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and thus, by (13), we have that the sum of probabilities in (12) converges,
hence Lemma 1 completes the proof.

The Corollary is a straight consequence of the Theorem. We stated
it separately because of its interesting content.
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On gaps between numbers with a large prime factor, 1I
by
T. N. SHOREY (Bombay)*

1. In [2] the following result was proved:

THEOREM 1. Let n > 1 be an integer. Let a,, ..., a, be rational numbn;
such that

(i) a,>0,..., a, > 0 are multiplicatively independent,
1
(ii) Noga;| < exp(—IlogS,), 1<i<n and A > 1,

(iii) The sizes of ay, ..., a, do not exceed S;. (The size of a rational
number afb, (a,b) =1, is defined as |b|+ |a/b].)
If By ...y Bn_y are rational numbers of size not exceeding S,, then
|Biloga, +...+B,_,loga, , —loga,| > exp( -—(nA)”"zlogSl)
where ¢ > 0 is an effectively computable constant which is independent of
n, A and Slf
In this paper we shall prove the following:

THEOREM 2. Let n> 1 be an integer. Let ayy ..., apy B1y ...y Prn_y be
rational numbers satisfying the assumptions of Theorem 1. Further assume
that

. p2 pn ’ ’
@iv) a; = a, cery Gy =7 where Pgy ...y Dy Doy +o+y Py aTe

P Dn ’
pairwise distinct prime numbers and none of them is either a factor of m
or m'.
Then
|Bloga, +...+B,_,loga,_,—loga,| > exp(—(nd)1"logs,)

where ¢, > 0 is an effectively computable constant which is independent of
n, A and 8,.

m/’

* T am very thankful to Professor H. M. Stark for sending me a preprint of his
unpublished result [6]. My thanks are also due to Professor K. Ramachandra for
going through the manuscript.
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If n, A are large and a, ..., a, satisfy the assumption (iv) of Theo-
rem 2, then Theorem 2 is an improvement of Theorem 1. The improve-
ment depends on some of the ideas of Stark [5].

If Theorem 1 is replaced by Theorem 2 in [2], the method of [2]
shows that the following result can be obtained in view of Jutila’s result [1]
that the greatest prime factor of (u+1)... (u+k) exceeds k(logk)? pro-
vided that k< u <exp((logk)®®) and k exceeds a certain absolute
constant.

THEOREM 3. Let k be a fived natural number and let Wiy Mgy ... be all

the natural numbers (in the increasing order) which have at least one prime
Jactor exceeding k. Define

f(k) = max (., —n;).
i=1,2,...

Then

k  (logloglogk
k) =0 .
F®) (Iogk ( loglogk ))

This bound for f(k) is sharper than that of [2], namely,

fk) = 0 L [loglogloglogk\'? .
logk \ logloglogk

We remark that the multiplicative independence of Qyy ..., a, follows
from the assumption (iv) imposed on a, ..., a, in Theorem 2. Further (iv)
can be somewhat relaxed (see Remark after the proof of Theorem 2).
One would like to have (nd)?1log S, in place of (nd)1"log 8, in Theorem 2.
This would improve the bound for f(k) to k(logk)~'~%, where 8> 0 is
a small constant.

2. Proof of Theorem 2. Unless otherwise specified, we shall follow
the notations of [2] in this paper. The definition of #, in [2] (see after
inequality (12)) is changed as follows:

- E.n
’l‘l = b s +2,

where E, is a positive constant to be suitably chosen. Allow the large

constant ¢; (occurring in the definition of & in [2]) to depend on E,; also.
Assume that

—2h~K/n?  —2h~ k[ An2
r "l .

8y

See that the inequalities (13) of [2] are satisfied. Proceed exactly as in [2]
to conclude that

L B < 1n~*(6h;)

qllymy, ...,my,_) =0
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for all integers I, 1 <1< &7 and for all non-negative integers m,, ..., m,_,
with m, +...4+m,_, < k3, . Define

ks pme1 = [B~'k54ml, O0<m< M-1.
(We shall choose M in such a way that k; 5 > 10.)

We shall divide the (remaining) proof of Theorem 2 in three lemmas.

