d_k = d_k(f) = d(f_k);$$

 $f_n, d_n = f, d(f)$. We shall consider f as Hermite-reduced if it has the property (for k = 1, ..., n-1)

$$(4.8) \quad |d_k(f)| = \min\{|d_k(f')| : f' \sim f, d_m(f') = d_m(f) \text{ for all } m < k\}.$$

Whether f is reduced or not, if f_k is given (up to equivalence) then in general d_{k+1} is restricted to satisfy certain congruence conditions. These will be needed later, so we prove:

LEMMA 1. With the foregoing notation, if $2 \le k < n$, then f_k represents a (k-1)-ary form $(k-1, d'_{k-1})$ with

(4.9)
$$d'_{k-1} = d_{k+1} \begin{cases} \pmod{d_k} & \text{if } 2 \mid k, \\ \pmod{4d_k} & \text{if } 2 \mid k. \end{cases}$$

Proof. By suitably transforming the variables x_1, \ldots, x_k we may suppose that the last row of $A_{k+1} = A(f_{k+1})$ is $0, \ldots, 0, a, 2b$, where a and b are integers; transposition gives the last column. In $\det A_{k+1}$, the cofactor of 2b is $\det A_k$; so on reducing modulo $2 \det A_k$ we find $\det A_{k+1} = -a^2 \det A_{k-1}$. Referring to (2.4), we have (4.9) with $a^2 d_{k-1}$ for d'_{k-1} . Obviously $f_k \supset (k-1, a^2 d_{k-1})$ (properly if $a = \pm 1$); the lemma follows.

Another lemma restricts f_{n-2} but not d_{n-2} .

LEMMA 2. Suppose $n \ge 3$ and let a be an integer with $a \equiv 0$ or 1 (mod 4), (a|p) = -1 if p > 2, $a \equiv -3 \pmod{8}$ if p = 2. Suppose also that the disjoint form

$$(4.10) f(x_1, \ldots, x_n) - g(x_{n+1}, \ldots, x_{2n-2})$$

is equivalent over the p-adic rationals to

$$(4.11) x_1 x_2 + x_3 x_4 + \ldots + x_{2n-7} x_{2n-6} + (2, a) + p(2, a).$$

Then $f \supseteq g$ is false.

Proof. Temporarily, let \sim denote equivalence over the p-adic rationals; and note that (4.11) means (2, a) + p(2, a) if n = 3. From (4.10) \sim (4.11) it follows that d(f)d(g) is a p-adic square. Now suppose $f \supseteq g$; then $f \sim g + \theta$ for some 2-ary θ with $d(\theta)$ a p-adic square, so $\theta \sim (2, 1), = x_1x_2$. By diagonalizing g and using the obvious $cx_1^2 - cx_2^2 \sim x_1x_2$ for $c \neq 0$, $g - g \sim (2, 1) + (2, 1) \ldots$, (4.10) \sim

$$(4.12) x_1 x_2 + x_3 x_4 + \ldots + x_{2n-3} x_{2n-2}.$$

We now have $(4.11) \sim (4.12)$; and by a well known theorem, due to Witt, we can cancel (if $n \ge 4$), and so obtain $(2, a) + p(2, a) \sim x_1 x_2 + x_3 x_4$,

icm

which however is false since the left member is not a zero form. This contradiction completes the proof.

5. Statement of results. The forms F_1,\ldots,F_{52} in Table 1 represent 52 different genera. To see this we need only consider pairs with the same n,d; there are fust four such pairs, all with $d\equiv\pm 3\pmod{9}$. That implies, taking p,r=3,n-1 in (4.3), that one of $d_{n-1}\equiv 1,-1\pmod{3}$ is inconsistent with $(n,d)\supset (n-1,d_{n-1})$. Looking at column 3 of Table 1, or putting $x_1=0$ in F_{10},F_{33} , we find each pair 3-adically inequivalent.

The forms F_1, \ldots, F_{10} are all SP and SF, with class-number 1. This is trivial for n=2 and proved for n=3,4 in [5], [6]. F_{11},\ldots, F_{52} are all SP and SF. To see this, use (4.3)–(4.5). It is trivial that $r_p(f)=n$ or n-1, and f is p-adically SF, unless $p^2 \mid d(f)$, which for $f=F_i$ (1.1 $\leq i \leq 52$) gives $p \leq 3$; and the proof is easily completed. Now we state the main result.

THEOREM 1. Let f be a positive-definite n-ary quadratic form with integer coefficients, $n \ge 5$, which is square-free and strongly primitive. Then f has class-number 1 if and only if f is equivalent to one of the last 42 of the forms listed in Table 1 above.

For the 'if' of Theorem 1 we shall need

THEOREM 2. With the notation of (4.6), (4.7), let F_i be the form defined in the i-th row of Table 1; and let f be a form with the same number n of variables as F_i , satisfying the condition

(5.1)
$$d_k(f) = d_k(F_i)$$
 for $k = 1, 2, ..., n$.

Suppose also that f is SF; then $f \sim F_i$.

The forms F_i have been chosen from their classes so as to be Hermitereduced; but it turns out that they have the following property, stronger and simpler than (4.8):

(5.2)
$$f \simeq F_i \Rightarrow |d_k(f)| \geqslant |d_k(F_i)| \quad \text{for} \quad k = 1, \dots, n.$$

Since Table 1 shows that $d_k(F_i) = 1$, -3 for k = 1, 2, and all i, we seen using (2.5), that (5.2) is trivial for k = 1, 2. For k = 3, we note that (3, -1) does not exist (its minimum would be less than 1), and $d_3(F_i)$ is always either -2 or -3, so we have only to find a p with $F_i \underset{p}{\Rightarrow} (3, -2)$ in each case in which $d_3(F_i) = -3$. To do this for $F_{23} = (5, 14)$, we use Lemma 2 with p = 2 and p = (3, -2). Other cases are easier; for example, $F_{24} = (5, 18) \Rightarrow F_{10} \Rightarrow (3, -4)$, so, by (4.3) with p = r = 3, $F_{24} \underset{p}{\Rightarrow} (3, -2)$. The argument is similar for $k = 4, 5, \ldots$

6. Proof of Theorem 2. We shall deduce $f \sim F_t$ from (5.1) and

(6.1) either
$$f$$
 is SF or $F_i = F_l(x_1, \ldots, x_n, 0)$ for some $l > i$. We notice also, see Table 1, that $F_i(x_1, \ldots, x_{n-1}, 0) = F_j$ for some $j < i$.

