On a Diophantine inequality for forms of additive type

by

S. RAGHAYAN (Bombay)

Dedicated respectfully to Carl L. Siegel

§ 1. Let K be an algebraic number field of degree h over the field Q of rational numbers and let $\bar{K} = K \otimes Q R$, the tensor product over Q of K with the field R of real numbers. Any element a in \bar{K} can be represented as a diagonal matrix with diagonal elements $a^{(0)}, \ldots, a^{(h)}$ referred to as the 'conjugates' of a and assumed to be so ordered that $a^{(0)} \in R$ for $1 \leq i \leq r_1$ and $a^{(h)} = a^{(h+1)}$ are complex for $r_1 < h = r_1 + r_2$ with $r_1 \geq 0$, $r_2 \geq 0$ and $r_1 + 2r_2 = h$. For $a \in K$, $a^{(0)}, \ldots, a^{(h)}$ are just the conjugates of a over Q. We define

$$||a|| = \max_{1 \leq i \leq h} |a^{(i)}| \quad \text{for} \quad a \in \bar{K}.$$

Let $m \geq 2$ be a natural number and let $f(x_1, \ldots, x_m) = \sum_{1 \leq i \leq h} a_i x_i^m$ be a form of additive type over \bar{K}, i.e., a polynomial in x_1, \ldots, x_m of the above form with coefficients a_1, \ldots, a_h which are invertible elements of \bar{K}. We call f totally indefinite, if, for every i with $1 \leq i \leq r_1$, there exist real numbers p_{i1}, \ldots, p_{ih} not all zero such that $\sum_{1 \leq i \leq h} a_i p_i^m = 0$. Our object is to prove the following

Theorem. Let $f(x_1, \ldots, x_m) = \sum_{1 \leq i \leq h} a_i x_i^m$ be a totally indefinite form of additive type over $K \otimes Q R$ which is not a scalar multiple of any polynomial in x_1, \ldots, x_m with coefficients in K. If $s \geq 2^m + 1$, there exist, for any $\varepsilon > 0$, algebraic integers a_1, \ldots, a_s not all zero in K such that $||f(a_1, \ldots, a_s)|| < \varepsilon$.

Remarks. This is an improved version of the Theorem stated in [3] and answers a question raised in [3], p. 300. The condition $s \geq \max(2^m + 1, h^2h^{-1}(m-1) + h^2 + h)$ of that Theorem is now replaced by the condition $s \geq 2^m + 1$, which is clearly independent of the degree h of K over Q. Further, the additional condition $mh \geq 4$ in [3] is no longer imposed here. We follow the same notation as in [3] and merely indicate the necessary modifications required to prove the Theorem stated above. For $m = 2$ this Theorem coincides with a well-known Theorem of Davenport and Helbig ([9]), p. 168 for diagonal quadratic forms in 5 variables.

5 ~ Acta Arithmetica XXIV.5.
§ 2. Let \(\{\omega_1, \ldots, \omega_h\} \) be a basis of the ring \(O \) of algebraic integers in \(K \) over the ring \(Z \) of integers. Let \(\phi \) be the different of \(K \) and \(\{\Omega_1, \ldots, \Omega_h\} \) be the complementary \(Z \)-basis of \(\phi^{-1} \). For \(\alpha \in K \), let \(J_0 \) and \(J_0^0 \) denote the trace and the norm of \(\alpha \) over \(Q \) respectively. For any ideal \(\mathfrak{a} \), let \(\mathfrak{a} \mathfrak{A} \) denote the norm of \(\mathfrak{a} \). For \(P > 0 \), let \(P \mathfrak{A} = \{ \beta = \sum_{1 \leq k < h} y_k \omega_k \in \mathfrak{A} | -P \leq y_k < P \text{ for } 1 \leq k \leq h \} \) and \(\# \mathfrak{A} = \sum_{1 \leq k \leq A} x_k \omega_k \in \mathfrak{A} | 0
less x_k < 1 \text{ for } 1 \leq k \leq h \}. \) (We have identified here \(\omega_0 \bigotimes_{1} 1 \) with \(\omega_k \bigotimes_{k} 1 \) and \(\omega_k \bigotimes_{1} 1 \) with \(\omega_k \).) If \(f \) and \(g \) are two numbers or functions, we abbreviate \("|f| < \lambda |g|" \) for an unspecified constant \(\lambda > 0 \) depending only on \(K \) by \("f \ll g" \). We also use the symbols \(O \) and \(o \) of Landau. For real \(P > 0 \), we write \(NP \) for \(P^2 \).

