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Te Zahl card{H, S G /H,: H, == G5} unterscheidet sich von g(Gs, 2
nur um einen beschrinkten Faktor, denn

e

__Slffl}(ﬂ) ﬂﬂ;(ip) (= U (8):
card {H, < Gy /Hy: Hy 22 6y] @) -
i(p) sind die Invarianten von G /H,. Aber Ty(p) = Ij(p)+0(1) wo
h;(p) die Invarianten von @, sind, also |

card {H, & @, jH,: H, =2 Go} 2 Cyp(6s, 7),
wobei €, nicht von H, abhingt, sondern bloff von &,. Demnach ist
o{G1 @ Gy, ) 2 Cyo(Gy, ) 0(6s, @),
algo
logo{6+ @ G, #) ~logo(Gy, o) +log o(Gs,y ).
Wir haben damit fiiv jede endliche abelsche Gruppe & eine agymptotische
Formel fitr loge(&, ) gewonnen: Man zerlege & in zykliseche Gruppen

von Primpotenzordnung Gy und summiere die entsprechenden Formeln
fir loge(G;, ) aus dem Satz.

3. Beispiele. Sei & ein Korper, wo 4(p%) = o(p?) ist tiw alle j. Das
gilt zum Beispiel fir & = @ und jede Primzahl oder % = Q(,) wnd
(p, m) = 1. Dann ish . _

O(p) = 7—1 logp,

() m-%j—j%%—ylégp, Clp, ) ) logp,
0(p%) = %IOQ% O (p% p) =%logp_,
0w, p,p) = o logp-
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On two problems of R. M. Robinson
about sams of roots of unity

by

J. H. Loxrox (Cambridge)

1. Introduction. Let § he a cyclotomic integer, that is an algebraic
integer in a eyclotomic field. As usual, we define the maximum modulus
of p, denoted by | ﬁ?l, to be the maximum of the absolute values of the
conjugates of #. It is well-known that 3 can be represented as a sum. of
roots of unity. The aim of this paper is to investigate how these represen-
tations depend on the properties of §, such as its degree and maximuon
modulus. In parbicular, we consider two problems proposed by R. M.
Robinson [4]. ' :

Tirst, how can we fell whether a given eyclofomic integer can be
expressed as a sum of a prescribed number of roots of unity ? This problem
wag solvad by A. Schinzel [61 whe proved that a cyclotomic integer of

. degree d is a sum of n roots of unity only if it is a sum of n roots of unity

of common degres less than
(1.1) © d(2log d +200 ntlog 2n)*"",

We ghall show, by quite different methods, thént this npper bound can
be replaced by

10"+t dloglog20d,

which ix tlie main resuit of § 4. On the way, in § 3, we shall see that an
integer in a given cyclotomic field, K say, is 4 gum of n roots of unity
only if it is a sum of at most « roots of Tuity lying in the field K.

Qecond, how can we tell whether there is any cyclotomic integer
with a given maximum modulug? For this problem, we congider two
eyelotomic integers § and §* to be equivalent if B = of’ for some conju-
gate ' of f and some root p of umity. Clearly, equivalent cyclotomie
integers have the same maximum. modulus. In. § 5, we shall show that
there are only finitely many inequivalent eyclotomic integers with a given
maximum modulus and give a method for finding them.
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I would like to thank Professor J. W. 8. Cassels for criticiging the
earlier versions of this paper, and TProfesgors A. Schinzel and V. Ennola
for sfimulating discussions and correspondence. -

2. Notatien and preliminary leonmas. For any infeger P > 1, we denote
by @(P) the field obtained by adjoining the P-th roots of wuity to the
rational field €; these are the so-called “‘eyclotomic fields”, If £ is & ayelo-
* tomic integer, we denote by P(f) the least positive integer P such that
£ is in the cyclotomic field @ (F) and by N (3) the least integor » for which
there ie o representation of 4 as a sum of » roots of unity. Note that P(5)
is the highest common factor of the integers P for which £ is in Q(P).
Tinally, we call § & minimal cyclotomic integer if there is no root ¢ of unity
such that P(pf) < P(f). Bvery eyclotomie integer is the product of a root
of tnity and a minimal cyclotomic integer, that iy, is equivalent to a mini-
mal eyclotomic integer.