Now we can use induction on n; the case n = 1 is trivial. For $n \ge 2$ the inductive hypothesis permits us to replace (5.1) by

(6.2)
$$f_{n-1} \sim F_j = F_i(x_1, ..., x_{n-1}, 0), \quad d(f) = d(F_i);$$

and it suffices to prove that (6.1) and (6.2) determine f uniquely up to equivalence.

Denote by A, B the matrices of f, f_{n-1} , with $f_{n-1} \sim F_j$ to be chosen later. Write $\operatorname{col}\{a, 2b\}$, (a', 2b) for the last column and the last row of A, where b is an integer and the column vector a and its transpose a' have integer elements. Then (6.2) gives

(6.3)
$$A = \begin{pmatrix} B & a \\ a' & 2b \end{pmatrix}$$
, $2b \det B - a'(\operatorname{adj} B)a = \det A = \det A(F_i)$,

whence b is determined if a is given, and a has to satisfy

(6.4)
$$a'(\operatorname{adj} B) a = -\det A(F_i) \pmod{2 \det B}.$$

What we need therefore is to show that with suitable normalization a is determined uniquely by (6.1) and (6.4). As in Lemma 1, (6.4) is a congruence modulo $4d(F_j)$ if n is even, but 2 cancels out and the modulus becomes $d(F_j)$ if n-1 is even.

Normalization of a can be done in two stages. First, we may, without altering the class of f, replace a by a+Bt, for any t with integer elements. Secondly, if S is any integral automorph of f_{n-1} , we may transform f by diag [S, 1] and so replace a by S'a (S' being the transpose of S). Often S = -I (I for identity) is all we need; but when F_j is disjoint (and we choose $f_{n-1} \sim F_j$ so as to preserve the disjointness) there are other obvious possibilities, with S either a permutation matrix or diagonal, with elements ± 1 .

As an example, take n = 5, $F_j = (4, 5) = F_6$, whence as noted above 2 cancels from (6.4). We may choose $f_4 \sim F_6$ so as to have $B \equiv \text{diag}[C, 0]$, for some C, $5 \nmid \det C$, $\text{adj } B \equiv \text{diag}[0, 0, 0, e] \pmod{5}$, where $e = \det C$. Now (6.4) reduces, writing $a = \text{col}\{a_1, \ldots, a_4\}$, to a congruence of the shape $a_4^2 = e \pmod{5}$. Normalization of a by a = a + Bt with t = (adj B)u, Bt = 5u permits us to reduce the a_i modulo 5. Then obviously, with other choices of t, we can have $a_1 = a_2 = a_3 = 0$. So we have at most two possibilities for a when $d(F_4)$ is given; and S = -I removes the ambiguity.

Now take $F_j=(5,18)=F_{24}$. F_i can only be $(6,-108)=F_{38}$, and f is SF since the second part of (6.1) is impossible. Choosing B suitably, we can normalize so as to have $a_1=a_2=a_3\equiv 0\ (\text{mod }3)$, with (6.4) implying $a_4^2\equiv a_5^2\ (\text{mod }3)$. Now to make f SF we need $r_3(f)=3$, which is false if $3 \nmid a_4 a_5$, so $3 \mid a$ and (6.4) simplifies to a congruence modulo 8.

It may next be noted that a disjoint F_j presents no difficulty when its summands have been dealt with, so we need only (see column 3 of Table 1) consider the 14 possible F_j that are not disjoint. Of these, one is F_{18} , see above, and ten others can be dealt with just like (4,5). The three that remain are $F_5 = (4,4)$, $F_8 = (4,12)$, and $F_{26} = (6,-4)$. F_5 and F_{26} are well known forms with numerous automorphs, and F_8 has leading section (3,-2), also with numerous automorphs. So these three cases can be dealt with by suitable choice of S; the details are left to the reader.

7. Representation by SF forms. We shall prove three lemmas.

LEMMA 3. Let f, g be positive-definite forms, and suppose $f \supseteq g$ for every p, then $f' \supseteq g$ for some $f' \cong f$; whence, if c(f) = 1, $f \supseteq g$.

Proof. The result is well known; see, e.g., [5], p. 101, Lemma 6 (for a reference).

LEMMA 4. Suppose f, g, in n, s variables respectively, are both p-adically SF. Then any one of the following conditions implies f = g:

- (i) $s < \min(n-2, r) (r = r_p(f));$
- (ii) $p \nmid d(g)$ and s < r;
- (iii) $s \le n-3$, $r_n(g) < r$ and $s-r_n(g) < n-r$;
- (iv) s = n-2, $r_p(g) < r$ and d(f)d(g) not a p-adic square;
- (v) p = 2, s = 3, n = 6, r = 3.

Proof. For the sufficiency of (i), (ii), (iii) see [1], p. 555, Lemma 2, (4.13), (4.14). Using the sufficiency of (i) and (iii) we may for (v) suppose r=3, and 2+d(g). Then we may suppose, see (4.3), that $g=x_1x_2+ex_3^2$, 2+e; which with f satisfying (4.5) gives the result.

It remains to prove the sufficiency of (iv). As in the proof of the lemma quoted above, if $r \ge 3$ we have, for some f'.

$$f \sim x_1 x_2 + f' = p x_1 x_2 + f',$$

so we may suppose $r-r_p(g)\leqslant 2$. If $f\stackrel{\sim}{p}h+f'$ and $g\stackrel{\sim}{p}h+g'$ then d(f')d(h') is not a p-adic square, so we may use induction on n. For p=2, taking $h=x_1x_2$ or (2,-3), this tells us that we may suppose $r_p(g)\leqslant 1$. But for p>2, taking $h=ax_1^2, p+a$, we may suppose $r_p(g)=0$. Similarly using a suitable h with divisor p, we suppose $\min(n-r,n-2-r_p(g))\leqslant \frac{r}{2}$ if $p=2,\leqslant 1$ if p>2. For p>2 this gives $n\leqslant 3$, for which see $[5]^2$ Lemma 4. So suppose p=2, and $n\leqslant 5$, with r=3, $r_2(g)=1$ in the case' n=5. I now omit some details.