LeEMMA 1. Assume that B satisfies (1). Then for any rational numb-er
alp, 0 < afp < h with 0 < p < h and non-negative integers my, ..., M, _, with
Myt .o+ My < k340, we have

glafp,my, ..., m,_y) = 0.
Proof. Put
f(z) = (Dml,“.,mn_l(z’ sy z)’
with m;+...+m,_, < k7, and m; >0 (1<i<n). For every z with
2] = 2h7 , we have the interpolation formula:

1 J(O)F(2)
2mi (E—2)F (L)

I:l|=4

d¢

Ry kTR

3 ™0 E—n"Flz)
:f(z)+2l ;7}:40 m!2mi f C—nF@Q) “

r=1 I t=rl=1/2
where
h k~—ke 1 1
F(¢) =” (z—u)n n+l A = 5h;, exp (IIOgSI ‘
u=1

This interpolation formula gives that for every =z, |¢| = 2h;,

hy k3
@ e < w007 @8, I %exp (— 5 logsy) +

+ B 8,2y (28, L) (61 ;1)2"6"?1/"2) :

(For this, one can refer to the similar details following formula (7) of.[Z].)

Hence by maximum-modulus principle, (2) holds for all rational
numbers z = a/p with 0 < a/p < h. Assume that g(a/p, my, ..., m, ;) #0
for some rational number a/p with 0 < a/p < h, 0 < p < h and for some
non-negative integers my, ..., m,_, with m;+...+m,_, <k . Notice
that

a a a i
(loga,)™™...(loga, ;)" "r=1Dy, mn_l(;w-"; —4q ’597"’1’---7 n—1

< (L+1)" 8Lk (28, L)% 82 (28, LY*2Lhg < B8 (28, L)%,
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Since p <h, q(afp,my,...,m, ;) i
-y My_;) 18 a non-zero algebraic number
of degree < A The absolute value of each of th
e conjugates of
.y My,_,) does not exceed e A

ST (28, L)%,
The denominator of q(alp,my, ..., m,_,) does not exceed
SPL (98 Tk,

Hence

(3)

d a
MYy ey My 3y "1;‘, ml, ooy mﬂ—l

‘ > w(s—'mmnﬂ(zs L)—ﬂchn_ﬁSsnLh (28’ L)Gk)

The contradiction is obtained b
y showing that (2) and (3 -
sistent. For this it is enough to have @ (#) axe fncon

exp (h;lk;‘ log#,),
A‘”z g 1.‘3
nt2 oy
SlsnLh +15nLh,.1(2S L)lskh"{l—{-ﬂfnk(Gh ) , ;/nzexp(hflkﬂ logsl):.
An?
Since g satisfies (1), it is sufficient to show that

hy 76"
exp ( ') logS )> Sl6nLh”+2+15nLh; (28, L)xskhn

':[‘his can eesily be established. For proof, one can refer to similar details
Jjust after inequality (13) of [2]. This completes the proof of Lemma 1.

Remark. Let .. ; .
satisfying Py iy dy)y 0S4 <L (4 =1,...,m) be integers

19" (s .y 2)| < S4°EH(28, Ly
(See inequality next to (3) of [2]). Consider

q¢ =q(z,my,... oy My_y) = 2 ZP (41, ---72'1;)‘1/1112'-'“:;”27’1"1'“ i
;=0 -
Suppose that ¢'(l, my, ..., m,_,) =0 for all integers 1, 1 <1< h,
and for all non-negative mtegers Myyeeey My_y With my+...+m,_, < k.
If B satisfies (1), then our argument shows that "

q(a/p,mx,---,m,,_l) =0

for all rational numbers a/p, 0 < a/p < b with p < h and all non-nega,tlve

integers m,, ..., m,_, with m,+...4+m, < kja
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We shall call that ¢’ is associated to p'(4y, ..., 4y)-
LEMMA 2. Assume that B satisfies (1). Let p'(Ay, ..., 4,) be integers,
0< 4 <L (i =1,...,n), satisfying .
1D (Ayy +vey Aa)l < STPFH(28, L)
Let ¢ = q' (2, My, ..., My_,) be associated to P (Ayy eey Ay). Assume that for
g, 0 < Ty < 1, we have

