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Some further results concerning
(4, ¢)normality in the rationals

hy
B G, Browmiram (New Yorle, N.¥.)

1. Introduction. In this paper, we present a significant improvement
in our fundamental theorem on the existence of residue.progressions
in the ratfional fractions Z/m << 1 in lowest terms which we proved in
[5, Th. 4, p. 2277}, One essential difference between the new result presented
here and the original theorem. iz that they agree if m in Z/m is an odd
integer but differ if m is even.

For broad clagses of rationad fractions Zjm, the existence of regidue
progressions .is fundamental in establishing the uniform. e-distribution
of fractional parts {Zg'im} for i =0,1,...,0rd,g—1 = w(m)—1 on
[0,1] which is a necessary and sufficient condition for (7, ¢)-normality
[5, Th. 2, p. 224]. Baged on this phenomenon of (j, s}-normality in the
rationals, we found it possible to construct transcendental non-Liouville
normal numbers [6] from any given rational fraction.

By means of the improved theorem which we present in this paper
concerning residuc progressions, we can show that there does exist broad
claggey of rational fractions of Type B [b, def., p. 229] which do possess
residuce progressiony. This statement is an amendment to our statement
in [8, p. 229, below def.] wherein we said that residue progressions “do
not exist for Type BP. We can prove (j, e)-normality by other roeans for
the Type B, nth power residue ease modp for appropriate bases g or
Z[n where p is an odd prime and the base of expansion is & primitive root.
We, therefore, present as well thé uniform e-distribution of fractional
parts and {J, e)-normality for this new class of Type B rational fractions,

Furthermore, in this paper, we give a precise definition and a vgefn
factorization for the much used w(m) = ord,g where m ig any pogitive
integer. This factorization leads to & numbexr of improvemoents in notation
and methods of proof as well as giving precise factorizations for w(m), D,
and w(D) which congtitute the fundamental parameters in all residue
progressions, These are stated in Definition 8.
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Since the clasgification of all rational fractions Z/m into Types
A, B, and O iz essentially dependent only on the type of positive integer
m in the denominator, we also set down the notionhere that we may equiv-
alently partition all positive integers m into Types A, B, and C and use this
claggification and description interchangeably. Thus, we can $ay here
that we have shown that there existe a new even Type B positive integer
m which possesses residue progressions. The odd Type B do not possess
residue progressions as stated in [B, p. 229]

Finally, we present the theorem on residue progressions for Type
O, i.e. Zim = Z/[2" which wo promised in [5, p. 231, above Th. 5], and. asg
well, the consequent uniform s-digtwibution and (j, ¢)-normality for this
type.

2. Definitions and residue progressions. The period of the sequemce

of power residues in Zg* = B modm is given by ord,g = o(m) where
7
m = 2" [[ pi with odd primes py;, n
=1l

that (g, m) = 1 with 2 < ¢ << m. Briefly, w(m) is the exponent to which
g belongs modm, Le. the leagt positive exponent such that getm == Imodm
for any g such that (g, m) = 1. The universal exponent i(m) [4, pp. H3-54]
has often .been used in random mumber generator studies [2, p. 103] to
determine the conditions for so-called “maximal” periods. However, the
definition of say A(p®) where p i3 an odd prime restvicts the choice of ¢
to a primitive root modp? in the range 2
= (p~1)p*" where q(z) denotes the Euler g-function of z. We ghall
state a completely general definition for any composite m and any g
contained in 2 < g <2 m such that (g, m). = 1. Therefore, since for mbitmry
g, o(p*) = o:rdpag = dp*?if 6 > 2, and o (p%) == dif a < # where p*|(g*— 1)
but p**'4(g?—1) (subsequently, we will denote such a statement by
27l —1)). Therefore, we have o(p*}|A(p") or o(p*) < A(p* since a—z
£ o—1 and d|(p—1) for arbitrary ge2 < g << m. Algo, (2% is defined
for thoge particular g such that A(2%) = 2°% if 4 >> 3. Since, in general,
we may have [3, Th. 7-11] exponents to which ¢ belongs mod 2* for a > 3
such that (2% == 2°7*|4(2%) for 8 =2,3,...,a—1 for ¢ = 1mod2?
we may show without particular difficulty the computationally conve-
nient result w (2% = 2“7 for a > 3 where 2°||(g— (—1)) with ¢ == (gw].)/?a.
Therefore, in general for any odd ge 2 < g<<m, we have w(2% « A(2%)
= @(2%/2 = 2°? for a = 8. Hence, we have for any g sach that (g, m)
= 1, the following definition:

DepxNmroN 1. Let w(m) = ord, g be defined ax :Eollows:
2.0y w(l) =1,
w(2) =1, for odd g,