With n=5, see (4.3), we have $f \ge x_1 x_2 + f' \ge a x_1^2 - a x_2^2$, for any odd a, so by taking $h=ax_1^2$ for suitable a we have an induction from n=4. A similar argument, using also $(2,-3) \ge a x_1^2 + a x_2^2$, 2 + a, can be used if n=4 and $r_2(g)=1$. If n=4 and $r_2(g)=0$, then r=2 and

 $f, g \simeq (2, a) + 2(2, b), 2(2, c)$ with a, b, c each 1 or -3, and $abc \not\equiv 1 \pmod{8}$. So a = 1 or b = c, and in either case $f \supseteq g$. The case n = 3 is straightforward.

LEMMA 5. With the notation of (4.6), (4.7), suppose $f \Rightarrow g$, $f_k \not\equiv g$, for some g the greatest of whose successive minima is m. Then after suitable transformation of x_{k+1}, \ldots, x_k

(7.1)
$$|d_{k+1}| \leq \begin{cases} m |d_k| & \text{for even } k, \\ 4m |d_k| & \text{for odd } k. \end{cases}$$

Suppose that $k \ge n-3$ and equality holds in (7.1). Then for some t-ary form $h, t \le 3$, whose successive minima are all equal to m,

$$(7.2) f \supset f_k + h \supset g.$$

Proof. (4.6) gives

$$(7.3) f = f_k(x_1 + L_1, \ldots, x_k + L_k) + \psi(x_{k+1}, \ldots, x_n),$$

where ψ is a rational quadratic and the L_i are rational linear forms in x_{k+1}, \ldots, x_k . We may suppose that the leading coefficient of ψ is its minimum, min ψ , and

$$(7.4) f_{k+1} = f_k(x_1 + e_1 x_{k+1}, \ldots, x_k + e_k x_{k+1}) + (\min \psi) x_{k+1}^2,$$

with rational constants c_i .

Using (2.4), we have (7.1) with strict inequality if $\min \psi < m$. So we suppose $\min \psi \geqslant m$. Now by hypothesis, if g has s variables, g takes values $\leqslant m$ at s linearly independent points (with integer coordinates). Since $f \supset g$, f takes values $\leqslant m$ at s linearly independent points. One of these points has $x_{k+1}, \ldots, x_n \neq 0, \ldots, 0$; otherwise $f \supset g$ would imply $f_k \supset g$. So there are integers x_1, \ldots, x_n satisfying $f \leqslant m$ and $x_i \neq 0$ for some i > k. With $\min \psi \geqslant m$, this is possible only if $\min \psi = m$ and the integers x_{k+1}, \ldots, x_n satisfy

(7.5)
$$\psi(x_{k+1}, \ldots, x_n) = m$$
 and $L_i(x_{k+1}, \ldots, x_n) = 0 \pmod{1}$ for $i = 1, \ldots, k$.

Further, $\min \psi = m$ gives us (7.1), with =, so we may suppose $k \ge n-3$. If (7.5) has fewer than n-k linearly independent solutions we may suppose that it implies $x_n = 0$; then all the hypotheses hold good with $f(x_1, \ldots, x_{n-1}, 0)$ in place of f. We may therefore suppose that (7.5) holds at n-k points with determinant D>0. It is well known that a positive form in three or fewer variables cannot take its minimum value at a set of points with determinant > 1. So D=1.

Now each linear form L_i takes an integral value at n-k points with determinant 1; so the coefficients of L_i must be integers. A trivial transformation now takes the right member of (7.3) into the disjoint form $f_k + \psi$ (and so ψ has to have integer coefficients). This gives (7.2).

COROLLARY TO LEMMA 5. With the hypotheses of the second part of the lemma, $g \sim g' + h'$, with $g' \subset f_k$ and $h' \subset h$, where h', in 1, 2, or 3 variables, has all its successive minima $\leq m$.

Proof. $f_k + h$ has to take values $\leq m$ at integer points (x_1, \ldots, x_{r+l}) corresponding to a set of linearly independent solutions of $g \leq m$. Since $\min h = m$, any such point (x_1, \ldots, x_n) has to have either all the variables of f_k , or all those of h, equal to 0. The result follows.

8. Disjoint and perfect forms. We need three lemmas.

LEMMA 6. A disjoint form g+h cannot represent a perfect form φ , with minimum 1, unless either $g = \varphi$ or $h = \varphi$. If g+h represents the disjoint form $\varphi' + \varphi''$, each of φ' , φ'' perfect with minimum 1, then either one of g, h represents $\varphi' + \varphi''$, or one of them represents φ' and the other φ'' .

Proof. [1], p. 556-557, Lemmas 3, 4.

LEMMA 7. Let f be positive, SF and SP, with $n \ge 7$ and $r_p(f) \le n-3$ for at least one prime p. Denote by q the product of the p for which $r_p(f)$ is minimal. Then there exist a 4-ary form g and an (n-4)-ary form h, each SF and SP, such that

(8.1)
$$d(g) = q^2, \quad r_p(g) = 2 \text{ if } p \mid q, \quad 4 \text{ if } p \nmid q;$$

(8.2)
$$d(h) = q^{-2}d(f), \quad r_p(h) = \begin{cases} r_p(f) - 2 & \text{if } p \mid q, \\ r_p(f) - 4 & \text{if } p \nmid q, \end{cases}$$

and

$$(8.3) f \simeq g + h.$$

Proof. See [1], p. 560, Lemma 9, for the existence of g satisfying (8.1); then [1], p. 554, Lemma 1, for h satisfying (8.2), (8.3).

LEMMA 8. With hypotheses of Lemma 7, suppose further that c(f) = 1. Then $n \leq 8$, q = 2, $r_2(f) = 4$, and h = (2, -3).

Proof. If $n \ge 11$ then for c(f) > 1 see [1], p. 549, Theorem 1. For $n \ge 9$ and f of the shape (8.1)–(8.3), c(f) > 1 by [1], p. 562, Lemma 12. So $n \le 8$. Now suppose $r_p(f) \ge 5$ for $p \mid q$. Then Lemma 4 gives $f \supseteq \varphi$ for every 4-ary φ , and so by c(f) = 1, Lemma 3, and (8.3), $g + h \supseteq \varphi$. In particular we may take $\varphi = (4, 4)$ or (4, 5) (= F_6 or F_6), each of which is well known to be perfect with minimum 1. Then by Lemma 6, either g or $h \supseteq (4, 4)$ and either g or $h \supseteq (4, 5)$, so $g + h \supseteq (4, 4) + (4, 5)$ which gives $r_p(f) \ge 6 \ge n-2$ for every p. This contradiction proves $r_p(f) = 4$ for $p \mid q$.