The remainder of this section contzums various elementary facts

about cyelotomic fields.

Lmyea 1. Suppose P = pP,, where p is o prime ond p+P,. Let & be
o primitive p-th root of undty. Then every S im Q(P) has the shape

n-=1

(2.1) ’ p ='2 a &

I=0

with the o; in Q(FPy). The representation (2.1) is not umgue, but any other
such aﬂepwsemauon has the form

-1

f= D (g-+a)&

=)

2,

Jor some o in Q(L.). The conjugates of 8 given by (2.1) over Q(P,) are the

Bl

(2.2) =Yg <i<p-1).

F=0

Finally, if B in (2.1) is an integer, then the o; can all be chosen to be mtegers
- (for example, by taking a,_, = 0).

Levma 2. Suppose P = p™ P, where p is a prime, p 1P, and N > 1.
Let L be a positive integer with L < N and put P = p=“P,. Let & be a primi-
twe K ~th root of unity. Then every f in Q(P) is uniquely of the shape

pl—a

(2.3) : : B = Z‘ oy & S

=0

icm

Problems of Robinson aboul sums of rools of wunily 161

with the a; in Q(P,). The o, are integers if B 1s. The conjugates of B given
by (2.3) over Q(P,) are the
2l

(2.4) B=D wdé
Gl

where g runs through all the p™-th rools of unity.
Note that in either of the situations described in Lemmas 1 and 2,
if o i8 & Yoot of unity in @(P), then we can write

(2.5) o = af

where o i8 & root of unity in Q(P,) and § is a rational integer.

Lumwva 3. Suppose B liss in o eyclotomic field. Then the conjugates
of |81% are just the |5°|2, where 8’ runs through the conjugates of 8, and each
conjugate of |8|? occurs the same number of times.

This is & simple consequence of the fact that the cyclotomic fields
are abelian (see [47, p. 211).

3. Cyclotomic integers in a given field. Let P be a positive integer
and let 8 be an integer in the cyclotomic field @ (P). We seek to describe,
a8 far a8 possible, all the representations

(3.1) B= g
i=

d

furt

where the g; are roots of unity. The argument is based on a method ap-
parently first noted by H. B, Mann [3]. .
TrmoreM 1. Let 8 be a cyclotomic infeger and suppose (3.1) is a repre-
sentation of f as a sum of n roots of unity. Let @ (P) be the smollest cyclotomic
fidld containing B and Q(P*) the smallest cyclotomic field comtaining
O1y +v-5 Op-
(i) If » = N(B), then P* = P.
(i) If n = N (B)+1, then P* = P or B8P, but the latler case can only
pecur if 31.P.
Gii) If nz N
P oand 3, ,
CoROLLARY. A eyelotomic integer 48 a sum of n roots of unily in infi-
nitely many ways if and only if it is a sum of w roots of unity for some
m<n—2,
The above corollary was proved by Schinzel [6] as a sonsequence
of the éstimate (1.1), but it also follows at once from Thecrem 1.
Proof of Theorem 1. The proof falls into two parts. We begin
by proving (i) and (ii). Suppose that »< N (8)+1 in (3.1) and. define P

(8)--2, then P* may be amy dnleger divisible by both
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and P* as in the statement of the theorem. Clearly P|P”. If P +P*, then
one of the following two cuases arises.

Firgt case. Suppose there i3 a prime p and an integer N > 1 such
that » || P* but p¥ +P. Put P* = pP, and let & be.a primitive p¥-th root
of unity. As in {2.5), we can express each p; in the form

(3.2) 05 = &7,
where y; is a root of wnity in Q(P,) and 0 <

with the same value of »; In (3.1), we obtain

=1

(3.3) B=

i=0

73 = p~-1. Oollecting terms

- where

(3.4) o= D

But now § and each a; are in Q(P,), so by Lemma 2,

(3.5) p=a, and =y, = 0.

