Simultaneous quadratic inequalities

by

R. J. Cook (Cardiff)

$$Q(x) = \sum_{i=1}^{5} \tau_i x_i^2$$

is an indefinite quadratic form with real coefficients, such that at least one of the ratios τ_i/τ_j is irrational, then for every $\varepsilon > 0$ there exist integers x_1, \ldots, x_5, not all zero, such that

$$|Q(x)| < \varepsilon.$$

Here we shall consider the analogous problem for two diagonal quadratic forms having real coefficients. Let

$$F(x) = \sum_{i=1}^{9} \lambda_i x_i^2 \quad \text{and} \quad G(x) = \sum_{i=1}^{9} \mu_i x_i^2.$$

The condition that at least one of the ratios λ_i/λ_j in (1) be irrational is equivalent to requiring that not all of the binary linear forms $\lambda_i u + \lambda_j v$ have coefficients which are linearly dependent over the rationals. We associate ternary linear forms

$$L_{u,v}(u, v, w) = \begin{vmatrix} u & v & w \\ \lambda_i & \lambda_j & \lambda_k \\ \mu_i & \mu_j & \mu_k \end{vmatrix}, \quad 1 \leq i < j < k \leq 9,$$

with the two forms F and G.

Theorem. Let $F(x)$ and $G(x)$ be diagonal quadratic forms, having real algebraic coefficients, in 9 variables. Suppose that

(i) Every member of the pencil $\{LF + MG\} \setminus \{(L, M) \neq (0, 0)\}$ is an indefinite form with at least 5 non-zero coefficients; and

(ii) Not all of the ternary linear forms $L_{u,v}$ associated with F and G have coefficients which are linearly dependent over the rationals.
Then for any $\varepsilon > 0$ there exist integers x_1, \ldots, x_n, not all zero, such that

$$|F(x)| < \varepsilon \quad \text{and} \quad |G(x)| < \varepsilon.$$

(4)

This is a partial complement to the analogous result for Diophantine equations [3]. By an appropriate application of Hua's Lemma analogous results may be obtained for R additive inequalities of degree k. We have assumed that the coefficients of F and G are algebraic in order to simplify the statement of the Theorem. It is possible to obtain results for forms having real coefficients, and we shall state these results in §2.

This paper is essentially part of my PhD thesis, London 1971, and I am grateful to Prof. G. L. Watson for his advice and encouragement, and to the Science Research Council for a grant.

2. Preliminaries. We begin by normalizing the inequalities (4). Let

$$L_{123}(u, v, w) = pu + qv + rw,$$

then we may suppose that p, q, and r are linearly independent over the rationals, and in particular $r \neq 0$. For any given $\varepsilon > 0$ we choose an integer $m > \varepsilon^{-1}$ and take

$$n = \frac{m}{\varepsilon} \max(|x_1| + |x_2|, |x_1| + |x_2|).$$

We define the normalized forms $A(x)$ and $B(x)$ by

$$A = nr^{-1}(\mu_1 F - \lambda_1 G) \quad \text{and} \quad B = nr^{-1}(\mu_2 F - \lambda_2 G).$$

Thus $A(x)$ and $B(x)$ are diagonal quadratic forms in 9 variables such that every member of the pencil $\{xA + \lambda B\} ([x, \lambda] \neq (0, 0)]$ is an indefinite form with at least 5 non-zero coefficients. We write

$$A(x) = \sum_{i=1}^{9} a_i x_i^2 \quad \text{and} \quad B(x) = \sum_{i=1}^{9} b_i x_i^2,$$

so that

(5)

$$a_1 = b_2 = n, \quad a_2 = b_1 = 0, \quad a_3 = -np/r, \quad \text{and} \quad b_3 = nq/r.$$

(6)

In order to prove the Theorem it is sufficient to prove that there exist integers x_1, \ldots, x_9, not all zero, such that

$$|A(x)| < 1 \quad \text{and} \quad |B(x)| < 1.$$

(7)

DEFINITION. For any real number a, we say that the real linear form $pu + qv + rw$ is of order a if the inequalities

$$|pu + qv + rw| < U^a, \quad 0 < \max(|u|, |v|, |w|) \leq U,$$

have an integer solution (u, v, w) for all U greater than some $U_0(a)$.