Again appealing to Lemmas 3, 4, 6 with (8.3), and noting that (3, -2) is also perfect with minimum 1, either g or h = (3, -2). In either case, (8.1) and (8.2) give $r_p(g+h) \ge 5$ for p > 2, so with $r_p(f) = 4$ when $p \mid q$ we have q = 2.

Now $r_p(g+h)>4$ for p>2 shows that $f\supset \varphi$ is true for every 4-ary φ with $f\supset \varphi$. So either $f\supset (4,5)$ or $f\supset (4,9)$. The first of these gives a contradiction as above; so $f\sim g+h\supset (4,9)=(2,-3)+(2,-3)$. Applying Lemma 6 with $\varphi'=\varphi''=(2,-3)$, if $h\supset (2,-3)$ then $g=(4,4)\supset (4,9)$, which is impossible. So $h\supset (2,-3)$ and the proof is complete.

9. Inequalities for reduced forms. In this section f is a positive form which is Hermite-reduced, and we make use of (4.6)-(4.8). We express f in the shape (7.3), and (2.4) gives

$$(9.1) (d_k d(y))^{-1} d(f) = 1, -4 \text{for} k(n-k) \text{ even, odd.}$$

We also have (7.4), and this gives

(9.2)
$$d_k^{-1}d_{k+1} = \min \psi, -4 \min \psi \text{ for } k \text{ even, odd.}$$

We have a bound for d_{k+1} in terms of k, d_k , n, d if we can estimate min ψ ; for this the following two formulae will suffice:

$$(9.3) \quad (\min \psi)^{k-n} |d(\psi)| \geqslant 3, 2, 4, 2, 3, 1, 1$$
for $n-k=2, 3, 4, 5, 6, 7, 8$;

(9.4)
$$3(\min \psi)^2 \leqslant |d_k^{-1} d_{k-2}| \quad \text{for} \quad n \geqslant k+2.$$

The first of these is well known, and (9.4) follows on using $\min \psi \leq \min \psi_2$, where $\psi_2 = \psi(x_{k+1}, x_{k+2}, 0, ..., 0)$.

The labour of proving the 'if' of Theorem 1 by calculation, using the foregoing and Theorem 2, can be shortened in three ways. First, [2] gives

$$(9.5) c(F_{51}) = c(F_{52}) = 1,$$

so we may suppose $n \leq 8$. Next, reference to [8] would dispose of many of the easier eases. More usefully, since the small k give most trouble, we make use of the table of reduced quaternary forms given in [9]. From that table we find

$$(9.6) d \leqslant 21 \Rightarrow c(4,d) = 1,$$

which is best possible since

$$(9.7) (3, -2) + 3x_4^2 \simeq (2, -3) + x_3^2 + 2x_4^2,$$

as is easily verified by means of (4.2) (for p > 3), (4.3), (4.5). We shall prove, using [9]:

LEMMA 9. Suppose $f \simeq F_i$ (11 $\leqslant i \leqslant 52$, see Table 1), and let f be Hermite-reduced; then f_4 is equivalent to one of F_5, \ldots, F_{10} .

Proof. Using (9.5) and (9.3) (with $k=0, \psi=f$), we find $d_1=\min f<2$, =1. Then by (9.1)–(9.3), with $k=1, |d_2|<7$ in all cases; so with $d_2\equiv 0$ or 1 (mod 4), $d_2<0$, we have $d_2=-3$ or -4. Then (9.1)–(9.3) give $|d_3|\leqslant 6$, $d_4\leqslant 29$, $d_5<36$. In the troublesome case $f=(6,-108)\simeq F_{38}$, we have $18\mid d_5$, so $d_5=18$; whence a sharper estimate for d_4 can be had by using (9.4) instead of (9.3). Thus we find $d_4\leqslant 25$, which referring to [9] gives $|d_3|\leqslant 4$, whence on calculating we find $d_4<20$. From [9] this gives either $2\leqslant |d_3|\leqslant 3$ or $d_3=-4$, $d_4=16$, $4\mid d_5$. The latter case, in which f_4 is a sum of four squares, contradicts (9.1)–(9.3) for $n\geqslant 6$ or $d\leqslant 12$, leaving one case (i=20) in which it contradicts $f\simeq F_i$. So $|d_3|\leqslant 3$.

Supposing first $d_3 = -3$, we calculate $d_4 \le 16$ but besides $d_4 = 0$ or 1 (mod 4), see (2.5), we have $d_4 \not\equiv 1 \pmod 3$ by Lemma 1, so $d_4 \le 12$. If $d_3 = -2$ we calculate $d_4 \le 13$, with equality only for (5, 18), for which obviously $3 \mid d_4$. So again $d_4 \le 12$; and this, by [9], gives the result.

10. Proof of the 'if' of Theorem 1. We assume f to be reduced and in the genus of one of the forms F_{11}, \ldots, F_{52} of Table 1, say F_i , and we have to prove $f \sim F_i$. We may by (9.5) suppose $n \leq 8$, $i \leq 50$; and we take first n = 5, $i \leq 24$. By Lemma 9, we have six cases to consider.

First, $f_4 = F_5 = (4, 4)$. In this case $d \equiv 0 \pmod{2}$ by Lemma 1, Theorem 2 gives $f \sim F_{11}$, F_{12} or F_{13} if $d \leq 6$, and other d are excluded by (5.2).

Next, $f_4 = F_6 = (4, 5)$. Here $d \ge 3$ by (9.2) and (9.4), with k = 3, and $d \ne \pm 1 \pmod{5}$ by Lemma 1. Of the possibilities for $d = d(F_i)$, these restrictions exclude all but 3, 5, 7, giving $f \sim F_{14}$, F_{15} or F_{16} by Theorem 2, and 9, 10, 12, 15, 18, excluded by (5.2).

The next two cases are similar. The case $f_4=(2,-3)+(2,-3)=F_0$ needs a little more than one can get from (9.1)-(9.4); we have $3|d,d\geqslant 6$, $d\neq 12,$ 15 by (5.2), $f\sim F_{22}$ if d=9. We need to exclude the case d=6. Bordering (2,-3)+(2,-3) as in the proof of Theorem 2 to give (5,6), we easily find $(5,6)\sim (2,-3)+(3,-2)\supset (4,8)$. Similarly for $f_4=(2,-3)+(2,-4)$. So we have

(10.1)
$$d_3 = -3$$
 and $d_4 = 9$, $12 \Rightarrow d_5 \ge 9$, 12 respectively.