Uy == Og ==,

Since p||P*, there is an integer j (1< j < p—1) for which the set {i:
7 = j} 13 not empty and so, by (3.5), contains at least two elements,
But now the firgt equation in (3.5) expresses £ as & sum of at most n—2
roots of uniby, contradicting the hypothesis that n < N (§) +1.
Secomd case. Suppose there is a prime p such that p (| P* but ptP.
Note that p = 2 cannot occur here, because if 2+¥, we have Q2N) =
= Q(N). Put P* = pP, and let £he a prlmmlve p-th root of unity. Again,
we hafve the equations (3.2}, (3.3) and (3.4), with 8 and each a; in Q(Py).
8o by Lemma 1,

(3.6) G—f =0y = ... =a,,; = a (say).

If a = 0, we reach a contradiction as in the first case. So suppose o = 0.
From (3.6), the equation § = a,—c expresses § as a sum of ab mosh
—{p —2) N (a) roots of unity. But p > 3 and N{a) = 1, so the only way
130 escape a contradiction to the hypothesis n < N (8) ~|—1 is to have p = 3
and n = N(f)+1.
Thig proves (i) and (i) and it remains to establigh (iii). Suppose £ is
non-zero and % = N{§) 2. Let
NP
(3.7) =Dl
F=1 _
be a representation of g 'as a sum of N(A) roots of unity. By the firgt
part of the proof, each oy is in @(P). Let w he a primitive cube root of
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unity. Sinee 1 - @ - w? = 0 and 14+ (—1) = 0, there is a relation

#—N(F)}—1. :
v, =1 with # =1, -1, —w, or —w?,
i=1 :

Now, if ¢ is any root of unity, the expression

n—N{B)—1 N(B)
=Y w3 oo
i=1 Je=

" is a representation of § as a sum of » roots of unity and this gives (iii).

A similar argument applies if g = 0.

- Note that all the possibilities allowed in the theorem can cecur. Sup-
pose, for example, that £ is a non-zero ¢yclotomic integer and 3 +P{f).
Let o be a primitive cube root of unity and let (3.7) again be a represen-
tation of § as a sum of N (f) roots of unity. Then the expression

N(E)
B = ~—coo‘1~—w20‘1—|—2 ay
F=2

is a representation of § as a sum of ¥ (f) 41 roots of unity and the smallest
cyclotomic field contbaining all the terms on the rlght -hand side is

0 (3P (B)).

The following result, which iz also a corollary of Theorem 1, will be
nseful later,
THREOREM 2. Let f be an mteger in the cyclotomw f'beld Q(P and let
p be a prime divisor of P. Let
2af

(3.8 f =

be a rvepresentalion for B of the shape (2.1) +f p|| P, or (2.3) if p*|P. In the
former case, suppose in addition that at most 5(p —1) of the a; are noN-2er0.

Then
= > N(a)
. T
Proof. Clearly, N(f) < ) N{w). Suppose, if possible, thab
(3.9) , N{g} <ZN(aj).
7

From Theorem 1 and (2.5

(3.10) : p=Daé
o 7

), there is a representation
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of the form (2.1) if p§P, or (2.3) if p?|P, such that

(3.11) N{p)= > N(e).
]
We now subdivide the argument into two casges.
First case. Suppose p?|P. From Lemma 2, the two representations
(3.8) and (3.18) for A are the same, in contradiction to (3.9) and (3.11).
Second case, Suppose p||P and set P = pP,. On applying Lemma
1 to the representations (3.8) and (3.10), we have af = a;+a for gome

ain Q(P;). If ¢ = 0, we have a contradiction as in the first case. Otherwise

8 = 2 af & - E af & = 2 af & — Z’ a.rfj,
: R AL g=0, aj#0 eyl
o, if X denotes the number of non-zero g,
-1
DN () +p—X)N(e) = D N(af) = N(B)< Y N(e) + XN (a),

#0 F=0 a0
a contradiction, since X < $(p—1) and N () = 0.

This proves the theorem.

4. Cyclotomic integers of given degrge. Let 8 be a cyclotomic integer
of degree d which can be expressed a8 a gum of » roots of unity. To com-
plete the story begun in § 3, we now find an estimate for P{5) in terms
of # and .d. ) ‘ ‘

- TuBORTM 3. Suppose § is & non-vere eyclolomic integer of degree d and
let N(f) = n. Then ' .

- P(p) < 10"dloglog20d.