For \(\alpha \in K \) and a fixed number \(P > 0 \), we define the exponential sum \(S(\alpha, P) = \sum_{x \in \mathfrak{A} \mathfrak{A}^0} e^{2\pi i x \alpha} \).

For \(\beta \in K \), we set \(L(\beta) = \prod_{1 \leq k < l} L_k(\beta|0) \prod_{r_1 \leq r_2} L_{r_1}(\beta|0) \prod_{r_2} L_{r_2}(\beta|0) \)

where \(L_k(\beta|0) = (\sin \pi \beta \omega_k^n)^2 \) if \(\pm 0 \) according to the real number \(\alpha \) is different from \(0 \) or equal to \(0 \) and \(L_r(\beta|0) = \frac{1}{J_r} |J_r(\beta|0)| \) or \(1 \) according to the complex number \(\alpha \) is different from \(0 \) or equal to \(0 \) and \(J_r \) denotes the usual Bessel function of order \(1 \). For \(\alpha \in K \), let \(\{\alpha\} \) denote the volume element \(\prod_{1 \leq k < l} d\alpha(\beta|0) \prod_{r_1 \leq r_2} d(\Re \alpha(\beta|0)) \).

Then we have, for \(\alpha \in K \),

\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{2\pi i x \alpha} \chi(\beta|0) d\beta \chi(y|0) d\beta \chi(z|0) d\beta = M(\theta)
\]

where

\[
M(\theta) = \begin{cases} 0 & \text{if } |\theta| > 1, \\ \prod_{1 \leq k < l} (1 - \theta|0|) \prod_{r_1 \leq r_2} \phi(|\theta|) & \text{if } |\theta| \leq 1 \end{cases}
\]

with \(\phi(x) = 4\sin^{-1}(x) - |x| \sqrt{1 - |x|^2} \) or \(0 \) according as \(|x| < 1 \) or \(|x| > 1 \).

To prove the theorem stated in § 1, it suffices to consider the case when \(e = 1 \), since the case of general \(e \) is deduced at once by taking \(e^{-1}f(x_1, \ldots, x_h) \) instead of \(f(x_1, \ldots, x_h) \). We now assume that for every set of \(x_1, \ldots, x_h \) not all \(0 \) in \(\alpha \), we have

(1) \[\|
\]

and derive a contradiction which will prove our Theorem.

For \(\alpha \in K \), we set \(T(\alpha) = \prod_{i \leq h} S(\alpha, \omega_i) \). Then for \(\alpha = \sum_{i \leq h} a_i \omega_i \), we have

(2) \[\alpha = \cdots \alpha = c(\{\alpha\}) \]

for a constant \(c \) depending only on \(K \). By the definition of \(L(\alpha) \), we have

\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} T(\alpha) L(\alpha) d\alpha_1 \cdots d\alpha_h = c \sum_{a_1, \ldots, a_h} M(\sum_{i \leq h} a_i \omega_i^n)
\]

where the summation on the right hand side is over all \(s \)-tuples \(x_1, \ldots, x_h \) of elements of \(\alpha \cap \mathfrak{A}^0 \) subject to the restriction that \(\|
\]

In view of the hypothesis (1) on \(f \), we have

(3) \[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} T(\alpha) L(\alpha) d\alpha_1 \cdots d\alpha_h = c. \]

