A rational canonical form for matrix fields*

by

J. T. B. Beard, Jr., (Arlington, Tex.)

1. Introduction and notation. Let F be an arbitrary field and let $(F)^n$ denote the algebra of all $n \times n$ matrices over F under normal matrix addition and multiplication. The primary purpose of this paper is to examine a rational canonical form (R.C.F.) for matrix fields over F. This R.C.F. is in general not unique and the obvious questions remain open. In the final section we consider a relationship between matrix roots of prime polynomials over GF(q).

In certain instances we have a technique for extending matrix fields within $(F)^n$ ([1], Theorems 9, 10, [2], Theorems 12, 13). The R.C.F. defined in § 2 is principally motivated by an unsuccessful attempt to improve and generalize that technique. In particular we ask: given a subfield M of $(F)^n$ with M containing a matrix in rational canonical form (r.c.f.) over F, can we extend M non-trivially by adjoining a matrix $A \in F$ where A is in r.c.f. over F? The negative answer raises a more general question which we consider in § 3.

Our notation and terminology is that of [1], [2] and briefly is as follows. If a matrix $A \in (F)^n$ is the matrix direct sum of k companion matrices over F, we call A a k-matrix and follow the convention that the coefficients of a monic polynomial $f(x) \in F[x]$ determine the last row of its companion matrix $C(f(x))$. It is well known that if $g(x) = a_n x^{n-1} + \ldots + a_1 x + a_0 \in F[x]$ and $C(f(x)) \in (F)^n$, then the first row of the matrix $g(C(f(x)))$ is given by the vector (a_n, \ldots, a_0). By the r.c.f. over F of a matrix $A \in (F)^n$, we mean the matrix diag $C(f_1(x)), \ldots, C(f_k(x))$, where the polynomials $f_i(x)$ are the non-trivial similarity invariants of A over F and $\deg f_i(x) < \deg f_{i+1}(x)$ for $1 \leq i < k$. Finally, we denote the set of all scalar matrices in $(F)^n$ by $S_n(F)$ and the set of all subfields of $(F)^n$ by S_n.

2. A rational canonical form. We remember from [1] that if $M \in \mathcal{F}_n$ has rank r, then M is similar over F to a matrix field M' in which each matrix has the form $\text{diag} \{ O_{n-r}, A' \}$, and $A' \in (F)^r$, has rank r if and only

* Portions of this paper are contained in the author's doctoral dissertation, directed by Professor Robert M. McConnell.
if the corresponding matrix \(A \in M \) is non-zero. We call \(M' \) a normal form for \(M \) over \(F \) and let \(\pi, M' \) denote the obvious projective image of \(M' \) in \(F' \).

Definition 1. Let \(M \in F_n \) have rank \(r \) and let \(M' \) be a normal form for \(M \) over \(F \). Then \(M' \) is called a rational canonical form (R.C.F.) for \(M \) over \(F \) if and only if \(\pi, M' \) contains a non-scalar matrix in r.c.f. over \(F \) whenever \(\pi, M' \) contains a non-scalar matrix.

Clearly, each \(M \in F_n \) having rank \(r \) is in normal form; \(M' \in F_n \) is its unique R.C.F. whenever \(\pi, M' \) contains only scalar matrices; and each \(M \in F_n \) has a R.C.F. over \(F \). While it is easy to verify that a R.C.F. is not necessarily unique, we are able to obtain the following theorem.

Theorem 1. Let \(F \) be an arbitrary field, and let \(M \in F_n \) have rank \(r \). If \(M' \) is any R.C.F. for \(M \) over \(F \), then \(\pi, M' \) contains at most one non-scalar matrix in r.c.f. over \(F \).

The above result follows immediately from Theorem 2.

Theorem 2. Let \(F \) be an arbitrary field, and let \(M \in F_n \) have rank \(r \). Then at most one non-scalar matrix in \(M \) is in r.c.f. over \(F \).

Proof. Suppose \(M \) contains a non-scalar matrix \(A \) in r.c.f. over \(F \), say

\[
A = \text{diag}(A_1, \ldots, A_k),
\]

where the companion matrix \(A_i \) has order \(m_i \) for \(1 \leq i \leq k \). If \(A' \in M \) is also a non-scalar matrix in r.c.f. over \(F \), we let

\[
A' = \text{diag}(A'_1, \ldots, A'_l),
\]