CoROLLARY. A cyclotomic integer of degree-d is a sum of n roots of
wndty only if 1t is & sum of n roots of unity of common degree less than

10"+ dloglog20d.

The corollary follows at once from Theorems 1 and 3. To prove
Theorem 3 itself, we need fiwo lemmas. _

Tmvmma 4. Let Py be o positive integer und [ a non-pero cyclotomio
integer and set N () = n. Let Q(P) be ihe smallest cyclotomic field containing
both Q(P,) and 5, and let 4 be the degree of § over Q(Py). Then

(4.1) p(Py< dﬁ?_lq)(}?o):

where ¢ is Buler's function and ¢; = "8 — 7.63299...
Proof. The lemma is clearly tmme if P = 1, since then P, = 1 and
£ is a rational integer. The proof proceeds by induetion on P.
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Let Py be a positive integer and £ 4 non-zero cyclotomic integer with
degree d@ over Q(F,) and set N(8) = n. Let O (P) be the smallest 'cyclo—
tomie field containing both @(P) and 8. We note first that it suffices
to consider the case P, —= 1. For, if Q(P") is the smallest ey clotomic field
containing f, then

[G{P): Q(Po)(H)] < [Q(P*):Q ()]

since both the field extensions here may be obmine'd by the adjunetion
of a generating root of wnity for O (P*). Let d@* denote the degree of g
over @ and suppose the lomma is known for g when P, = 1. Then

9(P)[dp(Py) = [B(P):Q(Po)(5)] < [Q(P*):B(B)] = ¢(P*)/d" < o

go that the lemma is true for § and all integers P,.

We shall therefore now asswme that 4 is & non-zero eyelotomie integex
of degree d and set N(8) =n and P(F) = P. We divide the subsequent
argument into three cases.

First case. Suppose there is a prime p such that p | P and p > 2n.
Set P = pP, and let £ be a primitive p-th Toot of unity. By Theorem 1

“and (2.5), we can write

() §= 3 ut,

=0

where the e, are integers in Q(P,) and at most » of them are non-zero.
Moreover, the representation (4.2) is unique, for by Lemma 1, any other

“such representation has the shape

p—1
B = 2 (aj“l‘ﬂ'-) fj
F=0
for some non-zero e in Q(P;) and so has at least p—n (> n) non-zero
terms. Group the non-zero o; (1< j< p—1) in (4.2) into sets of mutually
conjugate ones and chooge ome number from each of these gets, say
Y1y Yoy ooy Yo L0 m; be the numbér of o (1 <{j <9 —1) conjugate to
yy and get m o= min{m,, ..., m} and y, = a,.
Let @ denote the degree of § over Q(P,). Tho conjugates of § over
QP are the

Mo (Lgisip—1).
=t _

There are d' dighinet nunbers among ther and each oecurs just (p —1)/d’
times. But, from the unigqueness of the representation (4.2), we have
B = 8 say, it and only if ay; = a; (1 <j< p—1), where the subseripts

4~ Acta Arlthmetica XXVI 2
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are interpreted mod ». Hence

(4.3) p—1< md.

Next, the Galois gronp of Q(P)/Q is isomorphic in the obvious way

to the direct product of the Galois groups of Q(P)/Q(P,) and C(P,}/O.
So the conjugates of § over @ are the numbers oz{f) where ¢ is an aufo-
morphism of Q(P)/Q(P,) and = is an automerphism of (e, ..., 4:)/Q
extended to Q (ye. . ,n, &) by the definition 7(£&) = &. This prescription
gives each of the d distinet conjugates of § the same number of times,
pay X times. Hence

(4.4) (p—1)[Qyo) ..y y2): Q] = dX.
We need an estimate for X. So suppose, in the above nofation, that
(4.5) or(f) =B

If 7 is &ssigne& there are either (p —1)/d’ choices of o for which (4.5)
helds, or no such choices. Also, by Lemmsa 1, the equation (4.5) means
that

B-1
2 (e §l) Y‘ a &
i=o =

for some integer I with 1 < I < p —1. So by the unigueness of the repragen-
tation (4.2), we see that v{y,) = v, and that there are at mo% m; choices
for the number z(y;) for 1< i< k. Hence