As in the proof of Lemma 9, and using (5.2), we find $d_1, \ldots, d_5 = 1$, -3, -3, -12, 18 in case f = (6, -108), whence $f \sim F_{38}$ by Theorem 2. We may therefore suppose $n \ge 6$ and $d \ne -108$, and we need to prove that f_5 is equivalent to one of

$$F_{11}, F_{12}, F_{14}, F_{15}, F_{17}, F_{22} = (5, 2), (5, 4), (5, 3), (5, 5), (3, -2) + (2, -3).$$

With n, d as above we find that $d_3=-2$ implies $d_4=8$. $d_3=-3$, $d_4=12$ is impossible, for using (9.3) it gives $d_5<12$, contradicting (10.1). So $d_4\leqslant 9$. If $d_4=9$ we find $d_5\leqslant 9$ by (9.3), with equality by (10.1), and so $f_5\sim F_{22}$, and we may suppose $d_3=-2$, $d_4\leqslant 8$. If $d_4=4$, (5.2) gives us $|d|\leqslant 16$, whence we calculate $d_5<6$, and with $2\,|d_5$ by Lemma 1 we have $d_5=2$ or 4 as required. If $d_4=5$, then $d_5\geqslant 3$ and $\neq \pm 1$ (mod 5), as for n=5; we calculate $d_5<7$ and have $d_5=3$ or 5 as required. If $d_4=8$ then $d_5\geqslant 6$, $\neq \pm 1$ (mod 8), so $d_5=6$, as required, if we use (5.2) to exclude n=6, $|d|\geqslant 24$ by considering the p-adic behaviour of (6,-27), (6,-28) for p=3, 7.

We now finish the argument for n=6 as for n=5. So we assume n=7 or 8, which gives better bounds for min ψ and so excludes some of the foregoing possibilities for f_5 , leaving only (5,2), (5,4), (5,3), (3,-2)+(2,-3). We next show that f_6 is equivalent to one of $F_{25}=(6,-3)$, $F_{27}=(6,-8)$, $F_{30}=(4,4)+(2,-3)$.

For $d_5=2$ we have $d_6\not\equiv \pmod 8$, so on calculating $|d_6|\leqslant 8$ we have what is required. For $d_5=4$, we note that (9.4), with k=4, $d_4=4$, gives $|d_6|\geqslant 12$. On the other hand (9.3), with k=5, gives $|d_6|<16$, and Lemma 1 gives $2|d_6$, so $d_6=-12$, $f_6\sim F_{90}$. With $d_5=3$ we find $d_6\not\equiv 1\pmod 3$, $|d_0|\geqslant 7,<12,=7$; and then $|d_7|\geqslant 4$, $d_8=16$ (if n=8); otherwise $|d_6|<7$. In the five remaining cases, $F_1\not\supseteq (6,-7)$ is false for p=2,5,2,2,2.

So $d_5 \neq 3$. If $f_5 = (3, -2) + (2, -3)$ we have to have $|d_6| > 12, \le 16$, $d_6 \neq 1 \pmod{3}$, $d_6 = -15$. Then we find $f_6 \sim (4, 5) + (2, -3)$, $d_4 \le 5$, contradiction. Now the possibilities for f_6 are as stated; so we can finish the proof for n = 7, and also for $n \ge 8$ (for n = 9, 10, see (9.5)), if we can show that for n = 8 f_7 must be one of $F_{39} = (7, -1)$, $F_{40} = (7, -3)$, $F_{41} = (7, -2)$, $F_{45} = (7, -8)$. We can exclude $d_6 = -8$, because $d_5 = 2$ gives $|d_6| < 8$ unless $d_8 = 16$, and $F_{50} \neq (5, 2)$. Similarly, we avoid $d_6 = -12$ unless $d_8 = 16$, and then $|d_7| < 16$, $|d_8| \leq 9$ when $|d_8| = -3$ or $|d_8| = -3$

11. Possibilities for d_1, \ldots, d_5 when c(f) = 1. From now on, since we have only to prove the 'only if' of Theorem 1, f is assumed to be SP and SF, with $n \ge 5$, c(f) = 1, and so $n \le 10$ by [1]. With $r_p(f) \ge \frac{1}{2}n$, so ≥ 3 , for every p, and $n \ge 5$, Lemmas 3 and 4 (i) give f = g for every 2-ary g. In particular, f = (2, -3), whence, taking f to be reduced, $d_1 = 1$ and $d_2 = -3$.

Next, we have $f \supset (2, -4) = x_1^3 + x_2^2$. So we can appeal to Lemma 5 with k = 2, $f_2 = (2, -3)$, and g = (2, -4), m = 1. Now (7.1) gives $|d_3| \le 3$, and $d_3 \ne -1 \pmod{3}$ by Lemma 1, so $d_3 = -2$ or -3, and Theorem 2 gives $f_3 \sim F_3 = (3, -2)$ or $F_4 = (2, -3) + x_3^2$.

In the case $f_3=(3,-2)$, f_3 cannot represent the 2-adic zero form $(2,-7)=x_1^2+x_1x_2+2x_2^2$. So we can appeal again to Lemma 5, with $f_k=(3,-2)$, g=(2,-7), m=2. From (7.1), with strict inequality by the Corollary to Lemma 5, $d_4<16$. By Lemma 1, $d_4\not\equiv 1\pmod 8$, so $d_4=4$, 5, 8, 12 or 13. For d_5 , see Table 2, below.

In the other case, $f_3 = (3, -3) \Rightarrow (2, -8)$, which is a 3-adic zero form. So Lemma 5, with m = 2, gives $d_4 \leq 24$. We may however exclude $d_4 = 24$ by using (9.7), and e(f) = 1, to see that $f = (4, 24) = (3, -3) \Rightarrow d_3 = -2$. We have moreover $d_4 \not\equiv 1 \pmod{3}$ by Lemma 1, and $d_4 \geqslant 9$, otherwise (9.4) with k = 2 would give $|d_3| < 3$. So $d_4 = 9$, 12, 17, 20, or 21. For d_5 , again see Table 2.