We shall obtain a contradiction to (3) for large \(P \) under the hypotheses of the Theorem, by splitting up the domain of integration in (3) suitably. Since \(f(x_1, \ldots, x_h) \) is not a scalar multiple of any form over \(K \), we may suppose, without loss of generality that \(a_1 \alpha_1^{-1} \Gamma_1 \) is not in \(K \). We divide the whole space \(-\infty < a_i < \infty (1 \leq i \leq h) \) into three mutually non-overlapping subsets \(E_1, E_2, E_3 \) defined by

\[
E_1 = \{ \alpha \in K \| \alpha \| \leq c_1 \Gamma_1^{m-\delta} \},
E_2 = \{ \alpha \in K \| \alpha \| \leq c_2 \Gamma_1^{m+\delta} \},
E_3 = \{ \alpha \in K \| \alpha \| > \Gamma_1^{m+\delta} \}
\]

where \(\delta, \delta \) are fixed real numbers such that \(0 < \delta < 1, 0 < \delta < 1 \) and \(\delta \) is a positive constant so chosen that for \(\alpha \in E_i \) and \(a_\alpha = \sum_{i \leq h} a_i \omega_i \), we have

\[
\max_{1 \leq i \leq h} |a_i| > \Gamma_1^{m+\delta} \text{ for } i = 1, 2.
\]

Remark. The change-over from \(P^{m-\delta} \Phi \) in the definition of \(E_1 \) and \(E_2 \) in [3], p. 302, to the present \(P^{m+\delta} \Phi \) was suggested by arguments of K. Ramachandra in a paper On the sums \(\sum_{f \in \mathcal{F}} K \) (to appear).

Let

\[
J_i = \sum_{\beta \in \mathcal{F}} J(\alpha) L(\alpha) d\alpha_1 \cdots d\alpha_h
\]

Then \(J_1 + J_2 + J_3 = 0 \) from (3). We show that \(J_1 \) has an estimate from below involving \(P \) while \(J_2 \) and \(J_3 \) have upper estimates involving \(P \) which are of lower order than the lower estimate for \(J_1 \). The contradiction required for establishing the Theorem is obtained by letting \(P \) tend to infinity.
§ 3. We get here a lower estimate for J_1. For any $P > 0$, let $Y(P) = \{ a \in K : |a| < P \}$ and for $\theta \in \mathbb{R}$, let $I(\theta) = \int \int f_{\text{hk}}(a)(d\alpha)$. For any $\gamma \in K$, we may write $(\gamma) = b_{\alpha}a_{\alpha}^n$ with coprime integral ideals a_{α} and b_{α}; we refer to a_{α} as the "denominator" of (γ). For $\gamma = 0$, we take $a_{\alpha} = 0$. Let
\[G(\gamma) = \left(\sum_{v \mod a_{\alpha}} e_{hk}(v^{m^n}) / N a_{\alpha} \right), \]
where μ runs over a complete set of representatives of residue classes of a modulo a_{α}. Then we have

Lemma 1 (Siegel). For $a \in K$, $\gamma \in K$ with $N a_{\alpha} \leq P^{1/n}$ and $|a - \gamma| \leq P^{1/n}/N a_{\alpha}$, we have
\[S(a) = o^{-1} G(\gamma) I(a - \gamma) + O(1/1 + 4/\alpha) \]
where α is the constant defined by (2). Moreover,
\[I(a - \gamma) = O(P^{1/n} N \min(1, P^{1/m} |a - \gamma|^{-1/m})). \]

The proof is exactly the same as in Siegel [5], p. 128.

Lemma 2.
\[\left| \prod_{\alpha \in \mathbb{R}} I(\alpha) \right| \geq N P^{2m-2}, \quad \text{for } s > 2m. \]

Proof. To prove the lemma, it is enough to show that for some $\varepsilon > 0$, we have
\[\prod_{\alpha \in \mathbb{R}} I(\alpha) \geq N P^{2m-2 - \varepsilon} \]
and further
\[\int_{-\infty}^{\infty} \left| \prod_{\alpha \in \mathbb{R}} I(\alpha) \right| \geq N P^{2m-2}. \]

Taking $\gamma = 0$ in (5), we get for the left hand side of (6), the upper bound
\[N P^{2m} \int_{|a| \leq P^{1/m + 4/\alpha}} \prod_{\alpha \in \mathbb{R}} I(\alpha) \geq N P^{2m - 2}. \]

For $s > 2m$ and large P, we have $J_2 \leq N P^{2m - 2} / \alpha^n$. The proof is on the same lines as in Lemma 4 in [3].