(4.8) XMy oo (p—1)/d .
It follows from (4.3}, (4.4) and (4.6) that

(4.7) (5=1)[Q (s, .-
Now, by Theorem 2,

o Ve Q1 < dmmy Loy,

. B
(48) n = 2 Nig) = Nipg+ Zmizvm)-
. f=0
Let Q(, denote the gmallest eyclotomie field conbaining v, v,, ...

oy (04 < k) Bach Q(N,) is a subfield of Q(P,) and, since P, < P,
we can apply the induetion hypothesis to yy, 1, .-ry 72 iri trm, giving

(£.9) P(Ng) < [Q(y0): Q0
and, for 1<<ik
(4.10) (&)

B

SOV ) () Q (V)16 (N}
= [Q(yu, .-, yi):Q(?os ooy Yoo 1)]0N(y1)— p(N;1).
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On putting these inequalities together, we get

P(P) = (p—1)p(P;) = (p—1}p(I})
: ‘”k):Q]G‘i\r{”ﬂ)"'"""N(”k]"’

< (p—=1)[Q(yy, s ¥

S dmmy ..oy VO NS -L g (4 7y,
$~: dc;z—ly
by (4.8) and rather crude estimation which requires e, > 4.

Second case. Suppose there is a prime p such that Y|P with
N>1 Set P =pP, and let & be o primitive p¥-th root of unity. By
Lemma 2, we can write f uniguely in the form (4.2), wheve the o; are in-
tegels in’ Q ). We bhﬂ;ll tempomuly call two GVC]OtODllC integers, « and
a*, p- equlva,lent it a® = ga’ for some conjugate o' of ¢ and some p¥~*-th
root o of unity. Now group the non-zero o (Lj<p—1) into sets of
mutually p-equivalent ones and choose one munber from each of these
sets, &Y yi,..., yx, such that the smallest cyelotomic field containing
y: containg all the «; (1< j< p—1) which ave p-equivalent to y; (L <1
< k). Also, let m; be the number of ¢; (1 <5< p—1) which are p-equiva-
lent to y; and set m = min{m,, ..., m} and v, = a,.

By the minimality of P, we have Q(P;)(8) = Q(P), whence the
degree of § over Q(P,) is p. As in the first case, the conjugates of § over
0 are the o7(f) where ¢ is an automorphism of @(P)/Q(P,) and 7 is an
automorphism of Q{ay, ..., 4,.1)/Q extended to Q(ay,..., a4, &) by
T(£) = &, with 1 <1< p™ % We get each of the d dlstmct con]ugates
of § the same number of times, say X times. Hence

(4.11) ' PIQ(a, ..y ay_y)i Q] = dX.

To estimate X, consider again the equation (4.5): o7 (%) = £. If vis assigned,
this determines o uniquely because the degree of § over Q(P,) is p. By
Lemama 2, the equation (4.5) meang that :

-1 .?9—_1‘
PRI P
F=0 Jr=0

for some p-th root ¢ of umtv which is detexmined by ¢ and some integer
I with 1< 1< p%" By the uniqueness of the representation {4.2), there
are at mokt m choices for | and at most m; choices for the number 7(y,)
for 1£ihk and z(yy) = p,. Hence

X ommy . ey [ Q@ (g, .y Oy ) Q(Voa"-y')"k)]-‘
Oombining this with (4.11), we get
(4.12) C B[O s 1) Q1 i, . my
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We again have the equations (4.8), (4.9) and (4.10) so0

P(P) = pe(P) <plQ(ve; -
OO D) By (4.12),

1) Q10+

< dmmg ...
d n—l

by (4.8), giving (4.1) in this case.
Third case. Suppose neither of the two preceding cases arises.
Then P divides the product of the primes less than 2x, so by [5], Theorem. 2,

p(P) < 1-] (p—1) < ” p < ehueEn-l o gt

n2n—1 pein—1
Henee the inequality (4.1) holds for 8 in all eases and the lema
follows by induction.
Luvya 5. For n 3 3,
= < ¢'logloge(n) - 6a,
@(n) :
where 1y = 0.87721 ... is Huler’s constant and = ¢y = 3 —é"loglogl
= 3.6b278..
Proof. Suppose first that # > 30. From [b], Theorem 15,
4,13 ' ' ~~——< Y1oglogn 2. L)Oﬁe-ﬂ
(4.13) i Blogn + 7 roam
B0, if we write
loge(n) = logn{l--i{n)},