					· · · · · · · · · · · · · · · · · · ·	
d_3	d_4	f₄ ⇒	p	$d_{5} \leqslant$	$d_{\mathfrak{s}} \not\equiv$	$d_{\scriptscriptstyle 6}$ $>$
-2	4	[1, 1, 2]	2	7	1 (2)	2
	5	[2, 2, 2]	2	9	± 1 (5)	3
	8	[3, 0, 3]	3	24	$\pm 1 \ (8)$	6
	12	[2, 1, 2]	3	23	-1 (3), 1 (4)	14
	13	[3, 3, 4]	13	51		16
-3	9	[1, 0, 2]	3	18	£1 (3)	9, see (10.1)
	12	[2, 2, 3]	2	35	1(3), -1(4)	12, see (10.1)
	17	[2, 2, 9]	17	153	_	_
	20	[2, 2, 2]	2	40		25
	21	[2, 2, 2]	2	42	· —	28

Table 2

If g is the binary form shown in column 3 of Table 2, then $f\supset g$ as noted above, but $f_4 \not\supset g$ because Lemma 2 shows that $f_4 \supset g$ is false for the p of column 4. So on appealing to Lemma 5, with m=g(0,1), we have $d_5 \leqslant d_4 g(0,1)$; in some cases there is strict inequality by the Corollary to Lemma 5. Hence the entries in column 5. a(b), under $d_5 \not\equiv$, means $d_5 \not\equiv a \pmod{b}$ and is proved by Lemma 1. The lower bound for d_5 in column 7 comes from (9.4) with k=3, unless otherwise stated.

Studying the table, and noting that if $r_p(f) = 3$ then $p \mid d_4$ and $p^2 \mid d_5$, we see that

(11.1)
$$r_p(f) \geqslant 4$$
 for all $p \geqslant 5$.

For the only possible exception, by the inequalities in the table, is $d_3 = -3$, $d_4 = 20$, $d_5 = 20$. If so, however, by using Lemma 4 (ii), (iv) and $(3, -3) \lesssim (3, -2)$, see (4.2), we have the contradiction $d_3 = -2$. We next show that

(11.2)
$$r_3(f) = 3 \Rightarrow d_3 = -3$$
 and $d_4 = 9$ or 12.

For when $r_3 \leqslant n-2$ we can find h so that $f \simeq (2, -3)+h$, see the references given for Lemma 7. And then if $f \Rightarrow (3, -2)$ Lemma 6 gives $h \Rightarrow (3, -2)$, whence $f \Rightarrow x_1^2 + (3, -2) = (4, 8)$ and so $r_3(f) \geqslant 4$. This gives the first implication. For the second, exclude $d_4 = 21$, with $9 \mid d_5$ giving $d_5 = 36$, by using $f_4 \Rightarrow (3, -7) \geqslant (3, -4)$. With this, Lemma 4 gives $f \Rightarrow (3, -4)$ and by using (3, -4) instead of (2, -8) in Lemma 5 we find the contradiction $d_4 \leqslant 4 \mid d_3 \mid$.

Consider the cases $d_3=-2$, $d_4=-12$, 13. In each, $f=(3,-4)=x_1^2+x_2^2+x_3^2$ would, using Lemma 5 with $f_k=(3,-2)$, give the contradiction $d_4\leqslant 8$. So $f\Rightarrow (3,-4)$, and by Lemma 3 and c(f)=1, $f\geqslant (3,-4)$ is false for some p; but not for odd p, for which we can use (11.1) or (11.2) and Lemma 4 (ii). So $f\Rightarrow (3,-4)$; and by Lemma 4 (iv), (v), n=5 and $-d_5$ is a 2-adic square. A similar argument, using (3,-3), 3 in place of (3,-4), 2, shows that $-3d_5$ is a 3-adic square. It follows that either $d_5\equiv 15\pmod{72}$ or $d_5\equiv 60\pmod{288}$, giving $d_5\equiv 15$ or 60; but $d_5\equiv 60$ only if $r_2(f)=3$, implying $2|d_4$, $d_4\neq 13$. So from the inequalities in the table we must have $d_4\equiv 12$, $d_5\equiv 15$, n=5, then $f\sim F_{21}$ by Theorem 2.

A similar but simpler argument, involving the forms (3, -2) and (3, -4), and leading to the contradiction that $-d_5$ and $-2d_5$ are both 2-adic squares, shows that $d_4 \le 12$ in case $d_3 = -3$. Now five rows of Table 2 have been disposed of, and the others need to be dealt with one by one.

 $d_4 = 4$ gives $d_5 = 2$, 4, or 6 and so $f \sim F_{11}$, F_{12} or F_{13} if n = 5. In case n = 6, $f \supset (3, -3)$ as above, $f_4 \not = (3, -3)$ since $r_2(4, 4) = 2$, so Lemma 5 with $f_k = (4, 4)$ gives $d_5 \leqslant 4$, = 2 or 4.

If $d_4 = 5$ then $f_4 \Rightarrow (3, -4)$ and so we find either f = (3, -4) and $d_5 \leqslant 5$, or n = 5 and $-d_5$ a 2-adic square. So $d_5 = 3$, 5, or 7, $f_5 \sim F_{14}$, F_{15} or F_{16} , with $d_5 = 3$ or 5 when n = 6.

If $d_4 = 8$ and $f \Rightarrow (3, -7)$, $= x_1^2 + (2, -7)$, then n = 5, $d_5 = 21$, $f_5 = (5, 21) \underset{p}{\Rightarrow} (4, 9)$ for all p is easily verified, and Lemma 5 with g = (4, 9) = (2, -3) + (2, -3) gives the contradiction $d_5 \le 8$. So f = (3, -7) and Lemma 5 with g = (3, -7) gives $d_5 < 16$. Excluding $d_5 = 13$, 14 by calculating that $f_5 \underset{p}{\Rightarrow} (4, 5)$, or (4, 4), for all $p, d_5 = 6$, 8, 10, 11 or 12. This gives what we need for n = 5, since then f SF and SP implies obviously $8 \nmid d$. So suppose $n \ge 6$ (then d_5 must be 6, but the other possibilities can be excluded more easily later).

When $d_4 = 9$ we have $d_5 = 9$, 12, 15 or 18. For $d_6 = 12$ or 15 it is easily seen that f = (3, -2) for every p, giving the contradiction $d_3 = -2$. With $d_5 = 18$, $f_5(x_1, 0, x_3, 0, x_5) = x_1^2 + x_3^2 + 2x_5^2 = (3, -8) \approx (3, -2)$ leads to the same contradiction. So $d_5 = 9$ and $f_5 \sim F_{22}$.

