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0. Introduction. This paper is concerned with the number of primes
lying in an interval y < # < y 4o of length «, and especially with the way
that this number behaves when # is held fixed and y approaches infinity.
In standard notation, the number of primes in (¥, ¥ +] can be written
a8 w(y+x)—=n(y). (Here and below, x and y denote integers >2; an
“interval” is viewed as a sequence of integer points, and the “length”
is just the number of these points.) It has been conjectured that no interval
of length « contains more primes than the first  integers, i.e. that = (y + ) —
—n(y) < =(x), or more symmetrically:

(A) n(z+y) <m(x)+n(y) for x,y>2.

In this paper we give strong evidence against the assertion (A).
More precisely, we show that (A) is incompatible with (B) the “prime
L-tuples conjecture” (definition to follow), so that at least one of these
conjectures must be false. (We believe that (B) is true, and (A) false.)

The “prime k-tuples conjecture” (B) is a special case of Schinzel’s
“Hypothesis H” (cf. [15]). An exact statement is given in Section 1.
Roughly speaking, Hypothesis H asserts that %-tuples of polynomials
which seemingly “could” take prime values infinitely often, actually
do so. Our conjectura (B) is the monic linear case, corresponding to pairs
like X, X+2 or X, X450, triples X, X +2, X 486, etc.

ExAMPLE. The triple X, X +2, X 46 takes the prime values 5, 7, 11
or 11, 13, 17 or 17, 19, 23 when X = 5 or 11 or 17. We believe, but cannot
prove, that this happens infinitely often. [The k-tuples required for our
work are much more complicated, and involve much larger values of
k, and then the existence of even one prime k-tuple of the desired type
is not easy to demonstrate by crude computation - — more on this below.]

The inequality (A) is symmetric in # and y, and hence there
is no loss of generality in assuming that # <y. On the other hand,
(A) can be written =(y+2)— n(y) < n(2). Thus it is natural to



376 D. Hensley and I. Richards

consider the function

e1(®) = max[n(y +)—n(y)].
y=x
In words, ¢,(») denotes the maximum number of primes in any interval
y<n<y-+a of length », beginning with a point y+1 > 2. The con-
jecture (A) asserts that g,(x) < () for > 2.

Remark. The function g, is adequate for discussing most questions
about primes in intervals, and the condition ¥ > « does not impose a vital
limitation. For example, any result of the type o,(#) < az(x) with constant
a>1, v > x, implies #(y +x) —n(y) < an(x) for all ¢,y > x,. The reason
for requiring y > & is that this makes the function g, compatible with
sieve estimates, by avoiding such exceptional configurations as the pair
2, 3 or the triple 3, 5, 7, which can occur only near the beginning of the
sequence of primes. Some further remarks along these lines are given
at the end of Section 1.

We review briefly the present state of knowledge concerning o, (z).
As noted above, the conjecture (A) is equivalent to the assertion that
01(w) < m(x) for x> 2. Schinzel and Sierpinski [15] showed that this
holds for <132, and Schinzel [14] extended it to x < 146; Selfridge
and his associates have an unpublished verification running to several
hundred. :

However our purpose is to disprove (A), and for this we need lower
bounds for g,(#) which eventually become greater than =(x). As a first
attempt, we might try the relationship ¢,(®) > =(2x) —m(®), which is
obvious from the definition of g,. The quantity = (2z) — () is asymptotic
to z(x), but unfortunately it is also smaller than = (x) for all x. (For large «,
this follows, as Landau [8] observed, from de la Vallée Poussin’s sharp
form of the Prime Number Theorem ; and Rosser, Schoenfeld, and Yohe [13]
have demonstrated that it holds for all > 2.)

Now, rather curiously, the fact that =(2x) < 27(x), which spoils the
first attempt above, also provides the key to the solution. We will use
the equivalent form 2z (xz/2) > =(x), and bound g, () below by something
which is close to 2z(z/2). More precisely, assuming the prime k-tuples
conjecture, we will show that

01(®) = nm(x) + (log2 —¢) [w/(logx)?] when x> ax,.

Thus the true state of affairs, assuming the prime k-tuples hypothesis,
is that p,(#) < z(x) for small #, the two functions cross once or several
times, and then g,(x) becomes and remains greater than = (). Our com-
puter experiments suggest that the crossover occurs between 10° and 10°.

Recall that g,() is the maximum number of primes in any interval
(¥,y+x], y > . By computing actual primes, Segal [16] has shown that
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(@ +y) < 7(x) - n(y) when both x and y are < 10°. Our results indicate
that probably g, (10°) > 7(10°), which means there is some y with z(y +10°)
> m(y) + 7 (10°%). We suggest, however, that the values of y involved are
so large that an explicit pair @, y satistying z(o+y) > =(x)+n(y) will
never be computed. (For a further discussion of these points, cf. Sec-
tion 3.)