=0, nz 9, and any base g such

Sg<m Le. A(p%) = o{p®)
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@(2%) =1, it g =1modd; ®(2%) = 2,if g =3modd,
C(}(Zﬂ') . f()r (9,2) =1, if n =1 ; 8 mZ;

if >3, then § =2,3,...,n—1
where 2°[/{g—(—1)) with ¢ = (g~1)/2;
(2.0) it g=2"—-1, then § =n-1,

w(p™) = dp™ %, p an 0dd prime, ¢ == ord, g,
ngzl, (g, p) =1,
== g, it n <2 where p*| (g% — 1) with d|(p—1),

) (2“ 1:”; p:ﬁ) = ({87, @ (pl), ...p e (pzr)> where
PoslPg T oon

Tn the notation a’ljd; for 4 = 1,2, ...,r; let b denote the maximum
power of a Which divides any one of d,,ds, ..., d,. Thus, in p|d,,, for
B=1,2, —i; & will denote the maximum power of p, which divides
any dwl, dH_g, vorg i, for a fixed .

A 1nore comrenient evalnation of o(m) = (w2,
= 2%y L, AP o dy,
the even and odd m, and therefore, if m is odd,

(2.1) = gM _[- _-pmax(ﬂi’ oy —=2;) n 9:
. ()

< p, are 7 distinet odd primes.

Lo (P, e
> can be obtained as follows: we separate
'we have

where 2™ |jd; for.¢ =1,2,...,7 and the s, are defined so that pii|d;
for k =1,2,...,7—i and some fixed 4 = 1,2,...,7—1. We also define
¢ik||d; with #, > 0 ag those odd primes g, 7 p;< p, which could occur

in the d,. If m iz even, then for » > 0 :

(2'2) (m) == mFllX((l) 2”’ Zﬂj)”pma’x@v g2 n g"k
@)

The forms in (2.1) and (2.2) have a further gimplification. For a given

et of odd primes pye m, noto that the M, s, and #; are fixed for a given

m and choice of ge 2 < g << m. Therefore, the given powers n; of the p,

in m distinguish 2 types of odd primes in py < Py ... <<y, i.0. those

o, such that x> 218 and those remaining p, for ¢ 56§ such that wy

% 2 -k 8. Making these assumptiong, we bave the convenient result in
DERINITION 2. A factorization of o(m) = oxd,g.

I. I m is odd such that m = []pj [] P where ny 2
()] (%)

=1 and n, =1,

- then

{2.3) m) = QM Hp“’l ""'j ]g’ir

(Wi)
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where 2 ||d; = o(p) Wifh Mz 0, g5 ("
pgi”d'iq.fa fOl‘ 7(7 = 1 2
sequence Py << Py .

Lifori = 1,2,...,7 with ;= 1,
, ¥ —1 with s, = O for gome leed ¢ in the ordered
. p,, H gk with », 2 0 containsg those odd primes

gy = ;<< p, such that ¢ ]|d for any ¢ =1,2,...,¢; the p; are those
-odd primes in m such thzht 1y > 2§, and the remaining p; in m for ¢ 5 j
are guch that #; < 2 +s;. '

II. If an is even such thmt m = 2" [{p}7 [ p¥ with n = 0, then

(7 (@#J)
(24) - a(m) = max(w(2),2%) [ [pp [ pi [
(7 D)

It is clear from. the above definition that the powers #; of some given
fixed set of odd primes p,; can be taken sufficiently large so that #; = 2, + s,
foralli = 1, 2, ..., r. In this ease, the value of w (m}) is particnlarly simple.
In [7, p. 328], we defined the notion of a “complete” rational fraction,
i.e. some Z/m <1 in lowest terms such that n; > 25, for all p, in m.
On the basgis of this assumption, we proved in [7] the existence of what
we called “abgolute (j, e}-normality” in the rational fractions. Essentially
what this amounts to is to ghow that there are rational fractions which
are (4, ¢)-normal in a bounded consecutive set of positive integers. This
apparently is the analog in the rationals for Borel’s exisbtential result
that almost all real numbers are abgolutely normal, i.e. normal in every
positive integer base with the exceptional set of measure zero.

