ACTA ARITHMETICA XXIV (1974)

On a Diophantine inequality for forms of additive type

by

S. RAGHAYAN (Bombay)

Dedicated respectfully to Carl L. Siegel

§ 1. Let K be an algebraic number field of degree h over the field Q of rational numbers and let $\overline{K} = K \otimes_Q R$, the tensor product over Q of K with the field R of real numbers. Any element α in \overline{K} can be represented as a diagonal matrix with diagonal elements $\alpha^{(1)}, \ldots, \alpha^{(h)}$ referred to as the 'conjugates' of α and assumed to be so ordered that $\alpha^{(i)} \in R$ for $1 \le i \le r_1$ and $\alpha^{(k)} = \overline{\alpha^{(k+r_2)}}$ are complex for $r_1 < k \le r_1 + r_2$ with $r_1 \ge 0$, $r_2 \ge 0$ and $r_1 + 2r_2 = h$. For $\alpha \in K$, $\alpha^{(1)}, \ldots, \alpha^{(h)}$ are just the conjugates of α over Q. We define

$$||a|| = \max_{1 \le k \le h} |a^{(k)}|$$
 for $a \in \overline{K}$.

Let $m \geqslant 2$ be a natural number and let $f(x_1, \ldots, x_s) = \sum_{1 \leqslant r \leqslant s} a_r x_r^m$ be a form of additive type over \overline{K} , i.e. a polynomial in x_1, \ldots, x_s of the above form with coefficients a_1, \ldots, a_s which are invertible elements of \overline{K} . We call f totally indefinite, if, for every i with $1 \leqslant i \leqslant r_1$, there exist real numbers p_{1i}, \ldots, p_{si} not all zero such that $\sum\limits_{1 \leqslant r \leqslant s} a_r^{(i)} p_r^m = 0$. Our object is to prove the following

THEOREM. Let $f(x_1, \ldots, x_s) = \sum_{1 \le r \le s} a_r x_r^m$ be a totally indefinite form of additive type over $K \otimes_{\mathbf{Q}} \mathbf{R}$ which is not a scalar multiple of any polynomial in x_1, \ldots, x_s with coefficients in K. If $s \ge 2^m + 1$, there exist, for any $\varepsilon > 0$, algebraic integers a_1, \ldots, a_s not all zero in K such that $||f(a_1, \ldots, a_s)|| < \varepsilon$.

Remarks. This is an improved version of the Theorem stated in [3] and answers a question raised in [3], p. 300. The condition 's $\geq \max(2^m+2, h2^{m-1}(m-1)+h^2+h)$ ' of that Theorem is now replaced by the condition 's $\geq 2^m+1$ ' which is clearly independent of the degree h of K over Q. Further, the additional condition $mh \geq 4$ in [3] is no longer imposed here. We follow the same notation as in [3] and merely indicate the necessary modifications required to prove the Theorem stated above. For m=2 this Theorem coincides with a well-known Theorem of Davenport and Heilbronn ([0], p. 158) for diagonal quadratic forms in 5 variables.

§ 2. Let $\{\omega_1, \ldots, \omega_h\}$ be a fixed basis of the ring $\mathfrak o$ of algebraic integers in K over the ring $\mathbb Z$ of rational integers. Let ϑ be the different of K and let $\{\varrho_1, \ldots, \varrho_h\}$ be the complementary $\mathbb Z$ -basis of ϑ^{-1} . For $a \in \overline{K}$, let $\sigma(a)$ and Na denote the trace and the norm of a over $\mathbb Q$ respectively. For any ideal a, let Na denote the norm of a. For P>0, let $P\mathscr O_0=\{\beta=\sum\limits_{1\leqslant k\leqslant h}y_k\omega_k\in \overline{K}|\ -P\leqslant y_k< P \text{ for }1\leqslant k\leqslant h\}$ and $\mathscr R=\{a=\sum\limits_{1\leqslant k\leqslant h}x_k\varrho_k\in \overline{K}|\ 0\leqslant x_k<1 \text{ for }1\leqslant k\leqslant h\}$. (We have identified here $\omega_k\otimes 1$ with ω_k and $\varrho_k\otimes 1$ with ϱ_k .) If f and g are two numbers or functions, we abbreviate " $|f|\leqslant \lambda|g|$ for an unspecified constant $\lambda>0$ depending only on K" by " $f\leqslant g$ ". We also use the symbols O and o of Landau. For real P>0, we write NP for P^h .