(8)

Lemma 1. Let p, q, r be algebraic numbers which are linearly independent over the rationals. Then for any $\delta > 0$ there are only finitely many integer points (u, v, w) with

$$|pu + qv + rw| < \max(|u|, |v|, |w|)^{1-\delta}.$$

(9)

This is a particular case of Corollary 1 of Schmidt [7].

Corollary. The linear form L_{123} is of order at most 2.

Proof. We have $L_{123} = pu + qv + rw$ where p, q, r are algebraic numbers which are linearly independent over the rationals. Thus

$$M = \min\{|pu + qv + rw| > 0,$$

where the minimum is taken over those integer points $(u, v, w) \neq (0, 0, 0)$ which satisfy (9). Hence if $U^{2+\delta} > M^{-1}$ there are no solutions of (8) so L_{123} is not of order $2 + \delta$. This is true for any $\delta > 0$ and so L_{123} is of order at most 2.

We shall only require that L_{123} is not of order ∞, and an analogue of the Theorem can be proved for quadratic forms F and G having real coefficients provided that not all of the associated ternary linear forms are of order ∞. It is straightforward to prove that the coefficients of the ternary linear forms of order ∞ form a set of Hausdorff dimension 2. Also, the proof of Theorem XIV of Cassels [2], p. 94, may readily be modified to show that there are ternary linear forms of order ∞ whose coefficients are linearly independent over the rationals.

For the rest of this paper we shall suppose that L_{123} is not of order ∞. We can choose a real number σ such that L_{123} is not of order σ and take $A = 1/3(\sigma + 2)$. We denote by δ a small positive constant chosen so that $\delta < A/4$.

We recall that the coefficients of the normalized forms $A(x)$ and $B(x)$ are a_i and b_i, respectively. We take

$$\gamma_i = a_i a + b_i b \quad \text{for} \quad i = 1, \ldots, 9.$$

(10)

Let P be a large integer which will later be restricted to lie in a certain sequence. By $X \ll Y$ we mean $|X| < CY$ where C is independent of P. We let ε denote a small positive constant and we write $\varepsilon(x)$ for $\exp(2\pi i x)$.

Lemma 2. Suppose that for every large integer P there exist real numbers α, β and integers $A_i, Q_i, i = 1, 2, 3$, satisfying

$$\max(|\alpha|, |\beta|) \ll P^\varepsilon,$$

(11)

$$\gamma_i = A_i/Q_i + O(P^{d-2}), \quad i = 1, 2, 3,$$

(12)

$$0 \neq Q_i \ll P^d, \quad i = 1, 2, 3,$$

(13)
and
\[(A_1, A_2) \neq (0, 0).\]

Then \(I_{123}\) is of order \(a\).

Proof. Suppose that for all sufficiently large integers \(P\) there exist solutions of (12)–(14). Now
\[
y_1 = na, \quad y_2 = nb, \quad \text{and} \quad ry_3 = n(qb - pa)
\]
so that
\[
g(A_1/Q_2) - p(A_1/Q_1) = r(Q_3/Q_2) + O(P^{d-2}).
\]
Hence
\[
|\frac{pA_3Q_2Q_3 - qA_2Q_1Q_3 + rA_1Q_1Q_3}{Q_1Q_2Q_3}| \ll Q_1Q_2Q_3P^{d-2} \ll P^{4d-2}.
\]
Also \(A_i \ll P^{d+1} \ll P^{2d}\) for \(i = 1, 2, 3\), so taking
\[
u = A_1Q_2Q_3, \quad v = -A_2Q_1Q_3 \quad \text{and} \quad w = A_3Q_1Q_2
\]
we have
\[
|pu + qv + rw| \ll P^{d-2}
\]
and
\[
0 < \max(|u|, |v|, |w|) \ll P^{d-2}.
\]
Therefore for any \(\varepsilon > 0\), \(I_{123}\) is of order \((2 - 4\alpha)/4\alpha - \varepsilon\), which gives the Lemma provided that \(\varepsilon\) is small.