Let uy point out here that subsequently we may not only spealk of
the rational fractions Z/m << 1 in lowest terms as being of Type A, B,
or O a8 in [5, p. 229] which characterizes the conditions under which power
residue progressions exist or not in the congruence Zy™ = &K, modm,

but we ecan also refer tio these conditions ag defining a partition of the class .

of all positive integers into 3 Types A, B, or €. There would now be 2
kinds of Type A positive integers, complete or ineomplete in their prime
{odd) decomposition according as n, > 2,4+ ¢; for «ll 4 or n, = 2 -8, for
at least one p,, but not all, respectively. T essence, it is Type A, B or ¢
positive integers m which can lead to residue progressions or not in Zg"
= K,modm for w=0,1,. ..., 0(m)—1 as prescribed by [5, p. 220].
Types A, B, and C always have residue progressions under suitable con-
ditions [see (2.17) of this paper]. We also have the exceplional esge for
m = p, Type B, [see 5, bottom p. 229 and 230, also top p. 231]. Therefore,
we will apeak, mmrohaingecbbly, of rational fractions Zfm or their denomi-
nators as being of Type A (complete or incomplete), B, and C. In some
results we will present at another time, it turng out that the notion of
complete or incomplete Type A is significant for some useful Jden‘mtm‘{
envolving w(m) and associated trigonometric sums.
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The following theorem on residue progressions is an improved form
of [5, p. 227, Th. 4]. Basieally, there is no difference hetween. the theorem
below and [#, p. 227, Th. 4]if m is 0dd, i.e. n = 0, in the definition of the
gquantity D; but, it m is even, then the value of D given below mmust be
uged. The theorem also shows & new class of Type B for which residue
progressions exist that has ‘nm; been mnoted before.

Tuuonem L. Let m = 2“’][1)*‘! whore w3z 0, =1, n = l, and the

Py oare distinet odd PrEIeR p Py P Ligt dy e oxdy g = w (D)
fm gach 1 where Pi||(gt--1) with 22 1, P8 (depr, chH, . d) Jor 14
L1, and q|d, where the ¢, are those odd primes ¢, pi < Py

If w(;ﬁ“) s 90 aphere = 8, B8 n—1; 27| for 4 =1, 2, .., 7
where M = 0, 4, = min(z,-+8;, ny)y, and for n.z= 0 with g such that (g, m}
=1, 2 gm we sef '
Gase L: (m-odd), for M =0, n =0, D = [[p‘“

~2’Hp

C
Case 2: (m-even), for M == 0, n = 1, any odd g, D

Mo 1 fif g =3 mod 4

for n w2 ,
0 ws 2 ’,‘,_'f g == T moa 4

n D = 2°[] pl;
(4)

= 2" [ ] pif;
Q] .
any odd s D == omin(s+I, n) ”p%i,
]

then the (’om;ufew set of w(m) power residues B; = Zg ‘modm where (7, m)
=1 and % =5 g<. m con De pwtwmwd into (D) disjoint arithmetic progres-
sions P, each containing o(m)jw (D) = m[D elements of the form r,-+ KD
where 7' =r,modD, Z a—"-.f/’mod]‘) for 6 =0,1,..., 0(D)~1 and I
=0, Ly oo, w{m)jolD)—1 = m/D 1.

Proof. We will prove Theorem 1 in a new way compared to the proof
of the original result given in [5, p. 2271 In fact, the approach reveals
gome noew features related 1.0 fhe existence of residue progressions and
refines the result in [, Th. 4, p. 2277, ¥ m is odd, then from (2 3) and

choosing 1 == ] [ pyrter ] 1»“6 where we have u%d D o= [Tph with-
() _ )
ty e m0in. (g - 8y, m) stastad according to the assumptions concerning the

odd primes in m below (2.2), we oblain
‘HLJ ﬂw,;
(2.5) Mo ([n] . cﬂn

- - )
5 ” ;j”_'{ ” pn[ II Pl

()

Cage 3 for M e=1, n =1 o0r 2, any odd g, .D

Oage 4: for | M =0, nx3,

and

»Muw 5 Hm If o

w(m) o ) e p;“r‘("y"“ﬁ.

Dy 2“1 IR A Hw L
g m W)

(2.6)
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Clearly, according to the character of those p;, l.e. ny > 2 -s;, we see

that D is the least divisor of m such that m/D = o(m)/w(D) [6, p. 228,

(3.4)]. Also shown in (2.5) and (2.6) iz the basic requirement for

the existence of residue progressions for odd m, i.e. m/D = [ pl=E=a) oy
(7)

which is assured if at least one odd prime in m is such that n; > 2+ g,
(these are the odd primes belonging tc the “j-class” we defined above).
We may paraphrase and say that (2.5) and (2.6) show that the number
of residues mods which lie in these m(D) residue clagses mod I} ig demon-
strated by the fnct that me(D)(D = w(m) [5, pp. 227-228, (3.2)-(3.4)].