For $\alpha \in \overline{K}$ and a fixed number P > 0, we define the exponential sum

$$S(\alpha) = S(\alpha, P) = \sum_{x \in \alpha \cap P \mathcal{H}_0} e^{2\pi i \sigma(\alpha x^{2n})}.$$

For $\beta \in \overline{K}$, we set

$$L(\beta) = \prod_{1 \leqslant i \leqslant r_1} L_1(\beta^{(i)}) \prod_{r_1 < j \leqslant r_1 + r_2} L_2(\beta^{(j)})$$

where $L_1(x)=(\sin\pi x/\pi x)^2$ or 1 according as the real number x is different from 0 or equal to 0 and $L_2(z)=(J_1(4\pi|z|)/\sqrt{2}|z|)^2$ or 1 according as the complex number z is different from or equal to 0 and J_1 denotes the usual Bessel function of order 1. For $a \in \overline{K}$, let $\{da\}$ denote the volume element

$$\prod_{1\leqslant i\leqslant r_1}da^{(i)}\prod_{r_1\leqslant j\leqslant r_1+r_2}d(\operatorname{Re}a^{(j)})d(\operatorname{Im}a^{(j)}).$$

Then we have, for $\theta \in \overline{K}$,

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} L(y) e^{2\pi i \sigma(\theta y)} \{dy\} = M(\theta)$$

where

$$M(heta) = egin{cases} 0 & ext{if} & \| heta\| > 1\,, \ \prod_{1 \leqslant i \leqslant r_1} (1 - | heta^{(i)}|) \prod_{r_1 \leqslant j \leqslant r_1 + r_2} arphi(| heta^{(j)}|) & ext{if} & \| heta\| \leqslant 1 \end{cases}$$

with $\varphi(z) = 4\sin^{-1}(\sqrt{1-|z|^2}) - |z|\sqrt{1-|z|^2}$ or 0 according as $|z| \le 1$ or |z| > 1.

To prove the theorem stated in § 1, it suffices to consider the case when $\varepsilon = 1$, since the case of general ε is deduced at once by taking $\varepsilon^{-1}f(x_1, \ldots, x_s)$ instead of $f(x_1, \ldots, x_s)$. We now assume that for every set of x_1, \ldots, x_s not all 0 in p, we have

$$||f(x_1,\ldots,x_s)|| \geqslant 1$$

and derive a contradiction which will prove our Theorem.

For $\alpha \in \overline{K}$, we set $T(\alpha) = \prod_{1 \leqslant j \leqslant s} S(\alpha_j \alpha)$. Then for $\alpha = \sum_{1 \leqslant k \leqslant h} \alpha_k \varrho_k$, we have

$$(2) da_1 \dots da_h = c\{da\}$$

for a constant c depending only on K. By the definition of L(a), we have

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} T(a) L(a) da_1 \dots da_k = c \sum_{x_1, \dots, x_s} M\left(\sum_{1 \leqslant j \leqslant s} a_j x_j^m\right)$$

where the summation on the right hand side is over all s-tuples x_1, \ldots, x_s of elements of $\mathfrak{o} \cap P\mathscr{B}_0$ subject to the restriction that $\|\sum_{1 \leq j \leq s} a_j x_j^m\| \leq 1$. In view of the hypothesis (1) on f, we have

(3)
$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} T(a) L(a) da_1 \dots da_h = c.$$

We shall obtain a contradiction to (3) for large P under the hypotheses of the Theorem, by splitting up the domain of integration in (3) suitably.