Corollary. We may suppose that there exists an infinite subsequence \(\mathcal{S} = \mathcal{S}(\varepsilon)\) of the positive integers such that for all \(P \in \mathcal{S}\) (11)–(14) are not all solvable.

3. General lemmas

Lemma 3. The equations \(A = B = 0\) have a non-singular real solution with none of the variables vanishing.

This is essentially Lemma 2.4 of [3].

From such a solution we have a solution \(\chi\) of the equations
\[
a_1z_1 + \ldots + a_9z_9 = 0, \quad b_1z_1 + \ldots + b_9z_9 = 0
\]
such that \(\chi_i > 0\) for \(i = 1, \ldots, 9\). Then, choosing a suitable linear multiple of this solution, we may suppose that \(\chi_i > 1\) for \(i = 1, \ldots, 9\). We now choose a constant \(C\), independent of \(P\), so that
\[(15) \quad 1 < \chi_i < C^2 \quad \text{for} \quad i = 1, \ldots, 9.
\]
For \(i = 1, \ldots, 9\) we take
\[(16) \quad T_i = \frac{T(y_i)}{\chi_i} = \sum_{x \leq P} e(\chi_i x^2),
\]
\[
(17) \quad J_i = J(y_i) = \int_{\mathcal{P}} e(\chi_i \xi^2) d\xi,
\]
and we put
\[(18) \quad K(a) = (\sin \pi a/\pi)^2.
\]

Lemma 4.

\[
(19) \quad \int_{-\infty}^{\infty} e(\eta a)K(a)da = \max(0, 1 - |\eta|).
\]

This is a Lemma 4 of Davenport and Heilbronn [6].

Let \(\mathcal{S}\) be the box \(\{x: P \leq x \leq CP, i = 1, \ldots, 9\}\) and let \(N(P)\) be the number of integer solutions of the normalized inequalities (7) in \(\mathcal{S}\).

Lemma 5.

\[
(20) \quad N(P) \gg \frac{\int \int \int_{x_i = 1}^{9} T(y_i)K(a)K(b)da db}{CP \prod_{i=1}^{9} \max(0, 1 - |A(\xi)|) \max(0, 1 - |B(\xi)|) d\xi}.
\]

This result follows from Lemma 4 on multiplying out the products and interchanging the orders of integration and summation.

4. Reduction to a finite integral. We shall obtain a lower bound for \(N(P)\) from (20), and begin by reducing the integral to a finite region.

Lemma 6. For any real \(y, z\) and any \(\varepsilon > 0\)

\[
(22) \quad \int_{y}^{y+1} \int_{z}^{z+1} \prod_{i=1}^{9} |T(y_i)| d\beta d\alpha \ll P^{4+4}
\]

where ’ denotes the omission of any one factor from the product.

Proof. Since every member of the pencil \(\{xA + MB\} (\{x, y\} \neq (0, 0))\) contains at least 5 terms explicitly, any ratio occurs at most 4 times among the \(a_i b_i\). Therefore the 8 factors in the product can be arranged into 4 pairs \(T(y_k), T(y_l)\) such that \(a_k b_k - a_l b_l \neq 0\). Then

\[
(23) \quad \int_{y}^{y+1} \int_{z}^{z+1} \prod_{i=1}^{9} |T(y_i)| d\beta d\alpha \ll \sum_{k,l} \int_{y}^{y+1} \int_{z}^{z+1} |T(y_k)T(y_l)| d\beta d\alpha,
\]

where the sum is taken over such pairs \(k, l\). The Lemma now follows on applying the generalization of Hua’s Lemma obtained in [4].