2

Q (@41, Myy oovy My_y) =-0
for all integers 0 <1< h—1 and all non-negative integers My, ..., My_
with my+...+m,_ <k (= k). Then

Q' (alpy,myy ..., My_y) =0
for all rational numbers ap,0<alp<h, 0<p<h and all non-negative
integers My, ..., My_y With Mmy~+...+ My, < LFAwe
Proof. It is sufficient to prove that
g (lymyy.eymy_y) =0
for all integers 1,1 <1< h, and non-negative lntegers Mgy eey My_y With
My+ .. +my_y < ky. (Then the lemma would follow by the above remark.)
Define
- f(2) =¢;nl,...,mn_1(z7""z)7 ml+-"+mn—l<k2

where

L L
’ ’ Y12 Yn—12n—
D (Zyy eovyBpy) = E E D' (Ayy eves Ag) ¥t ... agnn PRl
=0  Ap=0

For ¢ with |z| = 2h, we have

h—1k1-k
1 [ _OFE ) (E—r—2)"FE)
s | arg X IO 2 e ) wAr®

where I’,, denotes the circle with centre (7 + o) and radius %,

h-1 ’ 1
F(¢) =[] €—u—=z)7* and 4 = 5hexp ('Zl()gsl)'

u=0

For every z, |z| = 2h, the above formula gives

: hk
W 1 < st 08, D exp S t0g8,) +

L ﬂnk Sllmth(zle)ak(6h1)2h1k1!n2) .
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Hence by maximum-modulus prineiple, (4) holds for z = I with 1 <I<h.

Further for every 1,1 <1< hy,

® @] > w(S7"Eh (28, L)~ — BSInEM (28, L)™)
provided that
g, my,...,m,_;) #0.

(See inequality (6) of [2] with 8 = §,.)
(4) and (5) are inconsistent, if

h,k '
exp ( ;n; logsl) > S‘inth(zle)lok {1 +2ﬂnk(2h1)2hlk1/"2 Sihlkl/Anz} )

This inequality is secured in [2] (see the inequality that appears after (12)
in [2]).

Hence Lemma 2 is proved.

LeMMA 3. Assume that B satisfies (1). Then there ewists o prime p, b
<P < h, with the following property: There ewist integers ji, ..., d,, with
0<j:<p (1<i<mn) and j, =1, such that

ajl... aln = 9P,
where 7 is rational.

The proof of Lemma 3 depends on the following:

Lemua 3'. Let @y, ..., a, be non-zero elements of an algebraic number
field K and let o}, ..., all? denote fimed p-th roots for some prime p. Further
let &' =K(a?,...,al)). Then either K'(al?) is an estension of K' of
degree p or we have

afl... alp = 9P
Jor some 1 in K and some integers Jiyeeesdn With 0<j;<p (1<t < n)
and j, = 1.

This is Lemma 5 of [3].

Proof of Lemma 3. Let p, s> < p < h, be a prime for which the
lemma is not true. Then by Lemma 3’, K'(a'?) is an extension of K’
=Q(a}?, ..., al’?)) (@ denotes the field of rational numbers) of degree p.

Let pyy ..., Ppy B'* < p;< h (1 <4 < 7) be all the primes for which Lemma 3
is not valid. For convenience, write Po(Ayy ...y 4y) for p(4y, ..., 4,) which

are determined in [2]. Set g, = Qo(2y Myy enny Myy_1) = (2, Myy euey my_y)-

(associated to p(4,, ..., 4,)). Then by Lemma 1, we have
a
0} ?7 MyyeesyMp_y] =0

for all rational numbers 0 < a/p’ < hy0<p'<h and all non-negative
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integers my, ..., m,_, With m, +... +m,_, <k7 ,,. In particular Qo(a/pu My,
ey My_y). =0 with 0 < a/p; <h and my+...+m,_; < k7 4y, e

L L L
- Analny
DU e Y Bolhay s A) P iy ) ale = 0,

Ay=0 ;=0 Ap—1=0

with 0 < a/p, <h and my+...+m,_, < ki, m;=0. If a # 0(modp,),
the above sum is still zero when 2, is summed over any single residue class
(modp,). Therefore for 0 < alp,<h,a = 0(p,)and m,+...+m,_; < k;1+1,
we have