Schinzel has found a modification of our argument, which requires
still another conjecture, but suggests that the difference p,(x)—=(x)
grows “faster than O[x/(logz)*]”. The authors had previously believed
that their method gave the maximum order of growth for ¢,(x)—z(%),
but this now. seems extremely improbable. We return to these questions
in Section 4.

So far we have given lower bounds for g, (x). In the opposite direction,
the strongest results to date have been obtained by Montgomery [10]
and Montgomery. and Vaughan [11], using the large sieve. They prove
that g, (2) < 27(x) for all # > 2, and slightly more is true when # is large.
It seems likely that g,(2) ~ =(z), but this awaits further investigation.
Such questions are difficult; even the relation g,(x) < Constz(x), first
proved by means of the Brun sieve, is far from obvious (cf. [4]) .

A note of thanks. The present paper gives an example of theoretical
research which was aided by a computer, even though ultimately the
computer could be dispensed with. To study the function g,(x) we employ
a related function ¢*(x) (definition below), which, unlike ,(x), can be
calculated in a finite number of steps. (The prime k-tuples hypothesis
implies o*(#) = p,(x), and it is for this that we need the hypothesis.)
Originally we used the computer to seek k-tuples which would give o (z)
> z(x) and thus, on the k-tuples hypothesis, provide a counter-example
to (A). Our first results, working with sequences of up to 100000 points,
were all negative (although it now appears that the number 10° is large
enough, and our method was defective). Trying to find a better strategy,
we eventually found a theoretical argument, valid for all large z.

Here a word of thanks: William Franta and Richard Franta of the
computer sciences department and the computer center wrote the program
for us. It was necessary to go into machine language in order to handle
a sequence of 10° bits without taking too much computer time and
memory space. The 100000 bits were packed into around 3000 words by
using 32 bits in cach 60-bit word. We would probably never have come to
a theoretical solution without the insight provided by the computer search.

We also wish to thank Professors Erdoés, Bateman, Schinzel, Mont-
gomery, and S. A. Burr who made numerous suggestions for improving
our manuscript. Montgomery, in particular, gave us a point by point
critique, which we have drawn on liberally in preparing the present version.
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' 1. Principal c'lefinitions. Henceforth we will study a function o*(x)
which probab'ly coincides with g,(#); it does so, at any rate, if the prime
k-tuples conjecture is true. We show (without using any conjectures)

that [o*(2) —z(2)]— + o0 as #—oo. It is useful to consider three functions
(we repeat the definition of g,).

e(«) = limsup [#(y + &) —7(y)].
Yy—00
01(#) = max[z(y +)—=(y)].
V=
* .
¢ (#) = the maximum number of integers in any interval y < »

< ¥ +2 (with no restriction on y) which are relatively prime
to all positive integers < .

Our main result, proved in Section 2, is that
[¢* (@) —m(x)]>00 as @—>oo,

and moreover
0" (2) —n(x) > (log2 — &) [#/(logz)?] for = > .

. In this section, we will consider what that result implies about
primes.

Clearly o(x) < o,(#) < ¢" (), and we shall see below, that if the prime
k-tuples conjecture is true, then o*(z)< o(x), closing the circle. The
function ¢ represents the maximum value which recurs infinitely often
as the number of primes in an interval of length #. Thus if ¢(z) = o*(2)
then we have the corollary (—A*) in Soction 2, that for all sufficienﬂ};
lj,_rgf(; :;:, there exist infinitely many values of y, where n(x+vy) > =(2) +

7(y).

There is an alternative definition of o* (), based on “sieves”, which
has certain advantages. Let us call a set b, < b, <...<b, of integers
admissible if: 7

(). TFor each prime p, there is some congruence class (modp) which
contains none of the integers b;.

Tl.ms. to form an admissible sequence on an interval of length », we must
eliminate one congruence class (mod2), then one class (mod3), one class
(mod5), ete. until the next prime exceeds the number of points which

r;almain. Now a typical Chinese Remainder Theorem argument shows
that

¢*(#) is the maximum size % of any admissible k-tuple b, < by < ... < by
on an interval y < b; <y -+« of length 2.

Since “admissibility” is translation invariant, we can take y = 0 without
loss of generality. Thus the above gives an effective method for com-
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puting o* (). Furthermore it shows that ¢*(#) is a nondecreasing function
of #, and that ¢*(2+9) < o*(2)+¢*(y) for z,y >1.

Now the significance of *(#) is that it represents the maximum
“possible” size for prime k-tuples on intervals of length 2. The following
conjecture asserts that this size is actually attained.

PRIME k-TUPLES CONJECTURE (the monic linear case of Schinzel’s
Hypothesis H; cf. [15]).

(B) Let b,<by<..<b; be any admissible sequence in the sense
of (%) above. Then there exist infinitely many integers » > 0 for
which all of the numbers % 4-by, ..., %+ b, are prime.