If m is even, i.e. # > 0, the situation is more complex. Let ug dofine
D =2*f ? p% and seek the least value of » uging (2.4) such that D |m and

[ ’

miD = w(m)/w(D). Using (2.4) and thig uqsumption, leads to

w ma,x w (2",
2. e :)1'! @ ﬂj»‘(@{ qj) ”j (z] F’a'f)
@D g;p maix (w(2%), 2“’" !1:[13
which defines the erucial relation
(2.8) ' 2" = max(w (2", 2¥)/max{w(2%), 2%)

from which we seek the least positive infeger solution x for some fixed
choice of n =1, ie. even m.

A detailed analysis of (2.8) for the cages Hsted above for » = 1,2,
n = 3 with M = 0, M == 1 leads to the various stated results. For example,
in the more frequent case 4 (m-even) for which, we take n =3 = 2<s
<'n~—1 according to Definition 1 (2.0) for w(2"), M = 0; (2.8) requires
2" =1, hence 3 <z < n determines the possible range of x values.

In (2.8), we may now write under these assumptions

(2.9) 2% = max (2", 2M) fmax (27, 2¥)

and in the denominator, let us set 2°° 2 2% or g > s--M for n iz s+ M
which implies 2°° > Yy Hence max (2", 2M) = 278 ang maﬁc(‘)““", 27)
= 2°7%, thus (2.9) becomes 2"% = 2"~® which means that (2.9) is satistied
for any 2z s - M. Therefore, wo choose the least @, i.e. @ = s+ M where
D|m and thus (2.8) is satisfied if # = s M for n = s +M. Also, note that
the restriction 3 <@ ==s4-M < n iy patisfied since the least possible
value for s M = 2--0 obtains for § == 2 and M == 0. :

Ifn< s+ M, then o << s--M or n—s < M. Thug, 277« 28, gn-2

< 2%, and (2.9) gives 2"7% = 2Y/2% w1 which implies # = n WlllG]L is,

therefore, the least solution for = < s M. Hence stated succinctly, @
= min(s +M, ») for case 4. We have, therefore, digposed of cages 1 and +.

Cases 2 and 3 are obtained by a detailed analysis of (2.8), considering
the possible values of w(2') and w(2%) as stated in Definition 1 and their
relation to 2¥ for M =0 or 1.
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Tor example, congider case 2 fm %= 8, M == 0, and the requirement
that g be an odd number of the 4 possible types modél g = 1mod4 and
g == 3mod 4. T n == 2 with possible o =1 or 2, we have for M = 0, con-
sidering the 2 possible values for m(22)

(2.10) P = nmx(w 2%), 1) max(e (27), 1)

)
=s 1 fmax(m (29, 1) or 2 /max{w (2%, 1)

for ¢ == 1modd or g == 3mod4, respectively.

In tho firkt instance, the relation is uniguely satisfied by @ = 2,
¢ = 1modd and @ + L sinee w{2% == 1. In the second, @ ==L for g =
== 3modd and o 5 2 since (2% = 2 and w2} == 1, One proceeds in the
same way for the rest of cases 2 and 3. The proof of Theorem 1 is now
complete.

Let 08 now asgemble together for immediate and future reference,
the 4 basie parameters m, .0, w(m), and w(D) stated explicitly which
completely determine the structure of the residue progressions for m odd
and m cven for # = 3. (We state the m even case for # = 3. Those for n == 1
or 2, ete. can eagily be constructed if needed.) Furthermore, we list them.
for incomplete and complete positive integers m, respeetively.

DrrNIrroN 3. The residue progression parameters. 1€ m i3 odd and
ineomplete or complete, resp., then assuming the quantities defined in
Definition 2, we have baged on Theorem 1 - :

np*h p}% or ” pit for all ¢, l‘BSjb.,
) @9

()
D s j{pz,mfnpn; or sz“.%
(Ed)
{2.11) w(m) = 211[[ ,pnwa ﬂ pli ” g ox r)anwamm@ 17 ik
(2] @ (%)
A 2 M '3
w )JM%')Z pli (tl;! ’”Qq” or 2 g;[;u Ion)] e

T m 48 even with » 2+ 3 and complete or incomplete, resp., then

s B ] ! Py ] [ P oor 27 [ [ gt for all 4, vosp.,
¢} {i)

(g.]‘g) ) e g+ ]]p%’]ﬂj I] P or pyrudna -+ Hon) ] [Pz/, o
(] ) {4

w(m) == ouux(i- 4 W) ]‘Ipnj 2 r[ P I"! (Irfﬂ qp Q- i) ”j‘)”* iy I]’ 7k,

{hed) (K [0 ()

o oy [ [ 2 [ [

(&3] (£#]) () . (U] )
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For the odd case, the parameters were stated in (2.5) and (2.6). Tor
the even case, by construaction using the stated #, D, and w(m) and the
fact that w(D) = Do{m)/m, we find that :

@ (D) — 2miu(s+M,n)+mn.x(u-s, My—n ”pfﬂ‘ H :;1. n Q};’“-

) @) (%)

(2.13)

For the 2 alternatives n = 8- M and n < ¢ + M, we have for » (D) in (2.12)

(2.14) min (8 M, ) - max (n-—g, M) = M

for either alternative, je. if nzs+-Most+M4n—s—n =M and
%< 8+ M =n+M—n = M. The parameters for complete positive integers
ay stated are easily obtained when n; > 2;~s; for all p; in m. The requi-
rements of Definition 3 are now complete.