Corollary. For any real \(y, z\) and any \(\varepsilon > 0\),

\[
(24) \quad \int_{y}^{y+1} \int_{z}^{z+1} \prod_{i=1}^{9} |T(y_i)| d\beta d\alpha \ll P^{5+4}.
\]
From the \(\alpha \cdot \beta \) plane we now select 4 regions \(R_i \):
\[
R_1 = \{(\alpha, \beta) : \alpha > P^\delta \}; \quad R_2 = \{(\alpha, \beta) : \alpha < -P^\delta \}; \\
R_3 = \{(\alpha, \beta) : \beta > P^\delta \}; \quad R_4 = \{(\alpha, \beta) : \beta < -P^\delta \}.
\]
Here \(\delta \) is the positive number chosen in § 2. We take
\[
R = \bigcup_{i=1}^{4} R_i.
\]

Lemma 7. For any \(\varepsilon > 0 \)
\[
\int \int \int_{K} |T(\gamma)| K(\alpha) K(\beta) d\alpha d\beta \leq P^{3+\varepsilon-\delta}.
\]

Proof. It is sufficient to prove with each \(R_i \) in place of \(R \).
Using the estimate \(K(\alpha) \leq \max(\alpha^{-3}, 1) \), we have
\[
\int \int \int_{R_i} |T(\gamma)| K(\alpha) K(\beta) d\alpha d\beta = \sum_{\lambda^P>0} \sum_{\lambda^P<0} \int \int \int_{R_i} |T(\gamma)| K(\alpha) K(\beta) d\alpha d\beta \\
\leq \left(\sum_{\lambda^P>0} \sum_{\lambda^P<0} |T(\gamma)| \right) P^{2+\varepsilon} \leq P^{2+\varepsilon-\delta},
\]
and the other regions \(R_i \) are treated similarly.

With the linear form \(\gamma_i \) we associate the line
\[
\Gamma_i : \gamma_i = 0
\]
in the \(\alpha \cdot \beta \) plane. We label the \(\Gamma_i \) so that the positive angle from \(\beta = 0 \) to \(\Gamma_i \) increases monotonically with \(i \). Note that we may have \(\Gamma_i = \Gamma_{i+1} \). If \(\Gamma_i \neq \Gamma_{i+1} \), let \(B_i \) be the line bisecting the angle formed by the lines \(\Gamma_i \) and \(\Gamma_{i+1} \). If \(j \) is the largest integer less than \(i \) such that \(\Gamma_j \neq \Gamma_i \), we let \(S_{j+1} = \ldots = S_i' \) be the sector bounded by \(B_j \) and \(B_i \). Thus \(\Gamma_{j+1} = \ldots = \Gamma_i \) lie in the interior of \(S_i' \).

We choose a positive constant \(\varepsilon \) such that if \(\max(|\alpha|, |\beta|) > 0 \), \(|\gamma_i| < 1 \) and \(a_i b_j - a_j b_i \neq 0 \) then \(|\gamma_i| > 1 \). Therefore, for any large integer \(P \), if \(\max(|\alpha|, |\beta|) > P^{-\varepsilon} \), \(|\gamma| < P^{-1} \) and \(a_i b_j - a_j b_i \neq 0 \) then \(|\gamma| > P^{-1} \).

Let \(r \) be a small positive constant, and take \(S_i \) to be the intersection of \(S_i' \) with the region
\[
cP^{r-\varepsilon-\delta} < \max(|\alpha|, |\beta|) < cP^{-\varepsilon}.
\]

Lemma 8. If \(\gamma_i = O(P^{-1}) \) and \(\gamma_i \neq 0 \) then
\[
T(\gamma) \ll |\gamma_i|^{-1+\varepsilon}.
\]
This is Lemma 7 of Davenport and Heilbronn [6].