where the companion matrix \(A'_i \) has order \(n_i \) for \(1 \leq i \leq l \). Since neither \(A \) nor \(A' \) are scalar matrices, then \(k, l < n \). Let \(\pi \) and \(\pi' \) denote the ordered partitions of \(n \) as defined by \((m_1, \ldots, m_k)\) and \((n_1, \ldots, n_l)\) respectively. Let \(m = \max(m_k, n_l) \). We can assume w.l.o.g. that \(m \) belongs to the partition \(\pi \). Partition both \(A \) and \(A' \) into block matrices, say \(A = [B_{ij}] \) and \(A' = [B'_{ij}] \), where \(B_{ij} \) and \(B'_{ij} \) both have dimensions \(m_i \times m_j \) for \(1 \leq i, j \leq k \), as determined by the partition \(\pi \). Then \(A_k = B_{kk} \) is non-derogatory. Since \(M \) is a field, \(A \) and \(A' \) commute. We conclude that \(B_{kk} \) commutes with \(B_{kk}' \), and hence that \(B_{kk}' = g(B_{kk}) \) for some \(g(x) \in F[x] \) with \(\deg g(x) < m \). Since \(B_{kk} \) is a companion matrix it follows that \(g(x) = a \) for some \(a \in F \) or else \(g(x) = x \), due to the form of the first row of \(B_{kk} \). If \(g(x) = a \) then \(A_i = [a] \), and hence \(A' = aI_k \) by the divisibility properties of the similarity invariants of \(A' \). This is a contradiction, hence \(g(x) = x \) and \(A_k = A_k' \). Thus \(A = A' \), for otherwise \(A - A' \) is non-zero and has rank less than \(n \).

In summary, we have

Theorem 3. Let \(F \) be an arbitrary field, and let \(M \in F_n \) have rank \(r \). Then \(M \) has a R.C.F. over \(F \). If \(M' \in F_n \) is any R.C.F. for \(M \) over \(F \) and \(K \)

is any extension field over \(F \), then \(M' \) is a R.C.F. for \(M \) over \(K \). Furthermore, \(\pi, M' \) contains at most one non-scalar matrix in r.c.f. over \(F \).

3. k-matrices in matrix fields. The proof technique used in Theorem 2 does not appear to be particularly fragile, so we question the uniqueness of \(k \)-matrices in matrix fields. The answer is negative as shown by this example.

Example. Let \(F = GF(64) \) so that \(F \) has prime subfield \(GF(2) \) and proper subfields \(GF(4) \) and \(GF(8) \). Let \(f(x) = x^2 + x + 1 \), so that \(f(x) \) is prime in \(GF[2][x] \) and splits over \(GF(4) \). Choose \(a \in GF(4) \) as a root of \(f(x) \). Let \(C_1 = C_{f(x)} \), \(A_1 = aI_2 \) where \(I_2 \) is the identity of \((F)_2 \), and \(A = \text{diag}(C_1, A_1) \). Then \(S_{f(x)}[A, B] \in F \).

Now let \(g(x) = x^2 + x + 1 \), so that \(g(x) \) is prime in \(GF[2][x] \), and splits over \(GF(4) \), and choose a root \(a \) of \(g(x) \) in \(GF(8) \). Let \(A_2 = C_{g(x)} \), \(C_2 = aI_4 \), and \(B = \text{diag}(C_2, A_2) \). It follows that \(S_{f(x)}[A, B] \in F \), and contains the non-scalar \(4 \)-matrix \(A_1 \) and also the non-scalar \(3 \)-matrix \(B \).

In the other direction, it is easy to construct matrix fields in which the zero matrix is the only \(k \)-matrix.

We do gain the desired uniqueness in certain cases and are reminded of the question in [2] concerning the set of scalar matrices contained in a matrix field. We remember that if \(T \) is a subset of \((F)_n \), then the entry field of \(T \) is the smallest subfield \(F' \) of \(F \) such that \(T \) is contained in \((F')_n \). The method of Theorem 2 yields the following result.

Theorem 4. Let \(F \) be an arbitrary field. Let \(M \in F_n \) be in normal form having rank \(r \) and entry field \(F' \), and suppose \(\pi, M \) contains \(S_{f(x)}[A, B] \). If \(M \) contains a \(k \)-matrix \(A \) and an \(l \)-matrix \(A' \) with \(k, l < n \), then \(A = A' \).

4. Other results. In this section we sharpen and extend the following result.

Theorem 5. Let \(F = GF(p) \). Let \(A \in (F)_n \) have characteristic polynomial \(f(x) \) and minimal polynomial \(f(x) \) which is prime in \(F[x] \). Then for each positive divisor \(m \) such that \(m \mid n \) there exists a polynomial \(g(x) \in E[x] \) of degree \(r < n/m \) and a prime polynomial \(h(x) \in F[x] \) of degree \(m \) such that \(g(A) \) has characteristic polynomial \(h^{m/n}(x) \) and minimal polynomial \(h(x) \).

The above theorem will follow easily from Theorem 2 in [1]. We remember that if \(F = GF(q) \) is the Galois field of order \(q \) and \(A \in (F)_n \) has minimal polynomial of degree \(m \) over \(F \), then the ring extension \(S_A(F)[A] \) of \(S_A(F) \) by \(A \) has order \(q^m \) and is given by

\[
S_A(F)[A] = \{ g(A); \; g(x) \in F[x], \; \deg g(x) < m \}.
\]

We restate Theorem 5 equivalently but in simpler form.