In 1971, Dieter [2, pp. 105-106] stated something similar to the
progressions in Theorem 1 appropriate to so-called “maximal® periods
in a study of congruential random number generators uging the universal
exponent A{m) which, of course, restricts g to being a primitive root
mod p* (for ¢very odd prime in m) among other requirements for a so-called
“primitive” element. However, as we have seen above, the result we guve
in. 1970 [5, p. 227, Th. 4] and Theorem. 1 stated here applies to all (¢, m) == 1.
Algo in, Dieter [2, p. 105, (3.5)], we £find A (m)/A(f) = m/f which ig the analog
for w(m)/ew (D) = m/D found in [5, p. 228, (3.4)] where f is the least divisor
of m.

This is a convenient place to emphasize again that our aim (or program)
in the results we have been building since 1964 in [6-9] in relation to
normal numbers is to determine those fundamental arithmetic properties
with respect to the umiform s-distzibution of convergent sequences of
rational approximations to a given irrational.

In this, it is clear, that we must have results of a quite general nature
with respect to the base of expansion since the positive integers g, which
would appear in the denominators of p,/q, where lim p,/q, =0 with 0

Fleemd30
an. algebraic or transcendental irvational will vary considerably for in-
creasing # in their character (or “Types” A, B, ¢, ete. as we call them)
with respect to the base of expansion g which would be fixed for each
4, %uch that (g, q,) = L

Tor example in [7], we showed that the noun-periodic parts which
arise when (g, m) 21 did not affect the normality of the construction
{6, 7, 8] that we have studied in detail. In fact, we were lead to absolute
(7, &)-normality in the rationals by assnming that (g,m) > 1.

. Therefore, we want as few restrictions on the bage g with respect
to m, as possible, and yet still have uniform s-distributions.
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Teom Definition 3 (or case 4 in Theorem. 1), sssuming # = 8-+M,
we may obtain for incomplete positive oven integers, the requirement
for the existence of residue progressions

m/D e zn—«(u—kM; [} })}fa}—(sj-}-aj) -1,

[eH]
Algo, mD = w(m)jw(D) is the number of elements in each of the w{D)
residue progressions. P, The form in (2.15) reveals a number of conclusions.
Tirst, wo can obtain m/D =1 by having Type B [5, p. 229, Def. ] where
ny s 2 -8 fov all odd primes p, in m = 2“({)[ P ginece (In[ p;‘f"(“f'“"ﬂ =z ()

(2.15)

and, 111101!@f01*a, we oah now have residue progressions by choosipg # Aas
large ag we please in m[D == 2" 60 > 1 for m > ¢+ M. Second, sinco
¢ and M are fixed for a given set of p; and g, we can make the number
of elements m /D1 in each P, arbitrarily large by taking n sufficiently large.
Third, it m is Type A, we could increase both n and «; (the exponent of
at least one odd prime in ), or fix » and increase n;, or fix n; and increase
n, and thus, by any of these 3, again incresse the number of elements
in any P,. _

Of most interest here is that Theorem 1 in the form of (2.15) shows
that there exists » new Type B integer m which generatos residue progres-
siong. Tt appears wo must revise bhe statement we madle in [8, p. 2297
that “residne progressions do not exist for Type B”. As we said above
for Type B, (2.16) becomes simply :

(2.16) m/D = gr@ M 5

Tt is clear thab this new vesult follows from our more precise value of D

for the even m case. Before in [5, p. 228, (3.4)] for even m, we had m/[D

= [] p~t since we gave I = 2" [f pli, and #; = min(n,, 2 + ;). Therefore,
- : {

' ) - N 4 "
it =5 2;--8; for Type B, we had m/[D = { ]] pH™ =1, i.e. no residue

progressionsg, ' o }
Those results also imply the uniform e-distribation over a 'whole'pemod
and within the period according to our recent results in [8]; and, :vn__ oo;xlw
sequence, (j, s»-normality for Type B rational fractions Zim =22 {c }[ P,
I also follows that there ave no odd Type B positive integery, in gen‘em].,
that have residue progressions since m/l == L, other than the exceaptmx_ml
onge we nobed in [5, p. 229, bottorm] where p iy an odd prime in Z/p and g

s primitive root modp* and the complete periodic set can be re-arranged

into & sequence whose elements differ by one (see also, Type.]ﬁ(@), l?elnw).