Lemma 9. For each \(S_j \),
\[
\left| \int \int \int_{S_j} |T(\gamma)| K(\alpha) K(\beta) d\alpha d\beta \right| = O(P^5).
\]

Proof. We take new coordinates in the region \(S_j \). These are \(r \), the distance along \(\Gamma_j \) to the origin, and \(s \), perpendicular to \(r \). The region \(S_j \) lies in a region bounded by two lines, say \(-mr \leq s \leq mr \). Also, we can choose positive constants \(c_0, c_1 \) and \(c_2 \), independent of \(P \), so that
\[
r > c_0 P^{r-\varepsilon-\delta} \text{ in } S_j,
\]
and if \(a_i b_j - a_j b_i \neq 0 \), \(c_1 r \leq |\gamma| \leq c_2 r \).

In \(S_j \), each \(\gamma_i \) is \(O(\varepsilon^{-1}) \) and if \(a_i b_j - a_j b_i \neq 0 \) we have \(\gamma_i \neq 0 \) in \(S_j \) and so we can use Lemma 8 to estimate \(T(\gamma) \). Since any ratio occurs at most 4 times among the \(a_i b_j \) we can use Lemma 8 on at least 5 factors in the product, and use the trivial estimate \(O(P) \) on the remaining terms. Hence
\[
\int \int \int_{S_j} |T(\gamma)| K(\alpha) K(\beta) d\alpha d\beta \leq \int \int \int_{S_j} P^4(r^{-1+\varepsilon}) d\alpha d\beta \\
\leq c_0 P^{r-\varepsilon-\delta} \int \int \int_{S_j} P^4(r^{-1+\varepsilon}) d\alpha d\beta \\
\leq P^{r+4+4+5} = o(P^5),
\]
provided that \(r \) and \(\varepsilon \) are sufficiently small.

We now take \(\Sigma_i \) to be the intersection of \(S_i' \) with the region
\[
\max(|\alpha|, |\beta|) > cP^{r-\varepsilon-\delta}.
\]

Lemma 10. For each \(S_j \),
\[
\left| \int \int \int_{S_j} |J(\gamma)| K(\alpha) K(\beta) d\alpha d\beta \right| = O(P^5).
\]

Proof. If \(\gamma_i \neq 0 \) we have, as in Lemma 11 of Davenport and Heilbronn [6], \(J(\gamma_i) = O(|\gamma|^{-1}) \). The result now follows in the same way as Lemma 9.

5. The main term

Lemma 11. For some positive constant \(D \), independent of \(P \),
\[
\left| \int_{P}^{C_0 P} \ldots \int_{P}^{C_0 P} \max(0, 1 - |A(\xi)|) \max(0, 1 - |B(\xi)|) d\xi > D P^5,
\]
for all sufficiently large \(P \).
Proof. We put \(\xi_i^2 = P^3 \eta_i \), then \(d \xi_i = P (2 | \eta_i |^{1/2})^{-1} d \eta_i \). We take
\[
\mathcal{E} = \{ \eta : 1 < \eta < C^3, \; i = 1, \ldots, 9 \}
\]
and
\[
\mathcal{G} = \{ \eta : \max(\vert A_1 (\eta) \vert, \vert B_1 (\eta) \vert) < (2 P^3)^{-1} \},
\]
where \(A_1 (\eta) = a_1 \eta_1 + \cdots + a_9 \eta_9 \) and \(B_1 (\eta) = b_1 \eta_1 + \cdots + b_9 \eta_9 \). Then the left hand side of (31) is at least
\[
2^{-11} P^9 \int_{\mathcal{E} \cap \mathcal{G}} \ldots \int_{\mathcal{G}} | \eta_1 \ldots \eta_9 |^{-1/2} d \eta.
\]