By comparing this conjecture with the second definition of g*(x)
given above, we see immediately that (B) implies o (%) > ¢*(»). Since
0(2) < 0,(%) < @*(w) is trivial, we obtain ¢(x) = 0:1(#) = o* (@). (Recall
that, loosely speaking, the function ¢ counts prime blocks which recur
mfinitely often, ¢, counts prime blocks which appear once, and ¢* meas-
ures “possible” configurations. To repeat, equality of g, 01,and ¢* depends
on the unproved hypothesis (B).)

Remarks. The function g was introduced by Hardy and Littlewod
[4]. In the same paper they conjectured both (A) and (B) (and many
other results as well); we have shown that at least one of these conjectures
must be false. Schinzel and Sierpinski [15] studied the function o* (which
they called ), and computed it for # < 132. The use of o, was suggested .
to us by Montgomery; he has also considered the quantity

7, (#) = max[z(y +o) —7x(y)].
>0

Erdos and Selfridge [3] have investigated the function 7*(#¢) = the maxi-
mum number of integers which can be chosen from any interval y < n
< 9+ in such a way that these integers are relatively prime to one another.

Just as for o*(«x), one can define a notion of admissibility corre-
sponding to 7*(x): a set by < by < ... < by of integers is r*-admissible if,
for each prime p, there is some congruence class (modp) which contains
at- most one of the b;. The relationships satisfied by e, e1, o*, @, and r*
are (for x> 2):

(a) 0() < o4 (w) < @* (@) < 7* (@),
and

(b) [r*(®) — o*(®)] >0 as @—>o0;
also

(e) 01 (@) < 7y () < ¥ (@),

and

(d) 7w (2) = m(e+1).

5 — Acta Arithmetica XXV.4
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On the prime k-tuples hypothesis we have:

(e) e(@) = (@) = ¢ () < m,(2) < 7" ().

Finally we can show, with or without the k-tuples hypothesis, that:
() 7 (%) < o*(x) for wx>uw,

(this fails when « is small).

Of these, only (b) and (f) are not obvious. To prove (f), we consider
several cases. Recall that z,(#) is the maximum value of = (y +x) — = (y)
for y > 0. Then either y >, in which case =,(2) = o,(») < 0*(®), or
¥ <. In Section 2 we will show that ¢*(#) —z(x) > Const [2/(logx)?] for
@ = %,. So we need only consider the possibility that y < @, but = (y +x) —
—n(y) > 7 (x) + Const [#/(logx)?]. This cannot happen, however. For the
de la Vallée Poussin sharp form of the Prime Number Theorem [9] implies
that if (2 +y) > () +7=(y) with y < &, then y is much smaller than x;
specifically y = O[z/(logz)Y] for any fixed N. And thus the trivial ine-
quality z(x+4y) < #(2)+y would give a contradiction.

To prove (b), we let # exceed twice the product of the first # primes,
and show that then 7*(x) — o*(#) exceeds n. For, starting with a maximal
admissible set for ¢*(x), we can add » extra points and still have an admis-
sible set for +*(x). To do this, adjoin a sequence b+2,b+3,b+5,...,
b+ p, congruent to the first # primes, where b is picked, via the Chinese
Remainder Theorem, according to the rule: If, in the original p*-admissible
set, {j;} denotes the empty congruence class (modp,), then let b-p, lie
in {j;}, 1 <4 < m. Then for each prime p (less than p, or not) there is some
congruence class (modp) which meets the new set in at most one point;
i.e. the new set is r*-admissible.

Erdos and Selfridge [3] anticipated the results of this paper by prov-
ing that +*(2) —n(z) > [log2 — (1/2) —¢] [z/(logx)?]. Their proof is based
on the same “midpoint sieve” which we use in Section 2. However their
method fails for *(w)—n(x), since it gives a constant [log2—2] < 0.
The true orders of +*(x) —x=(2) and ¢*(2) —7 (%) remain in doubt, but
probably they exceed O[z/(logz)?] (cf. Section 4).

2. The main result. We adhere to the notations of Section 1. Fur-
thermore, in discussing o*(2), we emphasize the second (sieve theoretic)
definition of it.

THEOREM. limo*(#) —n(2) = +oo; the difference is > (log2 —e) x
X [@/(logz)?]. >

If the prime k-tuples conjecture (B) in Section 1 holds, then ¢*(x)
= o(w), and so we have:

COROLLARY. The hypotheses (A) and (B) are imcompatible. Moreover,
if we assume (B), then we obtain:
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(=A%)  For all sufficiently large =, there exist infinitely many y, such that
a(x+y) > z(@) +7(y).

(Our hunch is that, while “sufficiently large” for # means somewhere
between 10° and 10°, the corresponding*values of y are beyond all sensible
bounds.)