Theorem 6. Let \(F = GF(p) \). Suppose \(A \in (F)_n \) has minimal polynomial \(f(x) \) which is prime in \(F[x] \) and has degree \(s \). Then for each positive
divisor m of s, there exists a polynomial $g(x) \in F[x]$ of degree $r < s$ and a prime polynomial $h(x) \in F[x]$ of degree m, such that $g(A)$ has minimal polynomial $h(x)$.

Proof. The ring $S_\infty(F)[A]$ is a subfield of $(F)_n$ by Theorem 2 in [1], since A has the matrix k-sum $C(\tilde{f}(x))$ as its rational canonical form over F, where $k = n/s$. Since $m|s$, then $S_\infty(F)[A]$ has a subfield \mathcal{M} of order p^m. Since $S_\infty(F)$ is a prime field then $\mathcal{M} = S_\infty(F)[B]$ for some $B \in S_\infty(F)[A]$. Let $h(x) \in S_\infty(F)[X]$ be the minimal polynomial of B over $S_\infty(F)$. Then $h(x)$ is the minimal polynomial of B over F, and we can choose (uniquely) $g(x) \in F[x]$ such that $\deg g(x) < s$ and $g(A) = B$.

We now sharpen the above result.

Theorem 7. Let $F = GF(q)$. Suppose $A \in (F)_n$ has minimal polynomial $f(x)$ which is prime in $F[x]$ and has degree s. Then for each positive divisor m of s and for each prime polynomial $h(x) \in F[x]$ of degree m, there exist precisely m polynomials $g_i(x) \in F[x]$ of degrees $r_i < s$ such that $g_i(A)$ has minimal polynomial $h(x)$.

Proof. As before, the field $S_\infty(F)[A]$ has order p^s and contains a subfield $S_\infty(F)[B]$ of order p^m. As argued in the proof of Theorem 2 in [3], any prime polynomial $h(x) \in F[x]$ of degree m splits in $S_\infty(F)[B]$. The theorem follows easily.

As indicated by Section 6 of [3], there is now no difficulty in obtaining a more general result.

Theorem 8. Let $F = GF(q)$. Suppose $A \in (F)_n$ has characteristic polynomial $f(x)$ and minimal polynomial of $g(x)$ which is prime in $F[x]$. Then for each positive divisor m of n/k and each prime polynomial $h(x) \in F[x]$ of degree m, there exist precisely m polynomials $g_i(x) \in F[x]$ of degrees $r_i < n/k$ such that $g_i(A)$ has characteristic polynomial $h^{m(x)}$ and minimal polynomial $h(x)$.

Our next result follows from the proof of Theorem 20 in [3].

Theorem 9. Let $F = GF(q)$, $q = p^d$. Suppose $A \in (F)_n$ is a root of a polynomial $f(x)$ which is prime in $GF[p, x]$ and has degree s. Then for each positive divisor m of s, and for each polynomial $h(x)$ of degree m which is prime in $GF[p, x]$ and has a root in $(F)_n$, there exist precisely m polynomials $g_i(x) \in GF[p, x]$ of degrees $r_i < s$ such that $g_i(A)$ has minimal polynomial $h(x)$ over $GF(p)$.

Proof. Since $f(x)$ is prime in $GF[p, x]$ then $f(x)$ is the minimal polynomial of A over $GF(p)$, and $M = S_\infty(GF(p))[A]$ is a field of order p^s. Hence M contains a subfield $S_\infty(GF(p))[B]$ of order p^s where $B \in M$. Again, any polynomial $h(x)$ of degree m which is prime in $GF[p, x]$ and has a root in $(F)_n$ splits in $S_\infty(GF(p))[B]$.

We can obtain results in the "opposite direction" by modifying appropriately the constructive technique of Theorem 9 in [1] or more generally Theorem 12 in [2]. For example, consider the following

Theorem 10. Let $F = GF(q)$. Suppose $A \in (F)_n$ has characteristic polynomial $f(x)$ and minimal polynomial $f(x)$ which is prime in $F[x]$. Then for each positive integer m such that $m|k$ and for each prime polynomial $h(x) \in F[x]$ of degree mn/k, there exist at least mn/k matrices $B_i \in (F)_n$ having characteristic polynomial $h^{mn}(x)$, minimal polynomial $h(x)$, and satisfying $A = g_i(B_i)$ for unique $g_i(x) \in F[x]$ of degrees $r_i < mn/k$.

References

[3] — The number of matrix fields over GF(q), Acta Arith., this volume, pp. 315–329

UNIVERSITY OF TEXAS AT ARLINGTON
Arlington, Texas

Received on 30. 5. 1972 (201)