Since $f(x_1, \ldots, x_s)$ is not a scalar multiple of any form over K, we may suppose, without loss of generality that $a_1a_2^{-1}$ is not in K. We divide the whole space $-\infty < a_i < \infty$ $(1 \le i \le h)$ into three mutually non-overlapping subsets E_1, E_2, E_3 defined by

$$\begin{split} E_1 &= \{ a \in \overline{K} \mid \ \|a\| \leqslant c_1 P^{-m+\delta/h} \}, \\ E_2 &= \{ a \in \overline{K} \mid \ c_1 P^{-m+\delta/h} < \|a\| \leqslant P^{\hat{\delta}/4h^2} \}, \\ E_3 &= \{ a \in \overline{K} \mid \ \|a\| > P^{\hat{\delta}/4h^2} \} \end{split}$$

where δ , $\hat{\delta}$ are fixed real numbers such that $0 < \delta < 1$, $0 < \hat{\delta} < 1$ and c_1 is a positive constant so chosen that for $a \in E_2$ and $a_i a = \sum_{1 \le j \le h} c_{ij} \varrho_j$, we have

$$\max_{1 \leqslant j \leqslant h} |c_{ij}| > P^{-m+\delta/h} \quad ext{ for } \quad i = 1, 2.$$

Remark. The change-over from $P^{1-m-\delta}$ in the definition of E_1 and E_2 in [3], p. 302, to the present $P^{-m+\delta/h}$ was suggested by arguments of K. Ramachandra in a paper On the sums $\sum_{j=1}^{K} \lambda_j f_j(p_j)$ (to appear). Let

$$J_i = \int\limits_{E_i} T(a) L(a) da_1 \dots da_h \quad \text{ for } \quad i = 1, 2, 3.$$

Then $J_1+J_2+J_3=c$, from (3). We show that J_1 has an estimate from below involving P while J_2 and J_3 have upper estimates involving P which are of a strictly lower order than the lower estimate for J_1 . The contradiction required for establishing the Theorem is obtained by letting P tend to infinity.

with $\rho = (s-2m)\delta/mh^2 > 0$ for s > 2m. The estimate (7) is obtained

§ 3. We get here a lower estimate for J_1 . For any P > 0, let $Y(P) = \{ w \in \overline{K} \mid ||w|| < P \} \text{ and for } \theta \in \overline{K}, \text{ let } I(\theta) = \int_{V(P)} \int e^{2\pi i \sigma(\theta x^m)} \{ dx \}.$

For any $\gamma \in K$, we may write $(\gamma)\vartheta = \mathfrak{b}\mathfrak{a}_{\nu}^{-1}$ with coprime integral ideals a_{ν} and b; we refer to a_{ν} as the "denominator" of $(\gamma)\vartheta$ and for $\gamma=0$, we take $a_{\nu} = 0$. Let

$$G(\gamma) = \Big(\sum_{\mu \bmod \mathfrak{a}_{\gamma}} e^{2\pi i \sigma(\gamma \mu^m)}\Big)/N\mathfrak{a}_{\gamma},$$

where μ runs over a complete set of representatives of residue classes of p modulo a. Then we have

LEMMA 1 (Siegel). For $a \in \overline{K}$, $\gamma \in K$ with $Na_{\gamma} \leqslant P^{\delta/2h}$ and $\|a - \gamma\|$ $\leq e_1 P^{-m+\delta/h}/Na_{\nu}$, we have

(4)
$$S(\alpha) = e^{-1}G(\gamma)I(\alpha - \gamma) + O(P^{h-1+\delta/h})$$

where c is the constant defined by (2). Moreover,

(5)
$$I(\alpha - \gamma) = O(P^h N(\min(1, P^{-1}|\alpha - \gamma|^{-1/m}))).$$

The proof is exactly the same as in Siegel [5], p. 128. LEMMA 2.

$$\Big| \int_{E_1} \dots \int_{1 \leqslant j \leqslant s} I(a_j a) L(a) \{da\} \Big| \gg N P^{s-m}, \quad \textit{for} \quad s > 2m.$$

Proof. To prove the lemma, it is enough to show that for some $\varrho > 0$, we have

(6)
$$\int \dots \int \prod_{\|a\| \geqslant o_1 P^{-m+\delta/h}} \prod_{1 \leqslant j \leqslant s} I(a_j a) L(a) \{da\} \leqslant N P^{s-m-\varrho}$$

and further

(7)
$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \prod_{1 \leqslant j \leqslant s} I(a_j \alpha) L(a) \{da\} \gg N P^{s-m}.$$

