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ACTA ARITHEMETICA
XXIV (1974)

On a Diophantine inequality for forms of additive type
by
8. Racuavan (Bombay)

Dedicated respectfully to Carl L. Siegel

§ 1. Lot I Do an algebraie number field of degree I over the field Q@
of rational numbers and let K = EQqgR, the tensor product over  of
K with the Lield R of real numbers. Any clement  in £ can be represented
ay & diagonal motrix with diagonal elements oW, ..., a®™ referred to
as the ‘conjugates’ of o and assumed to be so ordered that ae B for
Lir, and o® = o are complex for r, << k< ry+r, with v, 3 0,
ro 2 0 and 727, =h For ae X, a® ..., o™ are just the conjugates
of « over Q. We define :

el == max [«®] for ae K.
Vi e
Let w22 be a natural nember and let floy, ..., 2,0 = 3 a2

. 1S
be a form of additive type over K, i.e. a polynomial in #,,..., s, of the
above formy with coefficients @, ..., @, which are invertible elements
of K. 'Wo call f totally indefinite, if, for every 7 with 1 < ¢ < r,, there exist
roal numbers Py, ..., P, 0ot all zero such that Y a9l = 0. Our object
it o prove the following lr<e
TororeM. Lot f{wy, ..., 2 == 1 ‘,_;; a0 be a totally indefinite form
lzar=gy

of additive type over K@y R which is ';:ot a soalay maltiple of any polynomial
W Wy e, B, with codfficients in K. If & 2 2™+ 1, thero exist, for any ¢ > 0,
algebrate intogers oy, ..., oy not all sero in K such thut [f{ag, ..., &)l <<e.

Remarks. Thig iv an improved version of the Theorem stated in
31 and answers a question raised in [3], p. 300. The condition ‘s
2 max (2™ - 2, A (o L) e BE - k) of that Thoorem is now replaced
by the condibion & = 2717 which is clearly independent of the degroe h
of I over €. Wurthaer, the additional condition mh 2 4 n [3] is no longer
imposed hore. Wo follow the ssme notation as in [3] and merely indicate
tho nocessary modifications requived to prove the Theorem stated above.
Tot m == 2 this Theorem coincides with a well-known Theorem of Da,ven—
port and Teilbronn ([0], p. 158) for diagonal quadratic forms in 5 variables.
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§2. Let {wy,..., w,} be o fixed basis of the ring o of algebrale
integers in K over the ring Z of rational integors. Lot 9 be t]1,ca difzferug_t
of K and leb {gy, ..., os} be the complementary Z-basis of #L For ae K,
let o{a) and Na denote the trace and the novm ol a over @ rogpectively.
For any ideal g, let Na denote the norm of a. For P >0, let 1’,%0 o= { i
= Y e K| —P<y<Plor 1<k h) and & e o e 1%‘! Ep 0

Lo Tt 1)
€ Kl_Tkﬁ]i{: @< 1 for 1<k h}. (We have identified hore w, 1 wibth
wy, and g, ® L with g.) I f and g ave two numberg or functions, woe abbre-
viate “|f| < 2 Jg} for an unspecilied constant 4= 0 depewding only on K
by “f <€ g7. We also nse the symbels O and o of Landwa, Tor voeal # 0,
we write NP for PM

Tor ae K and a fixed number P > 0, wo define the exponaentinl sam

S(a) = 8(a, P) = | gimis(an!™)
2¢ nml“.’?(f“
For fe K, we set
L) = [] Lug?)

1€Egr

J] a6

ry<dEry ity

where L, (2) = (sinne/me)? or 1 aceording us the real number o iy different
from 0 or equal to O and Ly(z) = (J o (4w |2]) /|/2 |z|)2 or 1 according ad
* the complex nmuber # iy different from or equal fo 0 and ., denotes the
nsual Bessel funection of order 1. For ae K, let {da} denoto the volume

element
]

pETES Y

d{RedMd(Tm o).

PrfEry e

Then we have, for 8¢ K,

S [T s = B (0)
‘where -
0o i o >1,
MO=1 7 a0y T eue0n i jogs
Lty . gy by

with p(2) = dsin~ (V1 — [2]2) ~ e[/1 -~J§[§ ar 0 according as |g] . 1L ov
2] > 1.

