364

J. Galambos

and thus, by (13), we have that the sum of probabilities in (12) converges, hence Lemma 1 completes the proof.

The Corollary is a straight consequence of the Theorem. We stated it separately because of its interesting content.

References

- [1] J. Galambos, The distribution of the largest coefficient in continued fraction expansions, Quart. J. Math. Oxford Ser. 23 (1972), pp. 147-151.
- [2] The largest coefficient in continued fractions and related problems, Proceedings of the Conf. on Diophantine Approximation, Washington, D. C., 1972; New York 1973, pp. 101-109.
- [3] A. Khintchine, Kettenbrüche, Leipzig 1956.
- [4] J. Neveu, Mathematical Foundations of the Calculus of Probability, San Francisco 1965.
- [5] W. Philipp, Some metrical theorems in number theory II, Duke Math. J. 38 (1970), pp. 447-458.

DEPARTMENT OF MATHEMATICS TEMPLE UNIVERSITY Philadelphia, Pa.

Received on 14. 3. 1973 (383)

ACTA ARITHMETICA XXV (1974)

On gaps between numbers with a large prime factor, II

by

T. N. SHOREY (Bombay)*

1. In [2] the following result was proved:

THEOREM 1. Let n>1 be an integer. Let $\alpha_1,\,\ldots,\,\alpha_n$ be rational numbers such that

(i) $a_1 > 0, \ldots, a_n > 0$ are multiplicatively independent,

$$\text{(ii) } |\log a_i| \leqslant \exp\left(-\frac{1}{A}\log S_1\right), \, 1\leqslant i\leqslant n \, \text{ and } \, A>1,$$

(iii) The sizes of a_1, \ldots, a_n do not exceed S_1 . (The size of a rational number a/b, (a, b) = 1, is defined as |b| + |a/b|.)

If $\beta_1, \ldots, \beta_{n-1}$ are rational numbers of size not exceeding S_1 , then

$$|\beta_1 \log \alpha_1 + \ldots + \beta_{n-1} \log \alpha_{n-1} - \log \alpha_n| > \exp\left(-(nA)^{cn^2} \log S_1\right)$$

where c > 0 is an effectively computable constant which is independent of n, A and S_1 .

In this paper we shall prove the following:

THEOREM 2. Let n > 1 be an integer. Let $a_1, \ldots, a_n, \beta_1, \ldots, \beta_{n-1}$ be rational numbers satisfying the assumptions of Theorem 1. Further assume that

(iv)
$$a_1 = \frac{m}{m'}, a_2 = \frac{p_2}{p_2'}, \ldots, a_n = \frac{p_n}{p_n'}$$
 where $p_2, \ldots, p_n, p_2', \ldots, p_n'$ are

pairwise distinct prime numbers and none of them is either a factor of m or m'.

Then

$$|\beta_1 \log \alpha_1 + \ldots + \beta_{n-1} \log \alpha_{n-1} - \log \alpha_n| > \exp\left(-(nA)^{c_1 n} \log S_1\right)$$

where $c_1 > 0$ is an effectively computable constant which is independent of n, A and S_1 .

^{*} I am very thankful to Professor H. M. Stark for sending me a preprint of his unpublished result [5]. My thanks are also due to Professor K. Ramachandra for going through the manuscript.

On gaps between numbers

367

If n, A are large and a_1, \ldots, a_n satisfy the assumption (iv) of Theorem 2, then Theorem 2 is an improvement of Theorem 1. The improvement depends on some of the ideas of Stark [5].

If Theorem 1 is replaced by Theorem 2 in [2], the method of [2] shows that the following result can be obtained in view of Jutila's result [1] that the greatest prime factor of $(u+1)\ldots(u+k)$ exceeds $k(\log k)^2$ provided that $k^{3/2} \leqslant u \leqslant \exp\left((\log k)^{5/4}\right)$ and k exceeds a certain absolute constant.