§ 4. An upper estimate for J_2 is provided by

Lemma 4. For $s > 2m$ and large P, we have $J_3 \leq N P^{2m - 2} / \alpha^n$.

For the estimation of J_3, we have to slightly modify the definition of major arcs used in [3]. For the given P, δ, the \mathbb{Z}-basis $\{ a_1, \ldots, a_k \}$ of δ^{-1} and $\gamma = \sum_{\gamma \in \mathbb{R}} \chi_{\gamma} a_\gamma$ in K with $N a_{\gamma} \leq P^{1/\alpha}$, we define the major arc \hat{B}_γ as the set of $x = \sum_{\alpha \in \mathbb{R}} \chi_{\gamma} a_\gamma$ for which $|x_\gamma - \gamma_\gamma| \leq P^{1/m + 4/\alpha}/N a_{\gamma}$ for $1 \leq k \leq k$. Let m denote the complement in \mathbb{R} of the union of all \hat{B}_γ for $\gamma \in K$ with $N a_{\gamma} \leq P^{1/\alpha}$. For $0 < \theta < 1$, let $m_\theta = \{ a \in \mathbb{Z} : a \neq 0 \}$, there do not exist $\lambda = 0$ in \mathbb{R} such that $\lambda = \sum_{\gamma \in \mathbb{R}} \chi_{\gamma} a_\gamma$ and μ in δ^{-1} such that for $k \mu = \sum_{\gamma \in \mathbb{R}} \chi_{\gamma} a_\gamma$ we have $|\gamma_\gamma| \leq P^{m - 1/(m + 4/\alpha)}$. For small enough θ and large P, we claim that $m_\theta = m$. If possible, let otherwise, there exist a for $s > 2m$, $P > 1$, and $\lambda = 0$ or 1. We are thus led to the estimation (6) with $c = (s - 2m) / \alpha^n$ for $s > 2m$. The estimate (7) is obtained exactly as in Lemma 2 of [3].
in m and not in m_{0}. Then there exist suitable λ, μ as referred to above. Setting $k = \mu/\lambda$, we have $\lambda \in \Lambda$, and further, if $(m-1)\theta < \delta(4h^{3})$, then

$$N_{\lambda} < \lbrack N_{\Lambda} \rbrack < NP^{(m-1)/2}(4h^{3}) \leq P^{m/2h}.$$

Now $a - \gamma = \lambda^{-1} \sum_{1 \leq i \leq \lambda} a_{i} \delta_{i} = \sum_{1 \leq i \leq \lambda} a_{i} \delta_{i}$, with $a_{i} = \sum_{1 \leq i \leq \lambda} a_{i} \delta_{i}$, (α_{q}, β_{j}) being the regular representation matrix of Λ with respect to the basis $\{\delta_{1}, \ldots, \delta_{\lambda}\}$ of K over \mathbb{Q}. Now

$$|a_{j}| \leq P^{(m-1)/2}(m-1)2^{m} / \lbrack N_{\Lambda} \rbrack \leq P^{(m-1)/2}(\delta_{h}) / \lbrack N_{\Lambda} \rbrack$$

and

$$|\beta_{j}| \leq P^{-\mu}(m-1)^{2} \leq h^{2} / \lbrack N_{\Lambda} \rbrack$$

for $1 \leq i, j \leq \lambda$, contradicting the fact that $\alpha \in m$. This establishes our claim above.

Lemma 5. For $\theta < \delta(4h^{3}(m-1))$ and large P, $m_{0} = m$ and hence, for all μ,

$$|S(\alpha_{1})| \leq NP^{(m-1)/2}(m-1)\theta.$$

The proof is the same as that of Lemma 11 of [3].

Lemma 6. Let α_{1}, α_{2} be invertible elements of K such that $\alpha_{1}^{-1} \in K$. Then, for $\alpha \in E_{2}$ and large P,

$$\min(|S(\alpha_{1}a_{1})|, |S(\alpha_{2}a_{1})|) \leq NP^{(m-1)/2}(\delta_{h})$$

provided that $\delta = \delta(4h^{3}(m-1))$.