To prove the theorerm stated in § 1, it subfices to consider the case

when & = 1, sinee the case of genernl & iy deduced at onco by taking
& (W, ooy @) instead of flay, ..., z,). We now assume that for every
set of wy, ..., 4, not all 0 in v, we have

(1 If (@1 )l 2 1

and derive a contradiction which will prove our Theover.
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For aeK, wo set T(a) = H S(a;a). Then for o = 3 a,g,
we have 1i=s Lsk<h
(2) day ... day, = e{da}

for a constant ¢ depending only on K. By the definition of L{a), we
have

fm fl‘(m)L(a)dal...dak =0 D M( > a,.m;")
- —co Tys1ren g 1558

where the summation on the right hand side is over all s-tuples wy, ..., o,
of elements of on.P%, subject to the vestriction that || 3 aafl< 1.

Tn view of the hypothesis (1) on f, wo have I<g=s
(3) [ [ T@L(a)dy, ... do, = 0.

We shall obtain a contradiction to (3) for large P under the hypotheses
of the Theorem, by splitting up the domain of integration in (3) suitably.

Bince f{zy,...,2,) i8 not a sealar multiple of any form over K, we
may suppose, without loss of generaliby that a,e;" is not in K. We divide
the whole space — co<< o< oo (L4 h) into three mubually non-
gverlapping subsets B, B,, B, defined by

B, = fae K| |o| < ¢, P77

By = {ac K| 6, P~ < |a] < PV,

By = {as K| o > P
where 8, § are fixed real numbers such that 0 << 6 < 1,0<< 8§ < 1 and ¢,
is a positive constant so chosen that for ae®, and @a= 2} ¢ 0;, We

have L<s<h

max |oy] > P~ for
rish

i=1,2.

Temark. The change-over from P™™ % in the definition of H,
and B, in [37, p. 302, to the present P ™" wag suggested by argu-
2 bl y I - g Y arg

ments of K. Remachandra in a paper On the sums ' hf;(p;) (to appear).
Lot =1
J; = fT(a)L(a)dm wo.da,  for
By

Then -+ Jy--Jy == ¢, from (8). We show that J, has an estimate from
below involving P while J, and J; have upper estimates involving £ which
are of a strictly lower order than the lower estimate for J,. The contra-
diction required for establishing the Theorem is obtained by letting P
tend to infinity. '

i=1,23.
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§ e .
Y (P) = {me K| |o| <P} and for fe X, let I(6) = oo [ ¥ L,
Y

For any ye K, we may write (y)9 = bay Y with coprime integral ideals
a, and b; we refer to a, as the “denominator” of ()& and for ¢ = 0, we
take a, = 0. Let

3. We get here a lower estimate for Jy,. For any P> 0, lot

Gy) ={ 3 ™) N,
,umm:'lrt,,
where x rans over a completo set of representatives of rosidue closses
of p modulo a,. Then we have :
Tmvma 1 (Siegel). For ae K, yeX with Na, < 1" and |a--y|
< e P [ Na,, we have

(4) ' 8la) = e G () I{a~—y)+ O (Pl
where ¢ 18 the constant defined by (2). Moreover,
(5) I{a—yp) = O(PLN (min(1, P~ ja—y[7M)).
The proof iz exactly the same as in Siegel [6], p. 128
LumiA 2.
IR Iay0) D{a){da}| > NP,  for s> 2m.
Iy Iéjisl

Proof. To prove the lemma, it is enough to show that for some
¢ > 0, we havoe

6y [oof ]| Haa) Do) {ae} < NP

HQH;UIP—WH—&HL 1siss

and further

@ f T f H I(ﬁja)L((I.) {da)} > NP,
—® oo lsgf<s .

Taking y = 0 in (5), we gm; for the left hand side of (6), the upper hound

N’EB f‘ ' “f H N(Inil]‘ (1, P ‘a;j ai"' l.’?)‘l))‘L(a) {d(}t}
aljp Pt 1< _

NP [ Wi (1, P L) {da)
”0”5’1:—?’!2-{-(51'.7&
o0
< N psii-1R) j‘ gyl b pr—mihe b1y
" ol

with 1 = 0 or 1, in view of the fact that

1 +P{A+l)m—nsl:;(f!+1—shn](—m+dlh) =1 -i~,P'_'5(H" mMA—m){ mk) “ 2
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for § > 2%m, Pz 1 and 2 =0 or 1. We arve thus led to the estimation (6)
with ¢ = (s-—2m)djmh? > 0 for s> 2m. The estimate (7) is obtained
exactly a¢ in Lemma 2 of {3].