Taking $\gamma = 0$ in (5), we get for the left hand side of (6), the upper bound

$$\begin{split} NP^s & \int \dots \int \prod_{\|a\| \gg P^{-m+\delta/h}} N(\min(1, P^{-1} | a_j a|^{-1/m})) L(a) \{da\} \\ & \leqslant NP^s \int \dots \int N(\min(1, |P^m a|^{-s/m})) L(a) \{da\} \\ & \leqslant NP^{s(1-1/h)} \int \int_{P^{-m+\delta/h}}^{\infty} t^{-s/m} t^{\lambda} P^{-m(h-\lambda-1)} dt \end{split}$$

with $\lambda = 0$ or 1, in view of the fact that

$$1 + P^{(\lambda+1)m-s}P^{(\lambda+1-s/m)(-m+\delta/h)} = 1 + P^{-\delta(s-m\lambda-m)/(mh)} \le 2$$

LEMMA 3. For $s \ge m^2 + 1$ and $\delta \le 1/4$, we have $J_1 \ge NP^{s-m}$.

Proof. From Lemma 1, we have

exactly as in Lemma 2 of [3].

$$T(a) = \prod_{1 \leqslant j \leqslant s} S(a_j a) = (c^{-1}G(\gamma))^s \prod_{1 \leqslant j \leqslant s} I(a_j (a - \gamma)) + O(NP^{s-1/h+\delta/h^2}) N(\min(1, |P^m(a - \gamma)|^{-(s-1)/m})) + O(NP^{s-s/h+s\delta/h^2}).$$

On the other hand, we know from Siegel ([4], p. 335) that for a > m,

$$\int_0^1 \dots \int_0^1 N\left(\min\left(1, \left|P^m\sum_{1\leqslant k\leqslant h} x_k \omega_k\right|^{-a/m}\right)\right) dx_1 \dots dx_h = O(NP^{-m}).$$

Using these two estimates with $\gamma = 0$, we obtain for $s \ge m^2 + 1$ that

$$\begin{split} & \left| J_1 - \int \dots \int \prod_{s \leq j \leq s} I(a_j a) L(a) da_1 \dots da_h \right| \\ & \leqslant N P^{s-1/h + \delta/h^2} \int \dots \int N \big(\min(1, |P^m a|^{-(s-1)/m}) \big) L(a) da_1 \dots da_h + \\ & \qquad \qquad + N P^{s-s/h + s\delta/h^2} \int \dots \int L(a) da_1 \dots da_h. \end{split}$$

Since $L(\beta) \leqslant 1$ for $\beta \in \overline{K}$ and $L(\gamma) \leqslant |N\gamma|^{-2}$ for invertible γ in \overline{K} , we have for the right hand side of (8), the estimate

$$NP^{s-m-1/h+\delta/h^2} + NP^{s-m-s/h+(s+h)\delta/h^2} \ll NP^{s-m-\varrho'}$$

for a $\rho' > 0$ and $\delta \leqslant 1/4$.

§ 4. An upper estimate for J_3 is provided by

LEMMA 4. For $s \ge 2^m$ and large P, we have $J_3 \ll NP^{s-m-\hat{\delta}/8h^3}$.

The proof is on the same lines as in Lemma 4 in [3].

For the estimation of J_2 , we have to slightly modify the definition of major arcs used in [3]. For the given P, δ , the Z-basis $\{\varrho_1, \ldots, \varrho_k\}$ of ϑ^{-1} and $\gamma = \sum_{1 \le h \le h} \gamma_h \varrho_h$ in K with $Na_{\gamma} \leqslant P^{s/2h}$, we define the major aro \hat{B}_{γ} as the set of $x=\sum_{1\leqslant k\leqslant h}x_{k}\varrho_{k}\epsilon\overline{K}$ for which $|x_{k}-\gamma_{k}|\leqslant P^{-m+\delta/h}/N\mathfrak{a}_{\gamma}$ for $1\leqslant k$ $\leqslant h$. Let m denote the complement in $\mathscr R$ of the union of all $\hat B_{\nu}$ for $\gamma \in K$ with $Na_{\nu} \leqslant P^{\theta/(2h)}$. For $0 < \theta < 1$, let $m_{\theta} = \{\alpha \in \mathfrak{m} \mid \text{ there do not exist}\}$ $\lambda \neq 0 \text{ in } \mathfrak{o} \cap P^{(m-1)\theta + \delta/(4h^2)} \mathscr{B}_0 \text{ and } \mu \text{ in } \vartheta^{-1} \text{ such that for } \lambda \alpha - \mu = \sum_{1 \leqslant k \leqslant h} \varepsilon_k \varrho_k$ we have $|\varepsilon_k| < P^{-m+(m-1)\theta+\delta/(2h)}$ for $1 \le k \le h$. For small enough θ and large P, we claim that $m_{\theta} = m$. If possible, let otherwise, there exist α