THEOREM 3. Let k be a fixed natural number and let n_1, n_2, \ldots be all the natural numbers (in the increasing order) which have at least one prime factor exceeding k. Define

$$f(k) = \max_{i=1,2,...} (n_{i+1} - n_i).$$

Then

$$f(k) = O\left(\frac{k}{\log k} \left(\frac{\log \log \log k}{\log \log k}\right)\right).$$

This bound for f(k) is sharper than that of [2], namely,

$$f(k) = O\left(\frac{k}{\log k} \left(\frac{\log \log \log \log k}{\log \log \log k}\right)^{1/2}\right).$$

We remark that the multiplicative independence of a_1, \ldots, a_n follows from the assumption (iv) imposed on a_1, \ldots, a_n in Theorem 2. Further (iv) can be somewhat relaxed (see Remark after the proof of Theorem 2). One would like to have $(nA)^{c_1}\log S_1$ in place of $(nA)^{c_1n}\log S_1$ in Theorem 2. This would improve the bound for f(k) to $k(\log k)^{-1-\delta}$, where $\delta > 0$ is a small constant.

2. Proof of Theorem 2. Unless otherwise specified, we shall follow the notations of [2] in this paper. The definition of \tilde{r}_1 in [2] (see after inequality (12)) is changed as follows:

$$ilde{r}_{\scriptscriptstyle 1} = \left[rac{E_{\scriptscriptstyle 1}n}{b}
ight] + 2\,,$$

where E_1 is a positive constant to be suitably chosen. Allow the large constant c_1 (occurring in the definition of h in [2]) to depend on E_1 also. Assume that

(1)
$$\beta \leqslant \frac{1}{2} n^{-k} (6h_{\tilde{r_1}})^{-2h} \tilde{r_1}^{k/n^2} S_1^{-2h} \tilde{r_1}^{k/4n^2}.$$

See that the inequalities (13) of [2] are satisfied. Proceed exactly as in [2] to conclude that

$$q(l, m_1, \ldots, m_{n-1}) = 0$$

for all integers l, $1 \leqslant l \leqslant h_{\tilde{r}_1}$ and for all non-negative integers m_1, \ldots, m_{n-1} with $m_1 + \ldots + m_{n-1} \leqslant k_{\tilde{r}_1}$. Define

$$k_{\tilde{r}_1+m+1} = [B^{-1}k_{\tilde{r}_1+m}], \quad 0 \leqslant m \leqslant M-1.$$

(We shall choose M in such a way that $k_{\tilde{\tau}_1+M} > 10$.)

We shall divide the (remaining) proof of Theorem 2 in three lemmas.

LEMMA 1. Assume that β satisfies (1). Then for any rational number a/p, $0 \le a/p \le h$ with $0 and non-negative integers <math>m_1, \ldots, m_{n-1}$ with $m_1 + \ldots + m_{n-1} \le k_{7,+1}$, we have

$$q(a/p, m_1, \ldots, m_{n-1}) = 0.$$

Proof. Put

$$f(z) = \Phi_{m_1,...,m_{n-1}}(z,...,z),$$

with $m_1 + \ldots + m_{n-1} \leqslant k_{\tilde{r}_1+1}$ and $m_i \geqslant 0$ $(1 \leqslant i \leqslant n)$. For every z with $|z| = 2h_{\tilde{r}_1}$, we have the interpolation formula:

$$\frac{1}{2\pi i} \int_{\Gamma: |\zeta| = A} \frac{f(\zeta)F(z)}{(\zeta - z)F(\zeta)} d\zeta
= f(z) + \sum_{r=1}^{h_{T_1}^{r}} \sum_{m=0}^{k_{T_1}^{r} - k_{T_1+1}^{r}} \frac{f^{(m)}(r)}{m! 2\pi i} \int_{\Gamma_r: |\zeta - r| = 1/2} \frac{(\zeta - r)^m F(z)}{(\zeta - z)F(\zeta)} d\zeta$$

where

$$F(\zeta) = \prod_{u=1}^{h_{\widetilde{r}_1}} (z-u)^k \tilde{r_1}^{-k} \tilde{r_1}^{+1}, \qquad \Delta = 5h_{\widetilde{r}_1} \exp\left(\frac{1}{A} \log S_1\right).$$

This interpolation formula gives that for every z, $|z| = 2h_{\tilde{r}_1}$,

$$\begin{split} |f(z)| & \leqslant w \bigg(S_1^{6nLh} \tilde{r_1} \; (2S_1 L)^{7k} \mathrm{exp} \left(-\frac{h \, \tilde{r_1} \, k \, \tilde{r_1}}{A \, n^2} \log S_1 \right) + \\ & + \beta n^k \, S_1^{\,8nLh} \tilde{r_1} \, (2S_1 L)^{8k} (6h \, \tilde{r_1})^{2h} \tilde{r_1}^k \tilde{r_1}^{/n^2} \right). \end{split}$$

(For this, one can refer to the similar details following formula (7) of [2].)