LEMMA 3. For & = mi+1 and 6 < 1[4, we have J, » NP*™™,

Proof. From Lemma 1, we have

[ 8a) = (e'am)f [] Iata—r)+

Loz s 1=j=s

e 0 (NI.)S’—l/h--I*G/h‘Z) N(min (1., !Pm(ﬂl . y) |—(s—1),'m)) + 0 (N_PS_S‘""-"MHF) .

T(a) =

On the other hand, we know from Siegel ({4], p. 335) that for a> m,

1 L
fj N(min (1, P 2 e
0 0 lghosh
Using these two estimates with y = 0, we obtain for s > m*+1 that

- (8) |J1— {1711

B 15

& Npe-unaie [ | ¥ (min (1, P"a|~"D'™) L{a)da, ... day+

o

”“)) @, ... dwy = O(NP™™).

Ila; o)D) day ... dah‘

ypenbesi® [ L(a)dey ... doy.
)
Since L(B) <1 for e K and L(y) < |Ny|™* for invertible y in K, we
have for the right hand side of (8), the estimate

Npa—m—llh+d/hz+NP3—1nm§/Ib+(s+7L]51192 < NPswm—g'

for ¢’ > 0 and &< 1/4.

. §4. An upper estimate for J; is provided by

- . o mdiahd
LeMMa 4. For s 3 9% and. large P, we have Jy <€ NP0,

The proof iy on the same lines as in Lemma 4 in {3].

Tor the estimation of J,, we have to slightly modify the definition
of major ares used in [8]. For the given P, 6, the Z-bagis {o1y.--s Oy
of ¢-% and y = 3 g in IO with Na, < PP, we define the major aro

) Lekizda ey . ’
B, an the set of @== 3 @y,0,eK for which |, — il < Prvtdih N, for 1< T
)

< b Let m dencte the eomplement in # of the union of all B, for ye.K
with Na, < P4, Tor 0< §<1, let my = {aem| there do nob exist

A st 0 in pA PO g and poin 97 such that for da—p = %‘g 2,0
. . 1sk<h
we have |a,] < Pomtm-008E0 for 1< %< k). For small enough 6 and

large P, we elaim. that m,y =t T possible, let otherwise, . there exist o
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in m and not in m,;. Then there exist suitable 4, x4 as referred to above.
Setting y = pufd, we have Aea, and further, if (m —1)0< §/(4h%), then

Na, < |NA| < NPm=10-0[60Y) o pojan)
Now a—y=24"1 3 gp,= 2 ﬂjgj with 8 = 3 aye;, (ay) Doing the

1<ih JE=ATA4 )
regular representation nmtmc of 1/A with mbyeet to the busis {e,, ..., g}
of K over Q. Now

|| € PO-Dm=10+00) () 751 ¢ PO ) 7y
and
Iﬁjl & P—m—|~(m——].)6{-0/(2]@)-[—(h-1):5/(2.’;2)/1\7'&? < .Z""'m"l'dm/.Nay

for 14, § <<k, contradicting the fact that aem. This establishos our
claim. above.
LenMma 5. For 0< 6/(4;2’7,2(11%—1)) and large I, my=m and henoe,
Jor wem,
|8 (a)] <€ NPr-sim+iitm—1})
The proof in the same ag that of Lemma 10 of [3].
Lenwsta 6. Let ay, @y be invertible cloments of K such that o ey ¢ K.
Then, for ae B, and lorge P,
0 min(|8(a;a)l, |8 {aza)l) < NpH-Ho
. provided that & = 8/(2™h(m —1)).
PrOOf. LBL a,;a =1 %;?Gﬁ QJ' With 0{}6 I{ a,n(l M,E B 2 bW Qj Wi'b-h. szé'R
=f<h 1=lf i
such that ey —b;eZ and 0K by <1 for ¢ =1,2 and 1< 7 h. Then
Hﬁﬁrﬂ’nd S{aze) = 8{y,) for ¢ =1,2. Suppose that MeB with Nu,
- K I°# Then, by Lemma 1, we h.:we
18(a;0)] < NP H(Na,) ™ - O (NPL-1Ho8)

If 4y ¢ B, for any ye I with Na, < PP then mem {==m, for some 0
and large P} so that |8(a,a)] = |8{g,)] < NP in view of Lowmma b.
Thus, if either p; or uy is in m or belongs to somne B, with Pl tin 1))

< N, P, then [8(aya)| < NP3 Ty order to prove the Lemmg
completely, it guffices to show that fhe case