then we have

1 : 2.50637
A{n) < - {]ogloglogaz+y + ey—ﬁ#——_} < 0.51

loglogmn)?
and consequently

loglog'qa(n) = loglogn +-log {1 — A(n}} > loglogn —0.72.
So from (4.13),

2.5
A ¢ {loglogg(n} +0.72} + - 08 7— < ¢'loglogy(n) +3.4.

@(n) loglog30
To complete the proof, we now compute

ki3
———— — e¥logloggin
e | gloge(n)

for 8 < n< 30; its maximum on this range tutns oub to be ¢, when n= 6.

Problems of Robimson about sums of rools of unily 16y
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Proof of Theorem 3. Let £ be & non-zero cyclotomiec integer with
degree d and set P = P(f) and n = N(f). If P < 2, the conclusion of
Theorem 3 i8 immediate, so we may suppose P > 3. From Lemma 4,
we have p(P)< ds}™", whenee

¢'loglogp(P) + ¢ < ¢"(loglog20d +logn +logloge,) + ¢,
< & (loglog20d +-logn +3)
< e;(1+%logn)loglog20d
< 6,(1.2)"loglog20d.
The desired result now follows from Lemmsa 5.

We conclude this section with some further remarks about Theorem 3.
The following two examples show that the dependence on 4 of the bound
in Theorem 3 i3 best possible and, for this dependence on d, the hound
also hag the right order of magnitude with respect to ».

TxaMPLE 1. Liet P be the product of the odd primes not exceeding
gome number X, let £ be a primitive P-th root of unity and let » he a pos-
itive integer. Let g ==m&. Then P(f) == P, N(f) =n» and the degree
of pis d (say) = @(P). So, a8 X-c0,

P) =d I] (1——) ~ e dloglogd.
3EPEX
Bxampim 2. Let
p= 3 (&+&"
S
where £, is a primitive p-th root of unity and p runs through the primes
with 5 < p < X. Let the degree of # be d. Then "

PO = [ d= []ip-1, FH= 3 2

sEpsX SCpsY semmsX
and, ag X-»oo, '

-1
Pf) =4 n z(1wi) ~3er 20 dloglog d.
SSPEX P

There is another result of the same sort ag Theorem 3 giving an
estimate for the smallest cyelotomic tield containing all gams of » roots
of unity of degree d.

TunornM 4, Let 8 be a cyclotomic integer of degree d with N(f) =n
and leb A be the disoriminant of Q(p) over Q. Define numbers a,, where
p runs through the primes, as follows:

(i) if pld, prd and 3< p< 2n, then a, = 1;
(i) iof pld, ptd, p. =1 (mod dy end 2n <p< %d’—|—1 for some di-
visor d' of 4, then a, ==1; .
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(i) if.p !4 and p° I]d with a1, then &, = a--1; and
(iv) in all other cases, a, = 0. ‘
Also define

2 if d and 4 are both evew,
e 1 otherwise.
Pinally, set P* = n[]p%. Then B is in Q(P").

We shall need the following quantitative form of Kronecker’s theorem
on abelian extensions of the rationals. I have been unable to find the
exaet statement in the literature, but it is easily deduced from. the proofs
of Kronecker’s theorsm given, for example, in [8] or more recently [7].

Leania 6. Let K be an abelian extension of @ with degree d and discri-
minant A and define

2 if d and A are both ecven,

_ 1 otherwise
and
P =7 H Pa.{_l’

where the product is taken over all primes p such that p| 4 and p*| 4. Then
K is o subfield of Q(F').

Proof. By Kronecker’s theorem ([8], p. 244}, K is a subfield of a ¢yelo-
tomic field. We let @ (P) be the smallest such field. Suppose, in the first
ingtance, that & is cyelic and that its degree is a prime power, say d = p®.
If p = 2, then by aremark in [8] (p. 255, end of § 3), we see that P divides
4d = p***. It p > 2, then again from [8] (p. 263, end of §5), P divides
pd = p**L. In either case, P is & power of p and so also is 4, since it divides
the diseriminant of @(P). Thiz proves the lemma in this special cage.
. The general cage follows sinee any abelian field can be expresged as the
compositum of eyclic fields whose degrees are prime powers.