in m and not in m_0 . Then there exist suitable λ , μ as referred to above. Setting $\gamma = \mu/\lambda$, we have $\lambda \in \alpha_{\nu}$ and further, if $(m-1)\theta < \delta/(4h^2)$, then

$$N\mathfrak{a}_{\gamma}\leqslant |N\lambda| \ll NP^{(m-1)\theta+\delta/(4\hbar^2)}\leqslant P^{\delta/(2\hbar)}$$

Now $a-\gamma=\lambda^{-1}\sum_{1\leqslant i\leqslant h}\varepsilon_i\,\varrho_i=\sum_{1\leqslant j\leqslant h}\beta_j\,\varrho_j$ with $\beta_j=\sum_{1\leqslant i\leqslant h}a_{ij}\,\varepsilon_i,\,(a_{ij})$ being the regular representation matrix of $1/\lambda$ with respect to the basis $\{\varrho_1,\ldots,\varrho_h\}$ of K over Q. Now

$$|a_{ij}| \leqslant P^{(h-1)((m-1)\theta+\delta/(4h^2))}/|N\lambda| \leqslant P^{(h-1)\delta/(2h^2)}/|N\lambda|$$

and

$$|eta_j| \leqslant P^{-m+(m-1) heta+\delta/(2\hbar)+(\hbar+1)\delta/(2\hbar^2)}/N\mathfrak{a}_\gamma \leqslant P^{-m+\delta/\hbar}/N\mathfrak{a}_\gamma$$

for $1 \le i, j \le h$, contradicting the fact that $\alpha \in \mathfrak{m}$. This establishes our claim above.

LEMMA 5. For $\theta < \delta/(4h^2(m-1))$ and large P, $\mathfrak{m}_0 = \mathfrak{m}$ and hence, for $a \in \mathfrak{m}$,

$$|S(a)| \ll NP^{1-\delta/(2^{m+1}h^2(m-1))}$$
.

The proof is the same as that of Lemma 10 of [3].

LEMMA 6. Let a_1 , a_2 be invertible elements of \overline{K} such that $a_1a_2^{-1} \notin K$. Then, for $a \in E_2$ and large P,

(9)
$$\min(|S(a_1\alpha)|, |S(a_2\alpha)|) \leqslant NP^{1-\delta/2h}$$

provided that $\hat{\delta} = \delta/(2^m h(m-1))$.

Proof. Let $a_i \alpha = \sum_{1 \leqslant j \leqslant h} c_{ij} \varrho_j$ with $c_{ij} \in \mathbf{R}$ and $\mu_i = \sum_{1 \leqslant j \leqslant h} b_{ij} \varrho_j$ with $b_{ij} \in \mathbf{R}$ such that $c_{ij} - b_{ij} \in \mathbf{Z}$ and $0 \leqslant b_{ij} < 1$ for i = 1, 2 and $1 \leqslant j \leqslant h$. Then $\mu_i \in \mathcal{R}$ and $S(a_i \alpha) = S(\mu_i)$ for i = 1, 2. Suppose that $\mu_i \in \hat{B}_{\gamma}$ with $Na_{\gamma} \leqslant P^{\delta/2h}$. Then, by Lemma 1, we have

$$|S(a_i a)| \ll NP/(Na_p)^{1/m} + O(NP^{1-1/h+\delta/h^2}).$$

If $\mu_i \notin \hat{B}_{\nu}$ for any $\gamma \in K$ with $Na_{\nu} \leqslant P^{\delta/2h}$, then $\mu_i \in \mathfrak{m}$ (= \mathfrak{m}_0 for some θ and large P) so that $|S(a_i a)| = |S(\mu_i)| \leqslant NP^{1-\delta/2h}$ in view of Lemma 5. Thus, if either μ_1 or μ_2 is in \mathfrak{m} or belongs to some \hat{B}_{ν} with $P^{m\delta/(2^{m+1}h(m-1))} \leqslant Na_{\nu} \leqslant P^{\delta/2h}$, then $|S(a_i a)| \leqslant NP^{1-\delta/2h}$. In order to prove the Lemma completely, it suffices to show that the case