Proof. Let $a_{1} = \sum a_{i} \delta_{i}$ with $a_{i} \in R$ and $\mu_{1} = \sum b_{i} \delta_{i}$ with $b_{i} \in R$ such that $a_{i} = b_{i} + \varepsilon_{i}$ and $0 \leq \varepsilon_{i} < 1$ for $1 \leq i \leq \lambda$ and $1 \leq j \leq \lambda$. Then $\mu_{1} \in R$ and $S(\alpha_{1}a_{1}) = S(\mu_{1})$ for $1 \leq i \leq 2$. Suppose that $\mu_{0} \in E_{2}$, then, by Lemma 1, we have

$$|S(\alpha_{1}a_{1})| \leq NP^{(m-1)/2} + O(\delta h^{3}P^{m/2})$$

If $\mu_{1} \in E_{2}$ for any $\gamma \in K$ with $N_{\lambda} \leq P^{m/2h}$, then $\mu_{0} \in m_{0} = m_{0}$ for some θ and large P so that $|S(\alpha_{1}a_{1})| = |S(\mu_{1})| \leq NP^{(m-1)/2}$ in view of Lemma 5. Thus, if either μ_{1} or μ_{0} is in m_{0} or belongs to some E_{2} with $P^{m/2h}$ as above, $N_{\lambda} \leq P^{m/2h}$, then $|S(\alpha_{1}a_{1})| \leq NP^{(m-1)/2}$. In order to prove the Lemma completely, it suffices to show that the case

$$\mu_{1} \in E_{2}, \mu_{0} \in E_{2}, \quad \mu_{0} \in m_{0} \leq P^{m/2h}, \quad i, 1, 2,$$

does not arise at all. Writing $\gamma_{1} = \sum a_{i} \delta_{i}$ and $\gamma_{1} = \mu_{1} + a_{i} \delta_{i}$ for $1 \leq i \leq \lambda$, we see that $(\gamma_{1})^{\theta}$ has the same denominator as $(\gamma_{1})^{\theta}$. Now

$$|a_{j} - g_{j}| \leq P^{-m/2}(\delta_{h}) / \lbrack N_{\lambda} \rbrack$$

for $1 \leq j \leq \lambda$ and $i = 1, 2,$

Observe that, for fixed i, not all the numbers g_{j} ($1 \leq j \leq \lambda$) can vanish, since, otherwise, this would contradict a being in E_{2}. For $i = 1, 2$, let us write $\gamma_{1} = t_{1}u_{1}$ with $u_{1}, t_{1} \in K$ having their greatest common ideal-divisor belonging to a fixed finite set of integral ideals in \mathbb{Q}. Then $N_{u_{1}}$ is the same as $|N_{\lambda}|$ except for a positive constant depending only on K. From above, we have

$$a_{i} = t_{1}u_{1}^{-1}(1 + O(P^{-m/2}))$$

and hence,

$$a_{i}a_{i}^{-1} = (t_{1}u_{1})^{-1}(1 + O(P^{-m/2})).$$

Further,

$$|N_{u_{1}}| \leq |N(\alpha_{i}a_{i})| |N_{u_{1}}| \leq P^{m/2h}$$

and

$$|N_{u_{1}}| = O(P^{(m+1)/2}h^{3}).$$

By Lemma 11 of [3], there exist infinitely many $a_{0}d_{0}^{-1}K$ with d_{0} of the same order of magnitude as all its conjugates, $N(\alpha_{0}, d_{0})$ and $N(\alpha_{0})$ tending to infinity, such that

$$|a_{0}a_{0}^{-1} - d_{0}^{-1}d_{0}| \leq |d_{0}|^{-1/2}(m-1).$$

We now assume that P is a natural number of the same magnitude as $\delta^{m}(m-1)^{3/2}$, the ideals $(\alpha_{0}d_{0}^{-1})$ and $(t_{1}u_{1}/t_{1}u_{1})$ are distinct, since, otherwise, as in the proof of Lemma 12 of [3], we can show that $P^{(m+1)/2}$ which will give a contradiction for large P and $\theta < 1$. In particular, $\tau = c_{0}d_{0}^{-1} - t_{1}u_{1} / t_{1}u_{1} \neq 0$. Writing $\tau = c_{0}d_{0}^{-1} - d_{0}^{-1}d_{0} + a_{0}a_{0}^{-1} + c_{0}d_{0}^{-1} - t_{1}u_{1} / t_{1}u_{1}$, we have

$$0 < |\tau| \leq P^{(m-1)/2} + P^{-m/2h} \leq P^{-1} \leq |d_{0}|^{-(m-1)/2h.}$$