Tlowever, the diftienlty in proving the wniform. a~d1§tnrlbut1()11 of
normalized residues ,/m for the odd Type B diseussed n [3, p. 230, at
top) still remains.
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Let us gather fogether our present knowledge of the types of positive
integers m. which produce residue progressions in Z¢* = r,modm. In Type
B, we have some wapublished results econcering nth power residues [zee
5, p. 230] for d = (p—1)/n where n > 1.

DEerFINtrioN 4. Bwistence of residue progressions. Residue Progressiony
for the complete periodic sets of power residues in Zg' == r;modm
exist for the following positive integers m using those g such that (g, m) = 1,
2 g<m, and (Z,m) = 1: .

1. Type A. m (even or odd) == 2"[]p¥, n = 0, complete or in-
1)

. ( .
complete, i.e. n; > 2+ s, for all 7, or at least one, resp.

2. Type B. (a) m = p, p[|(g" ' —1) where g it & prii’nitive rootb
modp?,

(b) m(even) = 2" [{plii, n > s--M =2 2, m; << 28,
() .
for all 4.

3. Type C. m = 2" for > 4, and any odd 4.

In the next section, we will present the theorem on Type C which
we promiged. in [5, p. 2317. (This result for Type O waa stated in an un-
published ms. of 1964 communicated to D. A. Burgess.)

3. (j, &)-normality for Types A, B, and C. First, let us present the
new result for Type B. ‘ : .

If we follow the proof of [5, Th. 5, p. 231] and we introduce the D
for Type B based on Def. 3 (2.12) as well as (2.16) for m{D = a(m)/w (D),
then we have demonstrated

TumorEM 2. Inthe rational fraction Z fm = Z /9" IT o of Type B where
’ (%

My % 2 -F 8; for all i, lét ¢ be‘deﬁned by w(2") = 2" for m 3= 8, 2M l|d; for
all v, and choose n > s+ M = 2, then the fractional paris {Zg' jm} for i =0,

Lyooey w{m) 1 = 2" [T pfi [T g — 1 have a wniform e-distribution Jor all
W (&

bases g such that (g, m) =1, 2 g <« 118 where & = 8 = w(D)/w(m) =
= Dfm = 1/2" 60 Do 99 M T o g (D) == 2™ [T p% [ gie.
: ) ]

. (

Therefore, using [5, Th. 2, p. 224] and Theorern 2 (above), we have
(j, e}-normality over a full pariod w(m) for this even Type B. Assuming
the definitions of the quantities s and M as given in Theorem 2, and sssent-
lally paraphrasing [5, Th. 6, p. 233] we have established

icm
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TuworEM 3. 4 rational fraction Zm = Z 2" [[ 9}t < 1 in lowest terms.
of the even Type B for n > &-+M = 2 i8 (j, ¢)-normal in all bases g such that
| (g,m) =1, 2K g< mD =20 =1/e for all j< [log,2m~ €+

“where

¢ = Djm e LjonTEHH (2% =27, and D =2'TH HP’I‘.
- . ‘ 0
TImplicit in Theorems 2 and 3 is the structure of the &ssoeia.ted regidue
prugreﬁéjons for the even Type B. Since these were not explicitly stated,
wa do so in the following corollary: - i-
COROLLARY TO TumorEs 2, [f m == 2° { )] Pl in Zgt == vymodm where
¢

8,

. N . 1 — oM I w8t VT a7k
3 3y Ny S0 By b 8; for all 4, and n > 4 +M, then we have w (D) =2 Ii)l P '(l;l .

]

residue progressions P, cach consisting of w(m)/w(D) = 2"“(*’;”:“ elements of
the form vy 4 KD = r, -+ K 95t M [T plwhere Z = Z'mod D, 2’ g* = »,mod D,
! J ‘

(
and K = 0,1, ..., 20 M0,

For Mype O, Le. Z/m = Z{2" <1 in l_owyest terms, ‘we prove the 201-
lowing theorem concerning the a.ssoaiatele regldue Progrossions. The r;s; 21}:;
progressions lead to the uniform g-distribution of fmctmn.al p&ri}? {.fg,. / -
for 4 = 0,1,...; @(2")—1 which, congequen@ly, establishes t mtl‘-( 3, 8)
pormality of Z 2™ under suitable conditions using {6, Th. 2, p. 224].