Hence by maximum-modulus principle, (2) holds for all rational numbers z=a/p with $0 \le a/p \le h$. Assume that $q(a/p, m_1, \ldots, m_{n-1}) \ne 0$ for some rational number a/p with $0 \le a/p \le h$, $0 and for some non-negative integers <math>m_1, \ldots, m_{n-1}$ with $m_1 + \ldots + m_{n-1} \le k_{\tilde{\tau}_1+1}$. Notice that

$$\left| (\log a_1)^{-m_1} \dots (\log a_{n-1})^{-m_{n-1}} \varPhi_{m_1, \dots, m_{n-1}} \left(\frac{a}{p}, \dots, \frac{a}{p} \right) - q \left(\frac{a}{p}, m_1, \dots, m_{n-1} \right) \right|$$

$$\leqslant (L+1)^n S_1^{4nLh} (2S_1L)^{5k} S_1^{nLh} (2S_1L)^k 2Lh\beta \leqslant \beta S_1^{6nLh} (2S_1L)^{6k}.$$

On gaps between numbers

Since $p \leq h$, $q(a/p, m_1, ..., m_{n-1})$ is a non-zero algebraic number of degree $\leq h^n$. The absolute value of each of the conjugates of $q(a/p, m_1, ..., m_{n-1})$ does not exceed

$$S_1^{6nLh}(2S_1L)^{6k}$$
.

The denominator of $q(a/p, m_1, ..., m_{n-1})$ does not exceed

$$S_1^{nLh^2}(2S_1L)^k$$
.

Hence

(3)
$$\left| \Phi_{m_1, \dots, m_{n-1}} \left(\frac{a}{p}, m_1, \dots, m_{n-1} \right) \right|$$

$$\geq w \left(S_1^{-7nLh^{n+2}} (2S_1 L)^{-7kh^n} - \beta S_1^{6nLh} (2S_1 L)^{6k} \right).$$

The contradiction is obtained by showing that (2) and (3) are inconsistent. For this it is enough to have

$$\exp\left(\frac{h_{\widetilde{r}_1}k_{\widetilde{r}_1}}{An^2}\log S_1\right)$$

$$> S_1^{15nLh^{n+2}+15nLh\tilde{r}_1} (2S_1L)^{15kh^n} \bigg\{ 1 + \beta n^k (6h_{\tilde{r}_1})^{2h} \tilde{r_1}^k \tilde{r_1}^{/n^2} \exp\bigg(\frac{h_{\tilde{r}_1} k_{\tilde{r}_1}}{An^2} \log S_1 \bigg) \bigg\}.$$

Since β satisfies (1), it is sufficient to show that

$$\exp\left(\frac{h\,\tilde{r}_1\,k\,\tilde{r}_1}{A\,n^2}\log S_1\right) > S_1^{16nLh^{n+2}+15nLh}\tilde{r}_1(2S_1L)^{15kh^n}.$$

This can easily be established. For proof, one can refer to similar details just after inequality (13) of [2]. This completes the proof of Lemma 1.

Remark. Let $p'(\lambda_1,...,\lambda_n),\ 0\leqslant \lambda_i\leqslant L\ (i=1,...,n)$ be integers satisfying

$$|p'(\lambda_1,\ldots,\lambda_n)| \leqslant S_1^{4nLh}(2S_1L)^{5k}.$$

(See inequality next to (3) of [2]). Consider

$$q' = q'(z, m_1, \ldots, m_{n-1}) = \sum_{\lambda_1=0}^{L} \ldots \sum_{\lambda_n=0}^{L} p'(\lambda_1, \ldots, \lambda_n) \, \alpha_1^{\lambda_1 z} \ldots \, \alpha_n^{\lambda_n z} \, \gamma_1^{m_1} \ldots \, \gamma_{n-1}^{m_{n-1}}.$$

Suppose that $q'(l, m_1, ..., m_{n-1}) = 0$ for all integers $l, 1 \le l \le h$, and for all non-negative integers $m_1, ..., m_{n-1}$ with $m_1 + ... + m_{n-1} \le k$. If β satisfies (1), then our argument shows that

$$q'(a/p, m_1, \ldots, m_{n-1}) = 0$$

for all rational numbers a/p, $0 \le a/p \le h$ with $p \le h$ and all non-negative integers m_1, \ldots, m_{n-1} with $m_1 + \ldots + m_{n-1} \le k_{\tilde{t}_{i+1}}$.