Proof of Theorem 4. We use the notation of the enunciation and -

set P = P{§). By Lemma 6, P divides n[[p*', where the product is
taken over ail the primes p such that p|4 and p®|d. It therefore only
remaing to prove that if p is a simple prime factor of P, p +d and p > 2n,
“then p satisfies the conditions in (il) of the enunciation.

S0 let p be a prime such that p||P and p > 2n. Write P = pP; and
let @' he the degree of 8 over ¢ (P,). Then d’ divides [Q{F):Q(P4)] = p
. that is p ==1 (mod d’). Moreover, we unow have exactly the situation
of the first case of the proof of Lemma 4, o by (4.3), p < nd’ +1. Finally,
the conjugates of § over @ split into sets of conjugates over @ (P,) each
having @’ members, so d divides d. This completes the proof of the
theoren, :
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5. Cyclotomic integers of given maxiimum modulus. In this section,
we turn to the gecond of Robinson’s problems and deseribe a method for
finding all the ocyeclotomic integers with a given maximum modulus.

THmoREM b, Leét » be an algebraic number and let § be a cyclotomic
integer with ’ﬁ{ = x. Then B is eguivalent to an element of & certain finite
set (depending on =) and this set can be effectively determined.

Tt is most convenient to begin the proof of the theorem by preving:
the special case contained in the followmg lemma. The theoram is then
a relatively easy deduetion.

Lomma 7. Let B be a positive integer and § a eyclotomic integer with
1812 = R. Then 8 is equivalent 1o an element of a certain finite set (depending
on R) and this set can be éffectively determined.

Proof. By Lemma 3, we have |f'|2 = R for each conjugate 5 of S.

The hypotheses of the lemma are therefore umaffected if we replace

A by any number equivalent to it. In particular, we may assume that
8 is a minimal eyclotomic integer. Set P = P(8) and n = N(f) and leb
p be a prime divisor of P with p" | P.

Pick % > log2. By Theorem 1 of [2], there is an effectively deter-
mined constant ¢,, depending only on %, snch that

lﬂl eynexp(—klogn/loglogn).

Thus # is bounded above by a number depending only on E and to prove
the lemma, it suffices to show that P has the same property. This, in
its “turn, will follow once we show that :

(5.1) p=<4r,  pVia,

for any choice of the prime divisor p of P. There are two cases to consider.

Tirst case. Suppose that N =1 and p > 4" Write P = pI’; and
let £ be a primitive p-th root of unity. As in the first case of the proof of
Lemma 4, there iz a unique representation

X
(5.2) = st”f,
where the y; are non-zero integers in Q(F;) < n (< ip) and the r, are

integers incongruent mod p. By .D1r1c~hlet’ themem (see, for example,
ri], Theorem VI, p. 13), there is an integer = such that

lurfpl < p™™¥ (A<j<X) and 1Su<p

Where, ag uaueul, 6] denotes the distance from 6 to the nearest integer.
Also, by hypothesis, p“”“ < p~" < }. So, after replacing § by one of
its cenjugames over Q(P,) and multiplying by a suitable p-th root of unity,
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we may suppose that 7, — 0 and 0 <7y <}p (2<j< X). It is now
more convenient to rewrite (5.2) as

»n-1
]

f = 5 ajgjr'
i

each «; being 0 or one of the y,;. Let I be the largest infeger for which
a; # 0. From our construction and the minimality of 8, it follows that
a, 7 0 and that 1<l < p. Now

n—-1
(5.3) R o= |BF = 3 6"
. Jo==00
where

975 = 2 aia‘; N
i—j=k(modn)

The number of non-zero 6 is at most #2 < #—1, by hypothesis, so on
applying Lemma 1 to the wrelation (5.3), we gel E

By = ... =6, =0.