This implies that:

$$|d_{0}|^{-1/2} \leq N_{u_{1}} < |N(\gamma_{1})| \lessgtr |N(\alpha_{0}u_{1}) - d_{0}^{-1}d_{0}| / |N(\alpha_{0})| \lessgtr 1 / |d_{0}|^{3} |M_{u_{1}}| / |N_{u_{1}}|.$$

From (10) and above, we get

$$|d_{0}| \leq |N_{u_{1}}| |N_{u_{1}}| \leq P^{m/2h} \leq |d_{0}| ^{m/2h} |d_{0}|^{3/2},$$

which for large $|d_{0}|$ gives a contradiction. Lemma 6 is thus proved.

Lemma 7. For δ defined as above and under the given hypotheses of the Theorem,

$$J_{z} = O(NP^{m-1/3}h^{3}).$$
Proof. By Lemma 6, we have

\[J_2 \ll N^{1-\varepsilon} \int \prod_{2 \leq j \leq \varepsilon} |S(a_j \alpha)| L(a_j) \, da_j + \int \prod_{2 \leq j \leq \varepsilon} |S(a_j \alpha)| L(a_j) \, da_j. \]

Applying Hölder's inequality and Körner's theorem ([2], Satz 6), we obtain, as in [3], for \(s - 1 \geq 2^m \) that \(J_2 \ll N^{1-\varepsilon} \sum_{N^{1-\delta/2} \leq n \leq N^{1-\varepsilon}} N^{1/m} \), provided that \(P \) is large enough (to ensure that \(2^{1/m} \) exceeds a certain power of \(\log P \)) and Lemma 7 is proved.

As mentioned on p. 501, Lemmas 3, 4 and 7 together with (3) for \(\delta \leq 1/4 \) and large \(P \), prove our Theorem.

Remark. It seems reasonable to expect that the condition \(s \geq 2^m + 1 \) in the Theorem may be improved to \(s \gg e^{m \log m} \) (for large \(m \)) as in Davenport–Roth [1].

References

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Mumbai, India

Received on 21. 2. 1973 (376)

On the theorem of Gauss-Kusmin-Lévy
and a Frobenius-type theorem for function spaces

by

EDUARD WIRSING (Marburg/Lahn)

I. Introduction. If one wants to investigate the distribution of values of \(a_n \) in the regular continued-fraction expansion

\[a = [0; a_1, a_2, \ldots] := \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}, \]

where \(a \) varies randomly through the interval \((0, 1)\), one is readily led to considering the (Lebesgue-) measure \(m_n(x) \) of the set

\[\{a; [0, a_n+1, a_{n+2}, \ldots] < x\}, \]

where \(0 \leq x \leq 1 \) (see for instance Khintchine [3]). Gauss [2], in a letter to Laplace, stated that

\[m_n(x) \sim \frac{\log(1 + x)}{\log 2} \quad \text{as} \quad n \to \infty. \]

The first one to publish a proof of this theorem was Kusmin [4] in 1928. Actually he proved that if we put

\[m_n(x) = \frac{\log(1 + x)}{\log 2} + r_n(x) \]

then \(r_n(x) = O(q^n) \) as \(n \to \infty \), where \(q \) is some constant, \(0 < q < 1 \). Lévy [5] independently proved

\[r_n(x) = O(q^n) \]

by a different method (using probabilistic notions). As Szűsz [6] has shown this same result can also be obtained by Kusmin's approach. Szűsz' proof is easier than the two earlier ones and appears to give a smaller value (\(q = 0.486 \)) than Lévy's \(q = 0.7 \) if one accepts the trouble of some calculation. He does not give all details though.