We shall call that q' is associated to $p'(\lambda_1, \ldots, \lambda_n)$.

LEMMA 2. Assume that β satisfies (1). Let $p'(\lambda_1, ..., \lambda_n)$ be integers, $0 \leqslant \lambda_i \leqslant L$ (i = 1, ..., n), satisfying

$$|p'(\lambda_1,\ldots,\lambda_n)| \leqslant S_1^{4nLh}(2S_1L)^{5k}.$$

Let $q'=q'(z, m_1, \ldots, m_{n-1})$ be associated to $p'(\lambda_1, \ldots, \lambda_n)$. Assume that for $x_0, 0 < x_0 \le 1$, we have

$$q'(x_0+l, m_1, \ldots, m_{n-1}) = 0$$

for all integers $0 \leqslant l \leqslant h-1$ and all non-negative integers m_1, \ldots, m_{n-1} with $m_1+\ldots+m_{n-1}\leqslant k$ $(=k_1)$. Then

$$q'(a/p, m_1, \ldots, m_{n-1}) = 0$$

for all rational numbers a/p, $0 \le a/p \le h$, $0 and all non-negative integers <math>m_1, \ldots, m_{n-1}$ with $m_1 + \ldots + m_{n-1} \le k_{\tilde{1}_1+2}$.

Proof. It is sufficient to prove that

$$q'(l, m_1, \ldots, m_{n-1}) = 0$$

for all integers $l, 1 \leq l \leq h$, and non-negative integers m_1, \ldots, m_{n-1} with $m_1 + \ldots + m_{n-1} \leq k_2$. (Then the lemma would follow by the above remark.) Define

$$f(z) = \Phi'_{m_1, \ldots, m_{n-1}}(z, \ldots, z), \quad m_1 + \ldots + m_{n-1} \leqslant k_2$$

where

$$\Phi'(z_1, \ldots, z_{n-1}) = \sum_{\lambda_1=0}^{L} \ldots \sum_{\lambda_n=0}^{L} p'(\lambda_1, \ldots, \lambda_n) \alpha_1^{\gamma_1 z_1} \ldots \alpha_{n-1}^{\gamma_{n-1} z_{n-1}}.$$

For z with |z| = 2h, we have

$$\frac{1}{2\pi i} \int_{\Gamma_1 \zeta = A} \frac{f(\zeta)F(z)}{(\zeta - z)F(\zeta)} d\zeta = f(z) + \sum_{r=0}^{h-1} \sum_{m=0}^{k_1 - k_2} \frac{f^{(m)}(r + x_0)}{m! 2\pi i} \int_{\Gamma_r} \frac{(\zeta - r - x_0)^m F(z)}{(\zeta - z)F(\zeta)} d\zeta$$

where Γ_r denotes the circle with centre $(r+x_0)$ and radius $\frac{1}{2}$,

$$F(\zeta) = \prod_{u=0}^{h-1} (\zeta - u - x_0)^{k_1 - k_2 + 1} \quad \text{and} \quad \Delta = 5h \exp\left(\frac{1}{A} \log S_1\right).$$

For every z, |z| = 2h, the above formula gives

$$\begin{aligned} |f(z)| &\leqslant w \bigg(S_1^{6nLh_1} (2S_1 L)^{7k} \exp \bigg(-\frac{h_1 k_1}{A n^2} \log S_1 \bigg) + \\ &+ \beta n^k S_1^{8nLh_1} (2S_1 L)^{8k} (6h_1)^{2h_1 k_1/n^2} \bigg). \end{aligned}$$

On gaps between numbers

Hence by maximum-modulus principle, (4) holds for z = l with $1 \le l \le h$. Further for every $l, 1 \le l \le h_1$,

(5)
$$|f(l)| \geqslant w(S_1^{-nLh_1}(2S_1L)^{-2k} - \beta S_1^{7nLh_1}(2S_1L)^{7k})$$

provided that

$$q'(l, m_1, \ldots, m_{n-1}) \neq 0.$$

(See inequality (6) of [2] with $S = S_1$.)