On the other hand, we have o, =0 for I+1<j<p—1 and ay, g 5% 0,

‘whence
b, = ooy # 0,
a contradiction. Hence p < 4"

Second case. Suppose that N > 1 and pV* > 4" Set L = NV ~1
and P = p*P, and let & be a primitive p”-th root of unity. By Lemma
2 and Theoremn 2, there is a unique representation of the form (5.2) for
8, where the y; are non-zero integers in @ (Fy), X < » and the #; are in-
tegers incongraent mod p*. By Dirichlet’s theorem again, there is an
integer # with ’

lurgfp” < p~E% A<j<X)  and 1< u<ph
Write 4 = p”w, with v an integer prime to p, and put M = L —r. Then
g™l < p~H% (1<j< X).

After applying the automorphism &—&" of Q(P) over Q and replacing

B by one of its confugates, we may suppose that in the representation

(5.2), :
(5.4) Iryip™<p™5F  (1<ji<X).
Now rewrite (5.2) in the ghape
pM-1
(5.8) - = D wt
i=s

icm
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where
il rq—i
aj = %5
ryei(mod Pracs)

and get P = pMP,. Then each ¢, is in @(P,) and o; = 0 unless the ine-
guality in (8.4) holds with r; replaced by j on the left-hand side. By hypo-
thesis, p~* < p~"" < }, 5o after multiplying § by an appropriate p*'-th
root of unity as in the first cage, we may assume that a, = 0 and that
the o; with j 2= $p™ ate all 0. Let | be the largest integer for which o # 0,
g0 that, from the minimality of 8, 1<C1 < {p". Now

M1
(5.6) B =g = D 0.8
. Jora 0
whers
B, == ;0 gk

i—fealimodp M)
Tach 6 i in Q(Py), so by Lemma 2 applied to (5.8),

C B =0 (L<h<p¥-1).

However, a5 before, 6, = mo, %0, a contradiction. Hence L4

This proves (5.1) and, by the remarks made at the beginning, esta-
blishes the lemma. : _

Proof of Theorem 5. Let g be a cyclotomic integer with |A| = s.
We may suppose that |7 = »*. Let the degree of »* over Q be d. By
Lemma 3, the conjugates g' of § lie on & circles about the origin, -with
the same number on each circle. Pick one conjugate from each oircle,
9y By = By Bay .-y B and let 6 be their product. Then

(02 = |By ... ol = Norm (»%),

a Tational integer. So by Lemma 7, # is equivalent to an clement of a cer-
tain finite set (depending on x). The same is true for 67 = 14, ... fy and
henoe for

60% =B (fs... faf = FNorm ()i

Henee f¢ is equivalent to an element of & certain finite set and, finally,
the same holds for A, This proves the theorem. : :
Tt 1y not hard to give an explicit bound for the finite Eggceptional
set of Theorem 5. Thus, let 3 be a eyclotomic integer with {f] = x. By
following and simplifying the work of [2], it can be shown thab

N(B) < 10°]p7 =10%.
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Alse, if we use this inequality to make the above proof explicit, we find
that P(§?) divides the least common multiple of P(x*) and

I1# ] #"
e phey

where

u = 4106N0rm{x2).
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Some distribution problems
concerning the divisors of integers
by
P, Exnds (Budapest) and R. R, HarL (Heslingon)

Introduction. In this paper we study the distribution (modl) of
logd, where d runs through the divisors of the positive integer . As nsual
wo denote the number of these divisors by =z(w).

The sequence {logm,m =1,2,3,...} is not uniformly distributed
(mod 1), nevertheless if we set ' '

Fol) == Moo,

Fod
. T(%) log d<a (mod 1)
then on o sequence of integers # of asymptotic density 1, we have that

Jal@)y—a
uniformly for

[ I I

It

Indeed, for each A < ¥, there is a sequence of density 1 on which -

1
su FulB)—Foloy —(f—0)| € 777 -
Ogaaﬁlﬁ:ﬁgll-ﬁ’ (.3) Il (# (T(n))a

This resuwlt was proved in a recent paper of Iall 2.

Tt follows from. this that for each fixed ae[0, 1), there is & sequence
of integers n of density 1 on which
min jlog d — af~+0,
i :
where || denotes the differemce hetween @ and the nearest integer to
it, and we consider the following problem. How fast can the left band
side tend to zero on & sequenece of density 1, or even on & sequence of
positive density? It turns out that this ‘question can be angwered very
precisely.