Now suppose $d_3 = -3$, $d_4 = 12$. If $9 \nmid d_5$ then $f \Rightarrow (3, -2)$ gives n = 5 and $d_5 \equiv -2 \pmod{16}$; so the table gives $d_5 = 14$, 30, 18 or 27. But we see now that $f \supset (3, -7)$, so $d_5 \leqslant 2d_4$ and we have $d_5 = 14$ or 18, $f_5 \sim F_{23}$ or F_{24} . If n = 6, $d_5 = 18$ is the only possibility.

We have now completed the proof of Theorem 1 for n = 5.

12. Table 3, below, is constructed on the lines of Table 2 to give, for n=6, a fairly small number of possibilities for $d=d_6$, for each of the possible f_5 found in § 11. Let g be the ternary form shown in column 4; in each case, $g=[a_{11},a_{12},a_{22};a_{33}]$ is disjoint, with no terms in a_1x_3 or a_2x_3 ; and a_3x_4 ; and a_3x_5 comes from Lemma 2, with the a_3x_5 of column 5.

T	a	Ъ	1	e	3
---	---	---	---	---	---

$d_{\mathfrak{s}}$	d_4	$d_{\mathfrak{s}}$	f ₅ ⇒	p	$ d \leqslant$	$d\neq$	$ d \geqslant$
-2	4.	2	[1, 1, 2, 2]	2	16	1 (8)	3
	·	4	[1, 1, 2; 1]	2	31	1 (2)	12
-2	5	3	[1, 1, 1; 2]	3	24	1 (3)	7
		5	[2, 2, 2; 1]	2	39	±1 (5)	15
-2	8	6	[2, 2, 2; 1]	3	47	1 (3), 5 (8)	15
		8	[1, 1, 2, 2]	2	64	1 (2)	24
	-	10	[1, 1, 1, 2]	2	80	± 1 (5), 5 (8)	39
		11	[3, 0, 3; 1]	3	132	1, 3, 4, 5, 9 (11)	47
		12	[1, 1, 1; 2]	3	96	1 (3), 1 (2)	55
-3	. 9	9	[1, 1, 4; 3]	3	144	27 đ	27
3	12	18	[1, 1, 1; 3]	3	216	$27 \mid d$	80

The only point that needs explanation is that with the chosen g's we have always $f \supseteq g$ for every p. Supposing the contrary, we seek a contradiction. Referring to Lemma 4, we have p > 2 by (v), $p \nmid d(g) \nmid b y$ (iii), and $r_p(f) \leq 3$ (obviously with equality) by (ii); so (11.1) gives p = 3. Now (11.2) gives $d_4 = 9$ or 18, whence the table gives $3 \mid d(g)$, a contradiction. We note also that $r_3(f) = 3$ implies $27 \nmid d$. In the last two rows, $27 \nmid d$ would give the contradiction f = (3, -2).

We can cut down the number of possibilities in the table as in § 1.1. For example, in rows 3–1.1 we have to have $f \Rightarrow (4,4)$, and we see from Lemmas 3, 4 and c(f) = 1 that $f \Rightarrow (4,4)$ implies either $r_p(f) = 4$, $p^2 \mid d$, $p \mid d_5$, for some odd p, or d is a 2-adic square. In the latter case either $d \equiv 1 \pmod{8}$ or $r_2(f) = 4$ and $d \equiv 4 \pmod{32}$, which implies $2 \mid d_5$. It will be convenient to put these arguments too into tabular form, see Table 4.

When column 3 of Table 4 asserts $f \Rightarrow g, g$ 4-ary, we must assume $f \Rightarrow g$ and deduce a contradiction. $d(g) < d_4$, for the d_4 in column 1, gives an obvious contradiction; in other cases we have $d(g) > d_4$. Now in many

cases Lemma 5, with k=4, would contradict the value of d_5 shown in column 2. In three cases in which no such contradiction arises, we verify that $f_5
ightharpoonup g$ and use Lemma 5 with k=5, giving a bound for |d|; and in column 3 we make the further assumption that |d| exceeds this bound. Then in using Lemmas 3, 4 to exclude some d when f
ightharpoonup g, we argue as above.

Table 4

d_4	$d_{\mathfrak{s}}$	1	Restriction on d
4.	2	(4, 9) if $d = -16$	$d \neq -16$
	4	(4, 8) if d > 16	2d a 2-adic square
5	3	(4, 4)	$9 \mid d \text{ or } d \equiv 1 \pmod{8}$
	5	(4, 4)	$25 \mid d \text{ or } d \equiv 1 \pmod{8}$
8	G	(4, 4)	9 d or d a 2-adic square;
		(4, 5)	$9 d, d = 4 \pmod{16},$
ĺ			or $d \equiv \pm 5 \pmod{25}$,
	8	(4, 4), (5, 4)	d a 2-adic square, $d \neq -28$,
- 1	10	(4, 5), (4, 4), (4, 9)	$d = 4 \pmod{16}$ or $\pm 5 \pmod{25}$,
İ		[use $f_5 \Rightarrow (4, 9)$]	$\Rightarrow 25 \dagger d$; d a 2-adic square;
.		2	$d \approx 1 \pmod{3}$
ı	11	(4, 4), (4, 9), (4, 5)	$11^2 \mid d \text{ or } d \equiv 1 \pmod{8},$
			1 (mod 3), and ±5 (mod 25)
	12	(4, 4),	9 d or d a 2-adic square;
		(2, -3) + (2, -4),	$d \neq -72$, -92 , so $d = -60$;
		(4, 5), (4, 9)	$d \equiv 1 \pmod{3}$ or $\pm 5 \pmod{25}$
9	9	(2, -3) + 2(2, -3) if $ d > 72$	$d \not\equiv 1 \pmod{8}$ (Lemma 2)
12	18	(4, 9)	$d = 4 \pmod{16}$

In dealing with the case $d_4 = 8$, $d_5 = 12$, we do not need the forms (4,5), (4,9) except for $r_2(f) = 4$, in which case $f \supseteq (4,5)$, (4,9) are both false.

Now there are 14 sets (d_1, \ldots, d_5, d) for which Theorem 2 gives us $f \sim F_i$ for some i (25 $\leq i \leq$ 38). If we exclude these, Tables 3 and 4 show that there remain only a few cases, e.g. d_5 , d = 9, -108, in which f is not SF. So the proof of Theorem 1 is complete for n = 6.