(4) and (5) are inconsistent, if

$$\exp\left(rac{h_1k_1}{An^2}\log S_1
ight) > S_1^{9nLh_1}(2S_1L)^{10k}\{1+2eta n^k(2h_1)^{2h_1k_1/n^2}S_1^{2h_1k_1/An^2}\}$$

This inequality is secured in [2] (see the inequality that appears after (12) in [2]).

Hence Lemma 2 is proved.

LEMMA 3. Assume that β satisfies (1). Then there exists a prime p, $h^{1/2} , with the following property: There exist integers <math>j_1, \ldots, j_n$, with $0 \le j_i < p$ ($1 \le i < n$) and $j_n = 1$, such that

$$a_1^{j_1} \ldots a_n^{j_n} = \eta^p,$$

where η is rational.

The proof of Lemma 3 depends on the following:

LEMMA 3'. Let a_1, \ldots, a_n be non-zero elements of an algebraic number field K and let $a_1^{1/p}, \ldots, a_n^{1/p}$ denote fixed p-th roots for some prime p. Further let $K' = K(a_1^{1/p}, \ldots, a_{n-1}^{1/p})$. Then either $K'(a_n^{1/p})$ is an extension of K' of degree p or we have

$$a_1^{j_1} \dots a_n^{j_n} = \eta^p$$

for some η in K and some integers j_1, \ldots, j_n with $0 \le j_i < p$ $(1 \le i < n)$ and $j_n = 1$.

This is Lemma 5 of [3].

Proof of Lemma 3. Let $p, h^{1/2} , be a prime for which the lemma is not true. Then by Lemma 3', <math>K'(a_n^{1/p})$ is an extension of $K' = Q(a_1^{1/p}, \ldots, a_{n-1}^{1/p})$ (Q denotes the field of rational numbers) of degree p. Let $p_1, \ldots, p_r, h^{1/2} < p_i \leqslant h$ $(1 \leqslant i \leqslant r)$ be all the primes for which Lemma 3 is not valid. For convenience, write $p_0(\lambda_1, \ldots, \lambda_n)$ for $p(\lambda_1, \ldots, \lambda_n)$ which are determined in [2]. Set $q_0 = q_0(z, m_1, \ldots, m_{n-1}) = q(z, m_1, \ldots, m_{n-1})$ (associated to $p(\lambda_1, \ldots, \lambda_n)$). Then by Lemma 1, we have

$$q_0\left(\frac{a}{p'}, m_1, \ldots, m_{n-1}\right) = 0$$

for all rational numbers $0 \leqslant a/p' \leqslant h$, $0 < p' \leqslant h$ and all non-negative

integers m_1, \ldots, m_{n-1} with $m_1 + \ldots + m_{n-1} \leqslant k_{\tilde{r}_1+1}$. In particular $q_0(a/p_1, m_1, \ldots, m_{n-1}) = 0$ with $0 \leqslant a/p_1 \leqslant h$ and $m_1 + \ldots + m_{n-1} \leqslant k_{\tilde{r}_1+1}$, i.e.

$$\sum_{\lambda_{n}=0}^{L} \left(\sum_{\lambda_{1}=0}^{L} \dots \sum_{\lambda_{n-1}=0}^{L} p_{0}(\lambda_{1}, \dots, \lambda_{n}) \, \alpha_{1}^{\lambda_{1} a/p_{1}} \dots \, \alpha_{n-1}^{\lambda_{n-1} a/p_{1}} \gamma_{1}^{m_{1}} \dots \, \gamma_{n-1}^{m_{n-1}} \right) \alpha_{n}^{\lambda_{n} a/p_{1}} = 0,$$