Proof. The theorem follows from two lemmas. Of these, the first
is easy, while the second requires several more lemmas before it is estab-
lished. The idea is to take an interval of integer points —x/2 < n < x/2
located symmetrically about the origin. Then we will construct a set
of points {b;} by eliminating points as follows:

First fix an integer N > 3. Eliminate all multiples (positive and
negative) of all primes p < #/Nlogxz (the “hard” sieve of Eratosthenes,
where the prime itself is not saved). Call what remains the residual set.
(This set consists of the primes between x/Nlogx and /2, and their nega-
tives, plus the points -1.) Then:

LEMMA 1. The number of points in the residual set exceeds m(x) by an
amount asymptotic to [log2 —2/N][x/(logx)?].

LEMMA 2. The residual set is an admissible set for o* (x) (cf. Section 1)
as soon as x i8 large enough.

Remark. It would be trivial that the residual set is admissible if
we stopped at primes p > 2xn(x/2) ~ z[logx (since then there would be
more congruence classes (modp) than points in the residual set). However
we have an average of about N points per congruence class (N is fixed).
We need to show that as the number of trials increases (i.e. as x—oo),
then at least one empty class appears.

Proof of Lemma 1. The number of points remaining is (with
an error of +2 or less) 2n(%/2)—2n(z/Nlogx). Now de la Vallée
Poussin’s sharp form of the Prime Number Theorem (cf. [9]) gives
[27(2/2) —7(2)] ~ (log2)[#/(logx)?]. On the other hand, = (x/Nlogx) is
close to (1/N)[x/(logx)?]. This proves the lemma.

Proof of Lemma 2. As stated above, several auxiliary lemmas
will be necessary. Although this is technically the hard part of the proof,
it involves ingredients which have been known for a long time. The main
step, Lemma 5, is essentially contained in a result of Westzynthius and
Erdos ([17], [1]), that the maximum gap between primes p,,,—p, is
asymptotically larger than logp,, . The sharpest results in the same direction
are due to Rankin [12] (see the Addendum at the end of Section 4). Here
we give a self-contained treatment, developing only as much precision
as we need.

We begin with a lemma (to roughly the opposite effect as our theo-
rem) about how few primes are necessary to completely eliminate a sequence
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of ¢ consecutive integers. [Later on, ¢ will be Const-log, the number of
multiples of any prime ¢ > x/Nlogxz between —z and a.]

LEMMA 3 (cf. [17], [1], [12]). Let T(t) denote the minimum value of T
for which the set of primes p; < T, can “sieve out” am interval of length t:
this means that there exist congruence classes n = Ji(modp,), one congruence
class for each p; < T, whose union contains the emtire interval 1 < j<t.
Then T(t) = o(t).

Proof. The condition T = o(t) is equivalent to the assertion that
the pumber of primes 7 (T) = o[n(t)]. This latter is what we shall prove.

We start with Mertens’ Theorem (cf. [5]): ” (1—%) ~ ¢~ ?[log.

<z

1
Let Cp = I I 1——| ~logM|M.
M<pzeM D

We will show that, given a large fized number M, we can make n(T)
< m(t/ M)+ Oy (t) if ¢ is large enough. Since M is arbitrary, this implies
a(T) = o[m(1)].

First apply the “hard” sieve of Eratosthenes, taking out all multiples
of. the primes in the two ranges 1 < p < M and ¢™ < p < t/M (saving the
fmddle range for later use). What remains of the original interval 1 < j < ¢
is:

(a) primes > t/M, and

(b) integers all of whose prime factors come from the fixed middle
interval M < p < ™.

If ¢ is large enough, the set (b) becomes small in comparison with (a)
so that, say, (a) and (b) together have at most =(t) elements. (This deter-
mines how large ¢ must be; see the remark below.)

Now use the primes in the middle interval M < p < ¢ in an optimal
way, whatever that may be. This must in any case reduce the residual
set of < z(f) elements by a multiplicative factor < C,, (= the product

of the corresponding 1 — i).
p

Finally remove the remaining points (at most Cp=(t) in number)
one at a time, using another C 7 (t) primes. In all, z(t/ M)+ C,, 7 (t) primes
have been used. This proves Lemma 3.

Remarks. Concerning the size of #: More careful estimates could
be given, but we are satisfied to observe that there is a fized number K
of primes in the middle interval, and the smallest of these primes is > M.
Let ¢ = M* (where u varies); then the size of the set (b) is obviously bound-
ed by (u+1)% (for each of the K primes, choose an exponent 0 < n < u).

As u—oo, t = M*> (u+1)%, and the set (a) becomes much larger
than (b).
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The significance of the number T'(¢) in Lemma 3 is that it yields a di-
visibility criterion for arithmetic progressions of length ¢. This criterion
does not depend on the common difference a between the terms of the
progression. (Nor, for the moment, do we need the result of Lemma 3 —
only the definition of 7'(?).)

LeMMA 4. Define T'(t) as in Lemma 3. Then, given any integer a > 0°
there exists am integer b such that every term in the finite arithmetic progression
b+a,b+2a,...,b+ta is divisible by some prime p < T.