Tugosowm 4 Type C. If Zjm =Z[2"< 1 in Zowe:st terms wherijlz ;;14:
and g i any odd number contgined in 2 < g < on s.uahr ti{hat g & (6212” :Em):,
or 9% —1, then the complete set of power residues n Zg' =m0 w
(Z,2) =1 are such that in .

Cage 1: 4f 2| (g+ 1) for 2 & 8 < m—2, then we hfwe 2 r:f?due progrﬁf-
_sions consisting of elements r,+ K-2°F" where Z »:-Z _Z(sfil)on ) _3 = ,
7' = r,mod2®™! for ¢=0,1; K =10,1,..., 2 —1, an : "

Oase 2:4f 2| (g—1) Jor 2 <8 < n—2, then we have one MSM‘?_?MJ__
gression congisting of 2%7" eloments 7o+ K 2% where K = 0,1,..., 2" —
and Z'g° e r, o000 2% : )

l’rgo of, (gonsic"l‘@r the definition of w(2") ioul?.d in (2.9). All the 2; ' ——:Jl:
odd g contained in 2 < g < 2" can be partitioned ::tho 2 kmd's of ¢ ml ;«ej;
where (r,2) =1, Le, 2||(g--1) in case 2 a,nrl;z H(g«lﬁl:) in (;fmaf L;nadga
where 2 = 8« n~1. For case 2, we have o (2“_)1 = 1 mnc‘QHFﬂ w::2 for
for g = 2% -1, and for osse 1, g° za 1 mod2 ,ﬂm, (ﬁ.(fj ) =2 B nfl

= 2%y 1, For all such g, we have the usaal w(2") =2 f(l)r " 'Fh “
9 8 n—1 where 2 £ 0(2") € 2"% Ag in the <1eIrmm:;traflnc)n1}}1}(}11'j /%
orem 1 starting at (2.7), we seek the least divisor ofm m guch that m/.
= o (m)[w(D), In Theorem 4, we bhave for D =2

(3.0). m|D =2V = (22" = 2" (o (@)
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where we shall assume » > 4 and ©(2") = 2" for which 2 < s<<n—1.
Therefore, for the 2 kinds of g, we distinguish 2 values for D — 2% i.e.
iftg=2"r+11in case 2, 2"% = 2" ¥/l =g =5 or D = 2% and ¢ == 2%y —1
In cage 1=2""" = 2"*f2=g = 5+1 or D = 2°*!, Thus, in case 2, w(D)
= w(2") = 1 which implies the existence of one residue progression with
differences D = 2° and in case 1, w(D) = (2°*") = 2 which shows the
existence of 2 residue progressions. (These values for D are minimal by
implication.) In order that we are able fo clearly recognize the prograssions
in the minimal cases, let us require that we haive, either one ret of 4 elements
in progression, or 2 sets of 2 elements in progression, i.e. require the total
number of elements w(2") in the complete periodic set to be such that
®(2") 2 2% This can be done if we confine ourselves to thoge & such
that 2 < s < n—2, since the number of elements in one progression iz
w(2")/w(D) or 2"*/2 > 1, at mort. Henee 2" > 22 > 2 which shows that
s<n—2 will suffice. Therefore, as indicated in the theorem, we must
Temove those ge 2 <l g << 2" such that s =n—1,ie. g = 2" —1,2" 41
and 2"—1 since (2"7'+1)? = 1mod2™ and (2"—1)* = 1mod2" implies
that w(2") = 2"~ "1 ~ g -

The other standard features of the residue progressions follow ag
well in Theorem 4, i.e. the values for ,, Z’, ¢, and X, ete. as in 5, Th.
4, p. 227] where in the present result for Type €, we distinguish the 2
values for D, i.e. D = 2* or 2**! according to the particular odd ge2<yg
< 2" The proof of Theorem 4 iy now complete. ‘

Following the proof of [5, Th. 5, p. 2317 and noting [5, Th. 6, p. 233],
we see that the essential parameters in uniform e-distributions and (4, &)-
normality theorems for any rational fraction Z fm < 1 in lowest terms are
¢ = Djm = o(D}/w{m) for all g such that 2<g< 1/ = m/D and j
< [log,m/D]. Therefore, we give the following theorem for Type C which
combines hoth of these properties for Z/2

TurowEM 5. The rational fraction Z[2" < 1 in lowest terms of Type
C for m = 5 is such that the fractional parts {Zg" 2™ fori = 0,1, ..., 0(2%) —1
have o wniform e-digtribution on [0, 1] and, vonsequently, is also (7, 8)-
normal when represented in any odd number base g where in '

Case 1:4f 2°||(g+1) for any odd ge 2 < g < 2%+ thop ¢ = 1 jan=te4n)
with j < [log,2" s and in

Case 2: if 2°{g—1) for any odd ge2< g< 2", then & = L [20*
with § < [log,2" *].