The surfaces \(A_1 (\eta) = 0 \) and \(B_1 (\eta) = 0 \) are 8-dimensional linear subspaces meeting in a 7-dimensional linear subspace which contains the point \(\chi \) chosen by Lemma 3. Further, \(\chi \) is interior to \(\mathcal{E} \). The set \(\mathcal{E} \cap \mathcal{G} \) will therefore contain a box around \(\chi \) of volume \(D_9 P^{-4} \) for some positive constant \(D_9 \) independent of \(P \). Then
\[
\int_{\mathcal{E} \cap \mathcal{G}} \ldots \int_{\mathcal{G}} | \eta_1 \ldots \eta_9 |^{-1/2} d \eta > C^{-3} D_9 P^{-4}
\]
and the result follows with \(D = 2^{-11} C^{-3} D_9 \).

Lemma 12. If \(| \gamma_i | = O (P^{-32}) \) then
\[
| T (\gamma_i) - J (\gamma_i) | = O (1).
\]

This is Lemma 5 of Davenport and Heilbronn [6].
We take \(U (v) = \{ (a, \beta) : \max (|a|, |\beta|) \leq c P^{-32-2^{-1}} \} \).

Lemma 13.

\[
\int_0 \int_{\mathcal{E} (c)} \int_0 \int_{\mathcal{E} (c)} \int_0 \int_{\mathcal{G}} \int_0 \int_{\mathcal{G}} \int_0 \int_{\mathcal{G}} \ldots \int_{\mathcal{G}} T (\gamma_i) K (a) K (\beta) d \alpha d \beta
\]
\[
= \int_0 \int_{\mathcal{E} (c)} \int_0 \int_{\mathcal{G}} \ldots \int_{\mathcal{G}} (P^3)^{1/2} + o (P^3).
\]

Proof. In \(U (v) \) we have each \(| \gamma_i | = O (P^{-32}) \), so, by Lemma 12,
\[
\int_0 \int_{\mathcal{E} (c)} \int_0 \int_{\mathcal{G}} \ldots \int_{\mathcal{G}} | T (\gamma_i) - J (\gamma_i) | = O (P^3).
\]
Thus the difference between the two integrals in (33) is
\[
\ll P^3 (P^{-32-2^{-1}})^2 = P^{-r_2}.
\]

Collecting together the results of Lemmas 13, 10, 5 and 11, we see that for some positive constant \(D \), independent of \(P \),
\[
\int_0 \int_{\mathcal{E} (c)} \int_0 \int_{\mathcal{G}} \ldots \int_{\mathcal{G}} T (\gamma_i) K (a) K (\beta) d \alpha d \beta \gg D P^3 + o (P^3).
\]

6. The residual integral. We now have to estimate the integral of the exponential sums \(T (\gamma_i) \) over the region
\[
R_0 = \{ (a, \beta) : c P^{-1} < \max (|a|, |\beta|) \leq P^3 \}.
\]

Lemma 14. Suppose that \(| T (\gamma_i) | = P^{-32} \), where \(\theta < \frac{1}{4} - 2 \delta \); then \(\gamma_i \) has a rational approximation \(A_i / Q_i \) such that
\[
| \gamma_i - A_i / Q_i | < P^{-3-2}.
\]

Proof. By Dirichlet's theorem on Diophantine approximation, there exists a rational approximation \(A / Q \) to \(\gamma_i \) such that
\[
1 < Q < P^{1+\delta} \quad \text{and} \quad | \gamma_i - A / Q | < Q^{-1} P^{-3-\delta}.
\]
If \(Q > P^{1+\delta} \) then by Weyl's inequality (Lemma 1 of [4]),
\[
| T (\gamma_i) | < P^{4+\delta},
\]
which gives a contradiction. Thus \(Q \leq P^{1+\delta} \) and so, from the Corollary to Lemma 9 of Birch and Davenport [1],
\[
| T (\gamma_i) | < Q^{-1/2} \min (P, P^{-1} | \beta_i |^{-1}),
\]
where \(\beta_i = \gamma_i - A / Q \). Thus
\[
P^{1-\delta} \ll Q^{-1/2} P
\]
and
\[
P^{1-\delta} \ll Q^{-1/2} P^{1-\delta} P^{-1} | \beta_i |^{-1}
\]
which gives (36).