$$\mu_1 \in \hat{B}_{\gamma_1}, \, \mu_2 \in \hat{B}_{\gamma_2} \quad ext{ with } \quad N\mathfrak{a}_{\gamma_i} \leqslant P^{m\hat{\delta}/2\hbar}, \quad i = 1, 2,$$

does not arise at all. Writing $\gamma_i = \sum_{1 \leqslant j \leqslant h} e_{ij} \varrho_j$ and $\gamma_i' = \gamma_i - \mu_i + a_i \alpha = \sum_{1 \leqslant j \leqslant h} g_{ij} \varrho_j$ for i = 1, 2, we see that $(\gamma_i') \vartheta$ has the same denominator as $(\gamma_i) \vartheta$. Now

$$|c_{ij}-g_{ij}| \leqslant P^{-m+\delta/h}/N\mathfrak{a}_{\gamma_i}$$
 for $1 \leqslant j \leqslant h$ and $i=1,2$.

Observe that, for fixed i, not all the numbers g_{ij} $(1 \le j \le h)$ can vanish, since, otherwise, this would contradict α being in E_2 . For i=1,2, let us write $\gamma_i' = t_i/u_i$ with $u_i, t_i \in \mathfrak{o}$ having their greatest common ideal-divisor belonging to a fixed finite set of integral ideals in K. Then $N\mathfrak{a}_{\gamma_i}$ is the same as $|Nu_i|$ except for a positive constant depending only on K. From above, we have

$$a_i \alpha = t_i u_i^{-1} \left(1 + O(P^{-m+\delta/h}) \right)$$

and hence,

$$a_1 a_2^{-1} = (t_1 u_2/t_2 u_1) \big(1 + O(P^{-m+\delta/h}) \big).$$

Further,

$$|Nt_i| \leqslant |N(a_i a)| |Nu_i| \leqslant P^{(2m+1)\delta/4h}$$

and

(10)
$$N(t_2 u_1) = O(P^{(4m+1)\delta/4\hbar})$$

By Lemma 11 of [3], there exist infinitely many $c_0 d_0^{-1} \epsilon K$ with d_0 of the same order of magnitude as all its conjugates, $N(c_0, d_0)$ bounded and $|N(d_0)| = O(|d_0|^h)$ tending to infinity, such that

$$||a_1 a_2^{-1} - c_0^{-1} d_0|| \ll ||d_0||^{-(1+1/\hbar)}.$$

We now assume that P is a natural number of the same magnitude as $\|d_0\|^{(h+1)/h}$. The ideals $(c_0d_0^{-1})$ and (t_1u_2/t_2u_1) are distinct, since, otherwise, as in the proof of Lemma 12 of [3], we can show that $P^{(4m+1)\hat{\delta}/4h} \gg N(t_2u_1) \gg P^{h^2/h+1}$ which will give a contradiction for large P and $\delta < 1$. In particular $\tau = c_0d_0^{-1} - t_1u_2/t_2u_1 \neq 0$. Writing $\tau = c_0d_0^{-1} - a_1a_2^{-1} + a_1a_2^{-1} - t_1u_2/t_2u_1$, we have

$$0 < |\tau| \leqslant \|d_0\|^{-(h+1)/h} + P^{-m+\delta/h} \leqslant P^{-1} \leqslant \|d_0\|^{-(h+1)/h}.$$

This implies that

$$\begin{split} \|d_0\|^{-h-1} \geqslant & |N\tau| \geqslant |N(c_0u_1t_2 - d_0u_2t_1)|/(|Nd_0||Nt_2||Nu_1|) \\ \geqslant & 1/(\|d_0\|^h|Nt_2||Nu_1|) \,. \end{split}$$

From (10) and above, we get

$$||d_0|| \, \leqslant \, |Nt_2| \, \, |Nu_1| \, \leqslant \, P^{(4m+1)\hat{\delta}/4h} \, \leqslant \, ||d_0||^{(4m+1)\hat{\delta}/(4h+4)}$$

which for large $\|d_0\|$ gives a contradiction. Lemma 6 is thus proved.