'ulEB »? '“ZEB with Nll f’l)’m?i,lﬁh, P =12,

docs not arise at oll. Writing vyﬁ_ Z ¢y 0y and ;= '*M'!*%a—— 2 -y

for ¢ = 1,2, we see that (y;)o hﬂ,ss 1119 same denommator ag ('ym)ﬁ Now

,' ]c,, gyl < P“"‘“f""‘/Na for L<jgh and ¢ =1,2.
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Obeerve that, for fixed ¢, not all the numbers g, (1< j<h) can vanish,
since, otherwise, this would contradict « being in Z,. For ¢ = 1,2, let
us write y; = fjuw; with w, t;cp having their greatest common ideal-
divizsor belonging to a fixed finite set of integral ideals in K. Then Na,,l.
is the same as 1Nu,| except for a positive constant depending only on K.
From above, we have

a;a =ty L+ 0 (Pmoh)
and lhence,
(lla’;l = (tluﬂftnul)(j_ .1-0(_p—m+am)).

Farther,

UW | < | N (o e)| [ V| <€ ¢ plmt < 1)8 jah
and
(10) N (tguy) = O (PUm+1inny,

By Lemma 11 of [3], there exist infinitely many cody e K with d, of the
game order of magnitude as all its conjugates, N (o,, do) bounded and
|N (dg)i = O(]d/") tending to infinity, such that

oy 057 = o7 doll <€ idyll7OHP.
Wo now assume that P ig a natural number of the same magnitude as

o ®+0%, The idealy (c,dp) and (5%.flaw,) ave distinet, since, otherwise,

as in the jproof of Lemma 12 of [3], we can show that PU7H1H
S N(tyuy) > PYM1which will give & contradiction for large P and 6 < 1.
In particular = = o4dy Lty ftyu, ¥ 00 Writing 7 = 0ply t — ay a4
o iy byt — by Uy [la 0y, WO have

0 < o] € [~ P @ P 2T,
Thig Lmplies that
=t 3 INT] B 1N (0pte1ta— dytaty)| [(INdo] | Ity] [V U])
> L [(dol* Ve (Nea])
From (10) and above, we get
gl € (V1] [Ny| € PUBHBIL g OB+
which for large |ido]| gives a contradiction. Lemma 6 is thus proved.

Tmvwa 7. For 6 defined as above and under the given hypotheses of
the Theorem,

Ty v O(NPSmdithy
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Proof. By Lemma 6, we have

J, < Nlﬂ_s/m[ f ) f ” 18( ;) | L (@) {da} 4

Iy Jo
|8y )| <8 (g )|

+ [ I-I[S(aja)ll)(a){drx}].
#2

Hy 1
A (]

Applying Holder’s inequality and Korer’s theorem {[2], Satz b), we
obtain, as in [3]), for s—1 3 9™ thut J, € NIF-0y pe-1-midion’ yrpin
provided that P is large enough (te ensure that P axcoods o certuin
power of logP) and Lemma 7 iy proved,

As mentioned on p. 501 Lemmas 3, 4 aud 7 togother with (3) for
d < 1/4 and large P, prove our Theorem.

Remark. It seoms reasonable to expect that the condition ¢ 5 2™ -1
in the Theorem mwy be improved to ¢ ¢'mlogm (for largo m) By in,
Davenport-Roth [1].
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On the theorem of Gauss-Kusmin-Lévy
and a Frobenius-type theorem for function spaces

by

Eovarp Wirging (Marburg [Lahn)

1. Introduction. It one wants to investigate the distribution of values
of @, in the regular continned-fraction expansion
1
a = [0 @y, 8y, ...] i1 = —————

Gt Qo +...

where o vavies randomly through the interval (0,1), one is readily led
to congidering the (Lehesgue-) measure m, (@) of the seb

_ {a5 [0y typys Opypy -+ I << x}, _
where 0 < @ < L {see for ingtance Khintchine [3]). Gauss [2], in a letter
to Laplace, stated that :
log(1+ )
log2

W () — 7 — oo.
The fivet one to publish a proof of thix theorem was Kusmin [4] in 1928.
Actually he proved that if we pub
 log{l+w)
log?

-+ T (.’E )

then 7, (@) = O(g" ﬁ) ay n-»o00, whore g is some constant, 0 < ¢ < 1. Lévy
(6] independently proved
o (@) = 0(g") |

by a different method (using probabilistic notions). As Sziisz [6] has
shown this same vesult can also be obtained by Kusmin's approach.
Sziisz’ proot iy easier than the two earlier ones and appeats to give a smaller
value (g = 0.485) than Lévy’s ¢ = 0.7 if one aceepts the tronble of some
caleulation. Te doos not give all details though.