Proof. Corresponding to each prime p; < T, we have one congruence
class {j;} (modp,), such that the union of the {j;} covers the entire interval
1< j <t Now the Chinese Remainder Theorem shows that there is some
translate ¢+1 < j < ¢+t of our original interval, in which each number
¢+j; (with 1< j; <) is divisible by the corresponding prime p;. We
have only to solve the simultaneous congruences

= —j;(modp;).
[If this holds for one j; in {j;}, then it holds for all!] Multiplying by a, the
corresponding numbers ¢a + a, ca+2a, ..., ca+ta remain divisible by the
same primes p;, and we have found the desired progression (b = ca).

LEMMA 5. Fiz an arbitrarily large number N > 0. Then there is a number
2o(N) such that: For every integer x > m,, every imteger y (unrestricted),
and every integer a > 0, there exists an arithmetic progression b+ a, b+ 2a,
ceoybt-ta

(a) whose length t > Nlogw,

(b) whose first term b+ a lies in the interval y < b+ a < y 4 @ of length ©
and .

(e) all ‘of whose terms are divisible by some prime p < (logw)/N.

Remarks. Lemma 5 is merely an extension of the Westzynthius—
Erdos-Rankin result ([17], [1], [12]) that p,,, —p, sometimes exceeds
“any constant” times logp, (to obtain this last, set ¢ =1, y = @). For
our purposes, it is essential that the difference a can go to infinity witha.
The condition p < (logx)/N means that the numbers 1n our sequence are
not only composite, but have rather small factors. For most applications
this is unimportant, and the crucial point involves getting the first term
b+ a to fall between y and y + .

Proof of Lemma 5. We combine Lemma 4, which tells us how to
build such a progression (but gives us no control over b), with Lemma 3
which bounds 7'(t). First build the progression b+a, ..., b-+ta according
to Lemma 4. Then all the numbers in this progression are divisible by
some prime p < 7'(t). By Lemma 3, T(t) = o(t). Thus, since N is fixed,
we can satisfy (a) ¢ > Nlogaz and (c¢) p < (logz)/N as soon as t and x are
large enough.
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However (c¢) implies (b). For clearly we can vary the first term b+ a
by any multiple of

P.

»<(log z)/N
Thus we have to estimate this product. But the Prime Number Theorem
for y(w) (cf. [9]) gives D' logp ~ u, whence the product [ p lies between

p<u rP<u
=9 and ¢'+9* Consequently the product over p < (log2) )/N is “expo-

nentially asymptotic” to #'¥, and is in any case much smaller than .

Hence we can vary b+a to hit any interval of length «, and Lemma 5 is
proved.

Proof of Lemma 2, completed. Recall that we started with the
interval —/2 <mn </2, and sieved out all multiples of the primes
p < [Nlogz. We have to show that the residual set is admissible: which
means, for any prime ¢ > »Nloga, there is at least one congruence class
(modg) already empty, so no further sieving is necessary. Now each
congruence class (modg) is an arithmetic progression whose intersection
with the interval —x/2 < n < /2 contains at most N logz points!!!
Hence the desired result can be read out of Lemma 5.

For the details: Expand the original interval threefold, arriving
at —3»/2 < n < 3w/2. Replace the N in Lemma 5 by 3N, set a = q
> x[Nlogz, t = [3Nlogz], and let the first term b-+g¢ in the arithmetic
progression b+g¢,b+2q,...,b+1q liec between —3x/2 and —2/2. The
last term b--tg > 3xz/2. Thus b determines a congruence class (modgq)
which, in the interval —/2 < n < 2/2, hits no member of the residual
set (since it hits only multiples of the relatively small primes p < (logx) /N,
whereas primes up to #/Nlogx have been sieved out). This proves Lemma 2,
and completes the proof of our theorem.

3. Numerical questions. It would be interesting to know the smallest
value of x> 2 for which ¢*(#) > m(x), and also the smallest value of
o+y (with  <y) for which n(x+y) > n(2) +x(y). Let us call these
smallest values @, and «, 4y, respectively. Of course x, and @; need not
coincide (clearly x, < ®;, but the minimal y for #, may be much larger
than v,). ‘

[By the way, we are here supposing that (A) is false (as would follow
f (B) were known to be true), so that the number z,+y, does exist. |

Let us begin with #,, the first value of @ for which 0" (2) > 7(w)
(and thus, on the prime k-tuples conjecture, the smallest value of  such
that there exists some y with =(z+vy) > 7 (2)+=(y)). Preliminary com-
puter experiments indicate that probably z, < 10°. The authors, together
with Warren Stenberg, plan to write a more thorough computer program
to establish rigorous upper bounds for x,. The results of this calculation

—
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may be ready by the time this paper comes to press (in which case we
will signal the outcome by a brief “added in proof” attached to the present
paper). Here we wish to thank Stefan A. Burr who gave us valuable
advice about writing this program. We again acknowledge our debt to
William Franta and Richard Franta who wrote the original version.