The only comment that we make about Theorem & iz that in
order for 2 < g< 2"+ {9 contain at least ome odd' ¢, we réquire
that » > & since, minimally, 2"~ #+1) = 25-(+) _ 92 f63 & — 9 in cage 1,
and this requirement also accomodates 2 < g 2% == 2% for case
2. Q.ED. « ‘
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The new valne of I ghated in the regidue progression Theorem 1 _for
the even modulus 7 = 2% [ ] p? of Type A not only leads to (j, ¢)-normality
)

for a now class of Type B(a).s statod in Theorem 3 based on Theorerp 2 but

also has its effect on the wniform s-distribution and (4, ¢)-normality sta-

tements for Type A given in [B, Th. §, p. 231; Th. 6, p. 233].- N
In the following theorsm, we introduce Definition 3 for simplicity

" and combine the two fundamental properties for Type A, i.e. uniforr.

e-digtribution and (7, s)-nommality as wo c_li(‘l. in Theorem, _ﬁ for Type C.

We assume the definitions of z;, s;, 8, M, ete. as stated in Theorem 1.

We have ' | - .
TnroreM 6. The rational fraction Zjm = Z|2" (]¢ )[p,b-’i < 1 in lowest

terms of Type A is such thai the fractional parts {Zg im} for ©=0,...

ooy o{m) =1 have a wuniform e-distribution on [0, 1]; amd, consequently,

is (4, &)-normal where in : :
Cage 1: 4f m 1s odd, then

. _m 1 / -{;;1 ‘p?j“'(ﬁj"}%ﬁ Jor all j < l:logggﬁglr(zj-l»aj)]

; ] T (2 ey, ;
where the g are such that (g, m) =1 and 2 < g < (Ij )I PR and in

Case 21 if m s even with n 23 such that n > s+ M, then

” | { e | —(a4-M) Tig— (2 —l-a.-)]
C g e L foneID I Ip?i‘”%“""ﬁ for all j =< llogﬂ?ﬂ S gpff. y e
: )

: - . —{#;+87)
where the g are such that (g, m) =1 and 2 < g < 2" 5+ M) gp;"i #i+egy

In ease 1 above for odd m, the result iy identical with our orign?a,l
statement in [B, Th. 6, p. 231]. Also note that. in cage 2, we ca:n requgg
n iz s -4-M since if Z/m iz Type A, then t}lere is surely a,t. least one o d
prime in m such that «; > & 1§ by definition. Thgrei".ore, we could perilmd
% == g M for some g and M and still have a well defined & and a bounded

. R 5 L1 or 1T r"j"(gj“h’j).
set of§ values for (7, 6)-normality due to thepresence of the factor L! Py

B i i ! ) require
Tor the new even Type B intoger m = 2" (]¢ )[ pit, clearly we must req

no g M for uniform e-distribution, and (j, s)-normality as stated In
" Theorem 4. : . o .

In [5, p. 280], we stated that we eould prove the (4, e)-nolm_a.ll‘oy:‘fo;*
the Typ‘e B ease of Z /p where Pll{g*—1) .W'i'bh d = (p—1)n i;c;r %hﬁ‘ch'
amd a;i)ﬁropri:‘-we g. In the near future, we will preﬂent.tlhese regults whi

" envolve character sums and other technigues. In addition, we will prove

that cerbain representations of given irrationals like “e—27, V2, =, cte.
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have representations which are Type A rational fractions. Tn particular,
wo show that the partial infinite product representation for w4 with «
sufficiently large is Type A and, consequently, we obtain results congerning
the Brouwer conjecture that we discussed in [8, pp. 234-2301.
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Remark to a theorem of P. Erdss
Ty
D, Bzisz (Stony Brook, N.Y.)

Lot f(#) be a real-valned additive arithemtic function, that is,
Jtam) = fin}-+f(m) for (n,m) =1.

Put _ :
n) for fin) <1
Py [T Fon) < 1,
0 for  [fin)| > 1.
A remarkable theorewn of P. Trdog [1] states, that if
o
{1} ﬁ\;ujﬂl converges,
n
O ()
@) P
»
and
: 1
3 im0
( ) II(Z »
IES!

then the digtribation-function of f(n) existe, that ig, the limit

1\
(4) 1 }_J 1 = G{z)
Nereo e N
fk) =

oxisty for every real z. Further he showed that if the additional condition
y 1

ﬁ o)
() Ad B
Hn)#0
holds, then G{x) is contivuons; if
71

(6) | D<o

i ¥
then G (x) iy a discrete distribution.
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