We recall that for all \(P \in \mathcal{P} (\sigma) \) there are no \((a, \beta) \in R_0 \) which satisfy (12)–(14). Thus for all \((a, \beta) \in R_0 \) and \(P \in \mathcal{P} \) we have
\[
\min (\{ | T (\gamma_i) |, | T (\gamma_2) |, | T (\gamma_3) | \}) \ll P^{1-\delta}.
\]
Thus from (37) and Lemma 6,
\[
\int_0 \int_{\mathcal{E} (c)} \int_0 \int_{\mathcal{G}} \ldots \int_{\mathcal{G}} | T (\gamma_i) | K (a) K (\beta) d \alpha d \beta \ll P^{20} P^{1+\delta} P^{1-\delta}
\]
for all \(P \in \mathcal{P} \). Since \(\delta < A / 4 \), the right hand side of (38) is \(o (P^4) \), provided that \(\varepsilon \) is sufficiently small.

7. Completion of the proof of the Theorem. It is sufficient to prove that the normalized inequalities (7) have a non-trivial integer solution. The number \(N (P) \) of integer solutions of (7) in \(\mathcal{B} \) satisfies
\[
N (P) \gg \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0 \int_{\mathcal{E} (c)} \int_0 \int_{\mathcal{G}} \ldots \int_{\mathcal{G}} T (\gamma_i) K (a) K (\beta) d \alpha d \beta.
\]
From (38) and Lemmas 7 and 9 we have
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} T(\gamma) K(a) K(\beta) \, da \, db = \int_{0}^{1} \int_{0}^{1} T(\gamma) K(a) K(\beta) \, da \, db + o(P^a),
\]
as \(P \to \infty\) through \(a\). Thus, by (34), for some positive constant \(D\)
\[N(P) \geq DP^a + o(P^a)\]
as \(P \to \infty\) through \(a\) which gives \(N(P) > 0\), and the proof is complete.

References

UNIVERSITY COLLEGE, CARDIFF

Received on 6. 11. 1972

ACTA ARITHMETICA

XXV (1974)

Halving an estimate obtained from Selberg's upper bound method
by
R. R. HALL (Heelington)

Introduction. In many applications of Selberg's upper bound method, an unnecessary constant factor appears in the final estimate, due to the fact that we can only sieve up to approximately \(\sqrt{x}\).

At present this restriction seems unavoidable, and arises from the necessity of squaring in order to obtain a non-negative sifting function, viz.

\[s^{+}(n) = \left(\sum_{d \mid n} \chi_{d} \right)^{2}.\]

As an example, let \(K\) be any positive integer whose greatest prime factor does not exceed \(x\). Following van Lint and Richert [1], we arrive at the estimate

\[\sum_{(n, K) = 1} 1 \leq \frac{\phi(K)}{K} x \left(\frac{1}{\log x} + \frac{x^2}{x} \right) \prod_{p \leq x} \left(1 - \frac{1}{p} \right)^{-1},\]

by a careful application of Selberg's method. Choosing \(x\) optimally, Mertens' formula gives

\[\sum_{(n, K) = 1} 1 \leq 2e^{\phi(K)} \frac{\phi(K)}{K} x \left(1 + O \left(\frac{\log \log x}{\log x} \right) \right).\]

The factor \(e^{\phi}\) really is necessary, as the Prime Number Theorem shows, but apart from the error term, the estimate becomes best possible if we strike out the factor 2 on the right. The object of this note is to obtain a general result of this kind.

Theorem. Let \(f(n)\) be defined on the positive integers and satisfy

\[f(1) = 1, \quad 0 \leq f(n) \leq 1\]

and

\[f(nm) \leq f(n)f(m)\]

provided \((n, m) = 1\).