To bound #, above we must bound g*(x) below, and vice-versa.
Obtaining lower bounds for o*(x) is relatively easy, since any example
of an admissible set on (0, 2] furnishes one. Finding sharp upper bound.s
is harder, because o*(z) denotes the maximum over a large.set of possi-
bilities. (It is like trying to determine the optimal strategy in a game of
chess.) As noted in § 0, Schinzel [14] has proved that 0*(z) < n(w) .for
# < 146, and Selfridge and his associates have an unpublished verification
for # < 500. Thus &, > 500. Our computer experiments suggest that x,
is considerably larger, perhaps > 10% but that is more problemat-
ical.

’ It should be remarked that although o*(#) < m(2) for small «, and
we have shown that ¢*(#) > m(2) when « is large, the difference o (w) —
—z(¢) is not monotone. Thus the two functions 0" (z) and = (x) may
cross several times. The problem of determining rigorously the last crossing
point (i.e. the largest value of @ for which o*(x) = z(x)) is very difficult.
Our theoretical proof in Section 2 would give a numerical value .absurdedly
large; on the other hand, computer experiments might determ‘lne the li_mst
crossing point (which we believe to be < 10°), but would provide no hint
of a rigorous proof. o

Now we come to the second problem mentioned at the beginning
of this section: namely the smallest number x,+y, for which =(2,+y,)
> z(2,) +7(y,). We suspect, even assuming the k-tuples hypotl}esis (B)
is eventually proved constructively, that the value of x,+y, will never
be found; and moreover that no pair », y satistying = (x+y) > = (®)+
+x(y) will ever be computed. (Of course an effective upper bou'/nd .for
%, +vy, may be given, but we believe that particular values z, y s&tlsfy{ng
the above “reverse inequality” are very rare, and the size of y (assuming
# < y) well beyond computer range.)

To justify these speculations, we make the following remarks. Oonsldel
an admissible k-tuple on an interval of length # for which k = ¢ * ()
exceeds m(x). Then & must be fairly large, at least > 500 by Selfudge.s
calculations, and probably z > 1000. By definition, &k > n(:fv), but % is
probably only slightly larger, so we may write, after the Prime Number
Theorem, k ~ x[logx. -

Here we will invoke a famous conjecture, due to Hardy and Little-
wood [4] and Stickel, about the asymptotic distribution of prime k-
tuples. Very crudely, their conjecture is that the number of such k-tuples
between 0 and y, belonging to one particular pattern (like X, X +2, X +6),
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is asymptotic to Const-[y/(logy)*]. (The constant depends on the pattern
being considered.)

Now, while y grows faster than any power of logy as y—>oo, the
size of y needed to make y/(logy)* > 1 is not negligible when % is large;
in fact y > k*. There are, however, two compensating effects. The first
is that the constant in the Hardy-Littlewood formula increases with k.
But an examination of their formula shows that Const < (logk)¥, and the
equation (logk)*[y/(logy)*] = 1 has the exact solution y — k* (clearly
small values of y, such as y < 2k, are absurd for our problem).

The second and more important effect is that we must consider, not
one particular k-tuple as in the Hardy-Littlewood formula, but rather the
set of all admissible k-tuples on an interval of length «. But it is easy to
show that the number of such k-tuples is much smaller than %*. For the
number of all k-tuples (admissible or not) on an interval of length x is

just the binomial coefficient (‘z) And remembering that k ~ z/logz,

whence x ~ klogk, we have by Stirling’s formula that (Z) is roughly of

the order (klogk)*/k! which we replace by ¢*(logk)*. This is negligible
compared to k* for & > 100 (a very conservative lower bound). Further-
more the number of admissible k-tuples must be small compared to the
number of all k-tuples.

4. A result of Schinzel. Schinzel has found an extension of our argu-
ment, which requires another hypothesis (C), but shows that probably
the difference ¢*(x) —n(x) grows faster than O[z/(logz)?]. (We proved
in Section 2, without any hypothesis, that
¢* (@) —n(x) > (log2 — &) [#/(log®)?],
and the assumption (B) would give o*(#) = p,(x).) Schinzel’s result casts
some doubt, in the authors’ minds at least, as to whether o*(2) ~ z(w)
(cf. the end of Section 0). We observe that the arguments used so far
(by the authors and by Schinzel) to give lower bounds for ¢*(x) have
involved modifications of the standard sieve of Eratosthenes. The question
remains, whether there is any radically different sieve which does better.
A proof that ¢*(2) < (L+¢)m(z) as 2—oo would provide a kind of negative
answer.

Notation. From now on, p will represent a particular prime (which
is held fixed throughout the argument), and an arbitrary prime (say any
prime < ) will be denoted by P.