LEMMA 7. For $\hat{\delta}$ defined as above and under the given hypotheses of the Theorem,

$$\boldsymbol{J}_2 = O(NP^{s-m-\hat{\delta}/8\hbar})$$

ACTA ARITHMETICA
XXIV (1974)

Proof. By Lemma 6, we have

$$\begin{split} J_2 \leqslant N P^{1-\widehat{\delta}/2\hbar} \Big[\int_{|S(a_1a)| \leqslant |S(a_2a)|} \prod_{j=2}^s |S(a_ja)| L(a) \{da\} + \\ + \int_{|S(a_2a)| \leqslant |S(a_1a)|} \prod_{j \neq 2} |S(a_ja)| L(a) \{da\} \Big]. \end{split}$$

Applying Hölder's inequality and Körner's theorem ([2], Satz 5), we obtain, as in [3], for $s-1 \ge 2^m$ that $J_2 \ll NP^{1-\delta/2h}NP^{s-1-m+\delta/6h^3}NP^{\delta/4h}$, provided that P is large enough (to ensure that $P^{\delta/6h^2}$ exceeds a certain power of $\log P$) and Lemma 7 is proved.

As mentioned on p. 501 Lemmas 3, 4 and 7 together with (3) for $\delta \leq 1/4$ and large P, prove our Theorem.

Remark. It seems reasonable to expect that the condition $s \ge 2^m + 1$ in the Theorem may be improved to $s \ge c' m \log m$ (for large m) as in Davenport-Roth [1].

References

- [0] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, Ann Arbor 1962.
- and K. F. Roth, The solubility of certain Diophantine inequalities, Mathematika 2 (1955), pp. 81-96.
- [2] O. Körner, Über Mittelwerte trigonometrischen Summen und ihre Anwendungen in algebraischen Zahlkörpern, Math. Ann. 147 (1962), pp. 205-239.
- [3] S. Raghavan and K. G. Ramanathan, Solvability of a Diophantine inequality in algebraic number fields, Acta Arith. 20 (1972), pp. 299-315.
- [3] C. L. Siegel, Sums of m-th powers of algebraic integers, Ann. Math. 46 (1945), pp. 313-339; Gesam. Abhandlungen, 1966, vol. 3, pp. 12-38.
- [5] Generalization of Waring's problem to algebraic number fields, Amer. J. Math. 66 (1944), pp. 122-136; Gesam. Abhandlungen, 1966, vol. 2, pp. 405-420.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH Bombay, India

Received on 21, 2, 1973 (375)

On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces

Ъу

EDUARD WIRSING (Marburg/Lahn)

1. Introduction. If one wants to investigate the distribution of values of a_n in the regular continued-fraction expansion

$$\alpha = [0; a_1, a_2, \ldots] := \frac{1}{a_1 + \frac{1}{a_2 + \ldots}},$$

where α varies randomly through the interval (0,1), one is readily led to considering the (Lebesgue-) measure $m_n(x)$ of the set

$$\{a; [0, a_{n+1}, a_{n+2}, \ldots] < x\},\$$

where $0 \le x \le 1$ (see for instance Khintchine [3]). Gauss [2], in a letter to Laplace, stated that

$$m_n(x) \to \frac{\log(1+x)}{\log 2}$$
 as $n \to \infty$.

The first one to publish a proof of this theorem was Kusmin [4] in 1928. Actually he proved that if we put

$$m_n(x) = \frac{\log(1+x)}{\log 2} + r_n(x)$$

then $r_n(x) = O(q^{\sqrt{n}})$ as $n \to \infty$, where q is some constant, 0 < q < 1. Lévy [5] independently proved

$$r_n(x) = O(q^n)$$

by a different method (using probabilistic notions). As Szüsz [6] has shown this same result can also be obtained by Kusmin's approach. Szüsz' proof is easier than the two earlier ones and appears to give a smaller value (q=0.485) than Lévy's q=0.7 if one accepts the trouble of some calculation. He does not give all details though.