with $0 \leqslant a/p_1 \leqslant h$ and $m_1 + \ldots + m_{n-1} \leqslant k_{\tilde{t}_1+1}$, $m_i \geqslant 0$. If $a \not\equiv 0 \pmod{p_1}$, the above sum is still zero when λ_n is summed over any single residue class $\pmod{p_1}$. Therefore for $0 \leqslant a/p_1 \leqslant h$, $a \not\equiv 0(p_1)$ and $m_1 + \ldots + m_{n-1} \leqslant k_{\tilde{t}_1+1}$, we have

$$\sum_{\substack{\lambda_n=0\\\lambda_n=\lambda_n(p_1)}}^L \left(\sum_{\lambda_1=0}^L \dots \sum_{\lambda_{n-1}=0}^L p_0(\lambda_1, \dots, \lambda_n) a_1^{\lambda_1 a/p_1} \dots a_{n-1}^{\lambda_{n-1} a/p_1} \gamma_1^{m_1} \dots \gamma_{n-1}^{m_{n-1}} \right) a_n^{\lambda_n a/p_1} = 0$$

where Λ_n , $0 \leqslant \Lambda_n \leqslant L$, is any integer and $\lambda_n \equiv \Lambda_n(p_1)$ stands for $\lambda_n \equiv \Lambda_n(\text{mod } p_1)$. Define

$$p_1(\lambda_1,\ldots,\lambda_n) = egin{cases} p_0(\lambda_1,\ldots,\lambda_n) & ext{if} & \lambda_n \equiv arDelta_n(p_1), \ 0 & ext{otherwise} \end{cases}$$

and call q_1 the function associated with $p_1(\lambda_1, \ldots, \lambda_n)$. Hence

$$q_1\left(\frac{1+lp_1}{p_1}, m_1, \ldots, m_{n-1}\right) = 0,$$

with $0 \le l \le h-1$ and $m_1 + \ldots + m_{n-1} \le k_{r_1+1}^{\infty}$ with $m_i \ge 0$. By Lemma 2, we obtain

$$q_1\left(\frac{a}{p'},\,m_1,\,\ldots,\,m_{n-1}\right)=0\,,$$

with $0 \leqslant a/p' \leqslant h$, $0 < p' \leqslant h$ and $m_1 + \ldots + m_{n-1} \leqslant k_{2(\tilde{r}_1+2)}, m_i \geqslant 0$. Define

$$p_2(\lambda_1,\ldots,\lambda_n) = egin{cases} p_1(\lambda_1,\ldots,\lambda_n) & ext{if} & \lambda_n \equiv \varLambda_n(p_2), \ 0 & ext{otherwise}. \end{cases}$$

Proceed as above and conclude that

$$q_2\Big(\frac{1+lp_2}{p_2}, m_1, \ldots, m_{n-1}\Big)=0,$$

with $0 \le l \le h-1$ and $m_1 + \ldots + m_{n-1} \le k_{2(\tilde{r}_1+2)}$, $m_i \ge 0$. Proceed by induction and conclude that

(6)
$$q_r\left(\frac{1+lp_r}{p_r}, m_1, \dots, m_{n-1}\right) = 0$$

for all integers $l, 0 \le l \le h-1$ and all non-negative integers m_1, \ldots, m_{n-1} with $m_1 + \ldots + m_{n-1} \le k_{r(\tilde{r}_1+2)}$. Notice that

$$p_{m{r}}(\lambda_1,\,\ldots,\,\lambda_n) \,= egin{cases} p_{m{0}}(\lambda_1,\,\ldots,\,\lambda_n) & ext{if} & \lambda_n \equiv \varLambda_n(p_i) \ 0 & ext{otherwise.} \end{cases}$$

Observe that

$$p_1 \dots p_r > h^{r/2} > L$$
 if $r = \lceil 4nE \rceil$.