In Section 2, we constructed an admissible set on an interval (—z/2,
®[2] of length # by eliminating all multiples of the primes P < #/Nlogz,
where N was a fixed large number. Our advantage over the standard
“hard” sieve of Eratosthenes was obtained by moving the origin to the
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center of the interval. Schinzel instead takes the usual interval (0, z],
but alters the sieve by switching congruence classes (mod2), i.e. eliminating
the odd numbers and keeping the even ones. This produces a gain of
[21log2 — ][z /(log®)?], twice the value obtained by us. Moreover, carrying
out the same process with an arbitrary prime p (i.e. eliminating the class
»n = 1(modp) instead of » = 0(modp)) gives an advantage of

[(logp)p/(p —1)*]1[»/(logx)*].

These advantages combine linearly (ignoring second order effects) when
the process is applied to a finite set of primes py, ..., p,,. And since the
series D(logp)/p diverges, the sum of the advantages can be made larger
than any fixed constant times [#/(logx)?]. However, to make the argument
work, one has to stop sieving after the last prime P < % /N (logx)(loglogz)™,
where m is the number of the p;. We do not know whether this process
yields admissible sets (but we suspect that it does). So we make the hy-
pothesis:

(C) Fix a number N > 0, an integer m, and m distinet primes p;, ..., Py, -
Apply the “hard” sieve of Eratosthenes to the interval (0, x], -
eliminating all multiples of the primes P < x/N (logx)(loglogz)™,
except: for the distinguished primes p,,...,p,, Wwe eliminate
the congruence classes # = 1(mod p;) instead of the -classes
7 = 0(modp;). Then the residual set is admissible as soon as & is
sufficiently large.

Remarks. If we stopped at P < #/Nlogw, this would be Lemma 2
in Section 2. For the case m = 1, (C) can “almost” be deduced from a re-
sult of Rankin [12]. This result and a sieve theoretic hypothesis (D) which
would imply (C), are discussed in the Addendum at the end of this section.
(Although (D) is easier to state, we have chosen (C) because it may hold
even if (D) fails.)

The idea behind the following theorem was communicated to us by
Schinzel.

THEOREM. If the hypothesis (C) holds, then the difference @* (@) — (@)
grows faster than any constant multiple of [#/(logx)?] as &—>oo. And if (C)
merely holds for the case m =1, p, = 2, then

0" (#) — = (@) > [2log2 —e] [z/(logx)]*.

Proof. Since the proof in Section 2 was worked out in detail, and
the ideas involved here are similar (but more complicated), we will only
give a sketch. Let us first examine the case (m = 1) of a single prime p.
We apply the standard “hard” sieve of Eratosthenes, eliminating from
(0, #] all multiples of the primes P < 2/N (logz)(loglogx), except that for
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the prime p we eliminate the class # = 1(modp) and leave n = 0(modp)
alone. What remains is:

the primes P > /N (logz)(loglogz) with P # 1(modp),
and

all numbers of the form p°P with a > 1 and prime P > 2 /N (logx) (loglog )

(here it doesn’t matter whether P = 1(modp)).

To estimate the size of this set, we use the de la Vallée Poussin sharp
form of the Prime Number Theorem for Arithmetic Progressions (cf. [9]).
The series below is cut off at M = [N'2loglogz]. For simplicity, we let
X =1/logz, and ignore-any “second order effects” which are smaller
than X-m(x). Thus =~ means “to within o(X)-w(z) = o[z/(logx)?]”.
Now the size of our residual set is:

p—2\ , X
() (._p——l—) ot Z w(@[p?).

a=1

R

Since w(x/c) =~ (1/¢)n(x) + [(loge)[e]n(z) - X, the above becomes

p—2 1 log(p%)

21 27 og(p
2 gt (2 *_l_ _+ —_— . X ‘
()(p 1 =~ pa = pa )

Summing these series (setting M = oo for the moment), we obtain 7 (x)x

R

(-]
X (1+[(logp)p/(p —1)2]X). (For the second series, use the formula D a®

a=1
= 2/(1—2)2)

Now we must consider the errors in our reckoning. They have three
sources. The first, and by far the largest, comes from the primes
P < x/N(logz)(loglogz) eliminated by the “hard” sieve. The number of
such primes is like /N (logz)?(loglog) (less by a power of loga than the
above), and each one of them must be counted M ~ N'2logloga times.
The product is e[z/(logx)?] with ¢ = N~'2. The second error comes from

truncating the series at M. This gives = (x) Y (1/p®) which is like n(x)p~*
a=M

= n(2)(logw)~ %" with a large value of the constant. The third error invol-
ves the round-off in approximating = (x/c) by (1/c)m(2)+ [(loge)/c]n(x) - X.
This is less by a power of (1/logx) than the last term considered, and
since our series involves only M = Const-loglogz terms, the effect is less
than 7(z)(logw)~**%, while our principal term is 7 (x)(log#)~'. Thus the
case m = 1 is proved.