—1) o*n9P1 —
2 (2 2 Do(Ary vovy Ag)@D¥PL L alnp1®Prym Zﬁll)ann 1=0

where A,,0<A4,< L, is any integer and A, =,(p,) stands for 1,
= A,(modp,). Define

1Ay e Ay) =

f
and call ¢, the function associated with p,(4,, ..., 4,). Hence

1+1
Q1( plymli--w'm’—l):O’

with 0 <!< h—1 and my+...+m,_, < k; ,, with m; > 0. By Lemma 2,
we obtain

Poldyy ooy dy) if 4, =4,(p4),
0 otherwise

a
A ra My ooey My_1| =0,

with 0<a/p’'<h,0<p' < hand my+...+My_y < Ky 49y M 2 0. Define

Pi(Ayy oy dy) i Ay = A,(00),

Palhay ooy F) = l 0 otherwise.

Proceed as above and conclude that

141
42( £n pz, Myyoeey My, -1) =0,

with 0 <I<<h—1and my+...+My_y < Ky 10 m; > 0. Proceed by induc-
tion and conclude that

1+1p,
Dy

y My, ...,mn_,) =0

(6) qr(
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for all integers 7, 0 <1< h—1 and all non-negative integers m,, ..., m,_
with my+...+m,_; < k7 40 Notice that
Polhyy ooy dy) I A, =4,(p) A<i<7),

Pr(Ayyevey dy) =
Pt In 0 otherwise.

Observe that
D10, >KPE>L if r =[4nE].
Therefore
Pr(Ayy ey dy) =0 if 4, £ 4, and  p(dy ..oy Ay) = Po(dyy .ony 4,)"
In (6), set I =0 and we obtain (writing p for p,)

(7 Z Z Polhay ooy A) @i ... alngl®yTr .yt = 0.

4=0 Ap—1=0

This is true for all non-negative integers m,, ..., m,_, with m, +... +m,
< Ky, 42)- Observe that

-1

ke 12y > L,

if ¥ > 1 and ¢, is large enough. Hence (7) is valid for all integers m,, ..., m,
with 0 < m; < L (1 <4< n). Notice that the determinant

(}'n—l'{_/lnﬂn—l)m"'“l’ 0< )*n—-l < L7 0 < mn-—l < L

-1

= —
does not vanish. Hence if 4, _,, 0 < 4,_; < L, is an arbitrary integer, (7)
gives

L L
D D oAy eeny Ay gy A) 0P L adnpPy ez — 0,
A1=0 Ap—2=0
for all integers m,,...., m,_, with 0 < m;< L. Proceeding similarly, we

obtain that p,(4,,...,4,) = 0. Notice that A4,,...,4, are arbitrary.

Hence py(4;,...,4,) =0 for all (4,,...,4,), which is a ‘contradiction.
Hence -the number of primes p, h*? < p < h, for which Lemma 3 is

not valid is at most 4nE. But the number of primes between h'? and h

exceeds 8nkE, if ¢, is large enough. Hence there must exist a prime p, h'/

< p < h, satisfying

(8) afl...dr = 7P

for some 5 = a/b, (a,b) =1, in Q and for some integers j,, ..., j, With

0<j;<p (L<i<wn)and j, = 1. This completes the proof of Lemma 3.
Proof of Theorem 2. Assume that g satisfies (1). By Lemma 3,

(8) holds. But this is not possible, because of the restrictions (iv) (on
0y, ..., a,) in Theorem 2. Hence

1 R~ kind 9B 2
s> En""(Gh;l) 2he i 8, APy exp (—(nd)2"log8,)
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where ¢, > 0 is an effectively computable constant which is independent
of n, A and 8;. This completes the proof of Theorem 2.

Remark. Instead of assuming (iv), (§ 1, Theorem 2) it is sufficient
to suppose that a,, ..., a, are such that no relation of the type (8) is
possible.

Added in proof. As the main purpose of this paper is to improve the upper
estimate of [2] for f(R), Theorem 2 is not stated in all its generality. The linear
forms of the type of Theorem 2 (when a; are ‘close to 1) were considered for the
first time in [4] to prove the results announced in [3].
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