Therefore

 $p_r(\lambda_1, \ldots, \lambda_n) = 0$ if $\lambda_n \neq \Lambda_n$ and $p_r(\lambda_1, \ldots, \Lambda_n) = p_0(\lambda_1, \ldots, \Lambda_n)$. In (6), set l = 0 and we obtain (writing p for p_r)

(7)
$$\sum_{\lambda_1=0}^{L} \cdots \sum_{\lambda_{n-1}=0}^{L} p_0(\lambda_1, \ldots, \Lambda_n) \alpha_1^{\lambda_1/p} \ldots \alpha_{n-1}^{\lambda_{n-1}/p} \gamma_1^{m_1} \ldots \gamma_{n-1}^{m_{n-1}} = 0.$$

This is true for all non-negative integers m_1, \ldots, m_{n-1} with $m_1 + \ldots + m_{n-1} \le k_{r(\tilde{r}_1+2)}$. Observe that

$$k_{r(\tilde{r}_1+2)} > nL$$

if E > 1 and c_1 is large enough. Hence (7) is valid for all integers m_1, \ldots, m_{n-1} with $0 \le m_i \le L$ ($1 \le i \le n$). Notice that the determinant

$$(\lambda_{n-1}+\Lambda_n\beta_{n-1})^{m_{n-1}}, \quad 0\leqslant \lambda_{n-1}\leqslant L, \quad 0\leqslant m_{n-1}\leqslant L$$

does not vanish. Hence if Λ_{n-1} , $0 \le \Lambda_{n-1} \le L$, is an arbitrary integer, (7) gives

$$\sum_{\lambda_1=0}^L \cdots \sum_{\lambda_{n-2}=0}^L p_0(\lambda_1, \ldots, \Lambda_{n-1}, \Lambda_n) a_1^{\lambda_1/p} \ldots a_{n-2}^{\lambda_{n-2}/p} \gamma_1^{m_1} \ldots \gamma_{n-2}^{m_{n-2}} = 0,$$

for all integers m_1, \ldots, m_{n-2} with $0 \le m_i \le L$. Proceeding similarly, we obtain that $p_0(\Lambda_1, \ldots, \Lambda_n) = 0$. Notice that $\Lambda_1, \ldots, \Lambda_n$ are arbitrary. Hence $p_0(\lambda_1, \ldots, \lambda_n) = 0$ for all $(\lambda_1, \ldots, \lambda_n)$, which is a contradiction.

Hence the number of primes p, $h^{1/2} , for which Lemma 3 is not valid is at most <math>4nE$. But the number of primes between $h^{1/2}$ and h exceeds 8nE, if c_1 is large enough. Hence there must exist a prime p, $h^{1/2} , satisfying$

$$a_1^{j_1} \dots a_n^{j_n} = \eta^p$$

for some $\eta = a/b$, (a, b) = 1, in Q and for some integers j_1, \ldots, j_n with $0 \le j_i < p$ $(1 \le i < n)$ and $j_n = 1$. This completes the proof of Lemma 3.

Proof of Theorem 2. Assume that β satisfies (1). By Lemma 3, (8) holds. But this is not possible, because of the restrictions (iv) (on $\alpha_1, \ldots, \alpha_n$) in Theorem 2. Hence

$$\beta > \frac{1}{2} n^{-k} (6h_{\tilde{r_1}})^{-2h_{\tilde{r_1}k/n^2}} S_1^{-2h_{\tilde{r_1}k/An^2}} > \exp\left(-(nA)^{c_2n} \log S_1\right)$$

where $c_2 > 0$ is an effectively computable constant which is independent of n, A and S_1 . This completes the proof of Theorem 2.

Remark. Instead of assuming (iv), (§ 1, Theorem 2) it is sufficient to suppose that a_1, \ldots, a_n are such that no relation of the type (8) is possible.

Added in proof. As the main purpose of this paper is to improve the upper estimate of [2] for f(R), Theorem 2 is not stated in all its generality. The linear forms of the type of Theorem 2 (when a_i are close to 1) were considered for the first time in [4] to prove the results announced in [3].

References

- [1] M. Jutila, On numbers with large prime factor II, to appear in Journ. Indian Math. Soc.
- [2] K. Ramachandra and T. N. Shorey, On gaps between numbers with a large prime factor, Acta Arith. 24 (1973), pp. 99-111.
- [3] T. N. Shorey, On a theorem of Ramachandra, Acta Arith. 20 (1972), pp. 215-221.
- [4] Linear forms in the logarithms of algebraic numbers with small coefficients I, to appear in Journ, of Indian Math. Soc.
- [5] H. M. Stark, Further advances in the theory of linear forms in logarithms, Diophantine Approximation and Its Applications, New York and London 1973, pp. 255-293.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH Colaba, Bombay 5, India

Received on 19. 4. 1973 (396)