The main difficulties in treating the general case are algebraic; they
involve keeping track of the congruence classes (mod@), where Q =
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=17, ... P (The error estimates go as before, except that now m-fold sums
are involved, giving altogether Const(loglogz)™ terms.) We shall therefore
ignore the errors, and concentrate on the algebraic aspects. Among the
various possible approaches, the following has the advantage of displaying
the relationships involved in a visual form.

To avoid the use of subscripts, suppose there are three primes p;,
which we label p, ¢, 7. Set @ = pgr, and recall that X = 1/logx. Second
order terms like X2, X3, ... will be discarded.

Consider a particular congruence class b(mod@). The number of
points in the residual set lying in this class is: none if b = 1(modp;)
for some p; = p, ¢, 7; otherwise, an amount which varies depending on
which of the primes p, g, r divide b. Thus it emerges that the count should
be made, not over congruence classes b(mod), but rather over subsets
of {p, q, r}, corresponding to the p; which divide b. To fix the ideas, con-
sider the subset {p, ¢}. Then the effect of all the congruence classes b(mod@)
for which p|b, q|b, but r1b is:

o~ (7—2) (2 n(o[p"q"))

r—1
a,b>1

r—2 ik log(p*q’)
”(w)(r—l)(zJ.D"q"Jr p°q" 'X)'

a,b>1

(rq)

IR

The factor (r —2)/(r —1) takes care of the requirement that b % 1(modr);
and the sum of =(x/p®¢®) with a,b>1 takes account of the fact that
both p and ¢ divide b. Remember that (pq) corresponds to the subset
{p, g}, i.e. to all the congruence classes b(mod@) which are divisible by p
and ¢ but not ». Thus the total number of points in the residual set is
equal to a sum, taken over the eight subsets of {p, g, r}, of terms like (pq).
To evaluate this sum, consider the following product:

3

(%) ”(m)(

3

—2 a1 o log (p?) )
kN X
STt e )
-2 w1 v log(gd )
X + — + 7 - X%
=N SO
r—2 w1 > log (r%)
1 . X).
=+ e 2 )

Now we evaluate this product two ways. First, each term is like 1+
+[(logp)p/(p —1)]-X, and hence the product of these terms (ignoring
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the powers X%, X3 ...) gives

3
n(@) (1+ ) [(logpo)pi/(p:—1)2]-X).
i=1

On the other hand, it is easy to read down the product (%) and
identify all the terms which appear in (pq), and to find the logical rule
whereby every product in (x*) (ignoring X2, X3, ete.) corresponds to
a particular subset of the set {p, ¢, r}. Thus the sum of all the (eight)
terms like (pq), which represents the number of points in the residual

set, can be replaced by the product (xx) which we have evaluated in the
preceding paragraph. '

Addendum. We consider a hypothesis (D) concerning sieves which
would imply (C). Recall the definition of 7'(¢) in Lemma 3, Section 2:
T'(t) represents the least value of T for which the primes p < T are suffi-
cient to “sieve out” all the points in an interval of length #. We proved

in Section 2 that T'(t) = o(?); this is a weak form of Rankin’s theorem [12]
that

i) = O(U/IOgt] [(Ingt)z/logat]);
where log,t means loglogt, etc. Our hypothesis is:
(D) T(t) = o[t/(logt)™].

We note that for m =1, (D) is only slightly stronger than Rankin’s
result. To see why (D) implies (C), it is easier to ask instead what any
result about T'(¢) would imply both for the problem of admissible sets,
and also for the question of gaps between primes.

Let ¢(T) be the “inverse function” of T'(%), i.e. t(T,) denotes the smallest

value ?, for which T'(,) > T,. Now the method used in Lemma 5, Section 2
shows that:

LEMMA 5%. From an interval of length x, sieve out (in an arbitrary
mamnner) one congruence class (modP) for every prime P < z[t[(logz)/2].
Then the residual set is admissible as soon as  is sufficiently large. Similarly
there exist infinitely mamy pairs of consecutive primes with a gap

Pni1—Pn > t[(logp,)/2].

[The constant 2 can be replaced by 14 ¢ if desired.]

Since 7'(t) = o(t), the inverse function ¢(T) grows faster than T.
The inverse of T'(t) = t/logt is approximately ¢(T) = TlogT, and similarly
for other combinations of log, loglog, ete. Thus, by this method, the hy-
pothesis (D) is just strong enough to yield (C). (Of course there is no
reason to believe that this method is best possible.) Combining Lemma 5*
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with Rankin’s estimate for T(¢) gives Rankin’s famous theorem [12]:

Dns1—Prn > Const(logp,) (l0g,p,) (logsp,)/(logs p)*
for infinitely many . ’

Added in proof. The authors, in collaboration with Warren Stenberg, have
recently shown that ¢* (@) > 7z (x) for # = 20000 (cf. the paragraph beginning at the
bottom of p. 384).
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