13. Completion of the argument for n=7, 8, 9, 10. We first dispose of the case $r_p(f) \le n-3$ for some p, in which, by Lemmas 7, 8 and c(f)=1, we have $n \le 8$ and

(13.1)
$$f \sim (4, 4) + h, \quad h \supset (2, -3).$$

We see from (13.1), and (4, 4) \Rightarrow (2, -3), that $f \Rightarrow (4, 9)$, whence $f \Rightarrow (4, 49)$ = (2, -7) + (2, -7); and since $r_p(f) \geqslant 5$ for all $p \neq 2$, we have $f \Rightarrow (4, 49)$ for all p by Lemma 4, $f \Rightarrow (4, 49)$ by Lemma 3. But (4, 4) + (2, -3)

 $_{7}^{+}$ (4, 49), by Lemma 2; so we can appeal to Lemma 5 with $f_{k}=(4,4)+(2,-3)$, g=(4,49), and m=2, since $(2,-7)\sim[1,1,2]$. (7.1), with equality excluded by the corollary to Lemma 5, gives $|d_{7}|<24$.

We must have $8 \mid d_7$, since $r_2(f) = 4$, and we cannot have $d_7 \equiv -1 \pmod{3}$, by Lemma 1, so $d_7 = -8$. This, by Theorem 2, gives $f_7 \sim F_{45}$, so we may suppose n = 8; and $h \supset (3, -2)$. The foregoing argument can be repeated, with $f_k = (4, 4) + (3, -2)$ and $g = (4, 49) + x_5^2$; and it gives $d = d_8 < 64$. $r_2(f) = 4$ gives $16 \mid d$, so d = 16, 32, or 48. In the first case we find $f \sim F_{50}$. In each of the others, using (4.3)-(4.5), we find the contradiction $r_2(f) > 4$.

Now we assume $r_p(f) \ge n-2$ for all p; whence e(f) = 1 and Lemmas 3, 4 give $f \supset g$ for every (n-3)-ary (positive) g. The argument is like that for n=5, 6, but simpler, and is condensed into Table 5 below.

Table 5

		-74		<u>-</u>		
n	k	d_k	$f_k \Rightarrow$	$d_{k+1} \neq$		$= \text{in } \langle 7.1 \rangle, \\ f \supset$
7	4	4	(4, 5)	1 (2)	2	. -
•	5	2	(2, -3) + (2, -3)	1 (8)	-3, -4	(5, 2) + (2, -3)
	6	3	(2, -7) + 2(2, -3)	1(3)	-1, -3, (-4)	
	6	-4	(2, -7) + (2, -4)	1 (4)	$\{-1\}, -2, -4, -5, -6$	NAME OF THE PERSON OF THE PERS
8	5	2	(5, 3)	1 (8)	-3, -4	
	6	~ 3	(5, 4)	1 (3)	-1	(7, -3)
	6	-4	(5, 5)	1 (4)	$\{-1\}, -2$	(7, -4)
	7	-1	(3, -4) + (2, 7)		1, (4), 5	
-	7	2	(3, -2) + (2, -7)	5 (8)	{1},4	1
	7	-3	(3, -2) + (2, -3)	-1(3)	{1, 4}, 9	
17	7.	-4	(3, -4) + (2, -7)	1 (2)	$\{4, 8\}, 12, \ldots, 28$	
9	6	3	(6, -4)	1 (3)	-1	avia.
	7	-1	(4, 4) + (2, -3)		1	(7, -1) + (2, -3)
	8	1	(4, 4) + (2, -7)		1	-
10	7.	$\overline{-1}$	(7, -2)	3744	1	Dia 4
	8	1	(4, 4) + (3, -7)		1	· · · · · · · · · · · · · · · · · · ·
	9	1	(4,4)+(3,-7)		-3, -4, -7	(8, 1) + (2, -8)

If g is the form shown in column 4, then we have $f \supset g$, g being (n-3)-ary, and $f \supset (n-3,d_{n-3})$, as explained above. $f_k \not = g$ follows from $f_k \not = g$ with g = 3 for g = 8, g = 6,
column 7 are justified by either Lemma 6 or the corollary to Lemma 5. The forms $(7, d_7)$, $d_7 = -3$, -4, in column 7, and columns 2, 3, are $(6, d_7) + x_7^2$, by Lemma 5.

Studying the table, we see at once that the 'only if' of Theorem 1 is true for n=7. For n=9, all we need is to notice that $(7,-1)+(2,-3)\simeq (8,1)+3x_9^2$; for this we may use Lemma 4. For n=10, note that in the cases d=-4, -7, -8 that we have to exclude $f\supset (8,1)+2x_9^2$. With c(f)=1 this gives $f\supset \Phi_0$, where $\Phi_0=(9,2)\simeq (8,1)+2x_9^2$ is perfect with minimum 1. See [1], p. 559, Lemma 8, and p. 563, Theorem 3. With $g=\Phi_0$ and m=1, Lemma 5 gives |d|<4.

Finally, for n=8 we have to exclude $d=12, \ldots, 28$ when $f_7=(6, -4)+x_7^2$. We can do so by using Lemmas 3, 4 and c(f)=1 to show that f represents in each case at least one of the perfect forms (6, -3), (6, -7), except for d=16, which however makes f not SF.

References

- [1] G. L. Watson, The class-number of a positive quadratic form, Proc. London Math. Soc. (3) 13 (1963), pp. 549-576.
- [2] One-class genera of positive quadratic forms, Journal London Math. Soc. 38 (1963), pp. 387-392.
- [3] Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3) 12 (1962), pp. 577-587.
- [4] Transformations of a quadratic form which do not increase the class-number, II, Acta Arith. 27 (1975), pp. 171-189.
- [5] One-class genera of positive ternary quadratic forms, Mathematika 19 (1972), pp. 96-104.
- [6] One-class genera of positive quaternary quadratic forms, Acta Arith. 24 (1973), pp. 461-475.
- [7] Integral Quadratic Forms, Cambridge 1960.
- [8] Positive quadratic forms with class-numbers, Proc. London Math. Soc. (3) 13 (1963), pp. 577-592.
- [9] Kurt Germann, Tabellen redusierter, Positiver, quaternarer quadratischer Formen, Commentarii Mathematici Helvetici 38 (1963-4), pp. 56-83.

UNIVERSITY COLLEGE London, England

Received on 27, 12, 1973 (511)