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We consider quadratic forms f = 3 ago,2, (05 = a,) with coeffi-
cients ag In a quotient field F of a Dedekind domain o of characteristic
= 2, The determinant and the renk of f are defined fio be the correspond-
ing quantities of the matrix {a,). The greatest common divisor (inter-
preted as fractional o-ideal of F) of all ay, is called the scale and the greatest
commoen divisor of 2l ag and all 20, the norm of f. A quadratio form g
i said o be a representation of f, if ¢ iy obtained by making a linear sub-
stitmtion of any number of new variables with coefficients in » for the
variables of f. If f is algo a representation of g, then f and g are called
epwinalent. The set of formg equivalent to f is named the equivalence class
of f over o. ‘

One of the problemy of the arithmetic theory of quadratic forms
is o determine for given o and f all representations of f by means of class.
invariants, Hspecially the ease where o i the ring of integers of a local
field # is of intercgt. There the representation problem has been golved [2],
(5] exeept when 2 is ramified in # and f is not modular., In this paper
a solution is presented wlhich covers the exceptional case for forms f
of rank 2 (see Theovems L and 2), The result containg a solution of the
equivalence problem over o for binary forms (sce Theorem 3) which is
convonicnt for applications, Yt is of another shape than the solution
given by O'Meara [4] '

Applications of Theorem. 3 are made in the last part of this paper
which iy devobed to the connoction betwoeen local and global invariants
of quadratic forms, There o iy the ring of integers of an algebraic number
field . 1f @ is o non-zero number in I and n and s are fractional ideals
of ¥ and vy, n, and g, the p-adic cosures of o, m and s in a p-adic
complotion of ¥, we denote by h, the number of clagses over o, of all
binary quadratio forms with determinant d, norm n, and scale g, and
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by H the number of genera of all binary quadratic forms with determi-
nant 4, norm 1, scale 8 and of fixed index of inextis in each real archi-

medean completion of F. If H > 0 and # is the field of rational numbers, '

Gauss’ clagsical relation reads
(1) =,
p

where p runs over all maximal ideals of o and & =1 if —d is a square
in 7, and % = 1/2 otherwise. Tt is remarkable that (1) is 1ot true in this
simple form for all algebraic number fields #. For instance, for some F
(it happens that b == 1 although —d s vobt & gguore in . This is shown
by generalizing (1) to all algebraic number fields and quadratic forms
of rank 2, including those with vanishing deferminants (see Theorem 6),
Thereby an explicit evaluation of the h, by racans of Theorem 8 and
an extension of a clagsical result ([6], Theorem 43) on tho exigtence of
forms for given local invariants (see Theorem 5) are employed.

We umse the terminology of [3], Chapters VIII-X. RExceptions to
it are stated explicitly. In particular, we formulate our results on quadratic
forms in terms of lattices with respect o v in quadratic spaces over ¥
with a bilinear form B and its assoeiated quadradic form ¢, Let o, F
and f be as at the beginning. It i3 easy to sce thut for any given f of any
number # of variables there exists a regular lattice L (in some suitable
quadratic space) which is related to f; this mesns there are veetors I, ..., 1,
in L such that L = ol--...4ob, and B(l, L) = ay (4, F = 1,..., n).
Obviously dim L= rankf. Thus the problem of representation and equiv-
alence of quadratic forms is reduced to the question of representation
and isometry of related lattices which may be asyumed regular.

1. Representations over dyadic fields. Since the representation problem
is solved in non-dyadic local fields [27, it is supposed in this section that
Fis a dyadic local field, o its ving of infegers, p thoe maximal ideal of p
and = o fixed prime element of . Let here the other notation be also
the one of [3], Chapter IX, in parvtieular dZ, vl, ni, sk, T¥, 8,(FL) ace
the digeriminant, volume, norm, scale and dual of a lattice L and the
Hagse symbol of the quadratic spaco FI respectively. We use the abbre-

viations ord = ordy, e = ord2 and (g, §), = (aif»«) The following prop-

erties ([8], §63A) of the quadratic defect b(a) for aef are {requently
applied: (i) b(a)= ao if ord o ig 0dd, (i) b(a)= 0if b(a) = dav, (ili) b(a«) = an
and ordd(a) is odd if orda is even and b(a) o 4av.

TrmoreM 1. Let T be a 2-dimensional regular lattice, yeiﬂ and Ae@ (L)
- with A0 = nl. Putu = ordnl, v = ordd(—dL), w = orddl and t = ordy.
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Then yeQ (L} if and only if the following three conditions hold:
(2) = u, :
(3) (v, —dL)y, = (4, —daL),,
wif wds odd,
(4) ordd(yd) =1
min (v, e~ (%4 w+1) /2)  otherwise.

Proof. By suitably scaling, we may assume that sI = p. Since
for unimodular L the asserlion is contained in Temma 6.13 of [3], we
may assume that L is not modular. Hence u =0, heneo (1> splits L
by {31, 82: 15, and wo oblain L o (4> | (u) for some #in o with Au
o 4 = dL. Therefore yeQ(L) if and only if the equation
(B) yh == A dy?
can bo solved by some a,y in o.

a) Wo prove the necessify of (2)-(4). Since (3) means that yeQ (FL),
the conditiong (2) and (3) are Immediate. Algo (4) ig clear if w is odd.
Now suppose w to bo even, We have » > w and

(6) ~d = g'modp” for some & with orde = w/2.
From (5) and (6) wo obtain
(1) vh = (b ay)(w—ay) = (@-+ay) — 2ye (o 2y)mmod p".

Replacing 2 eventually by —z, we obtain from the first relation in (7)
that ord{e--ey) = win(e /2, /2), hence from (7), (6) and (i) that

ord d(pA) = min(v, ¢--w/2 +min(/2, ¢/2)) = min (o, ¢ w2 +1/2),
which proves (4). .

b) Now to the sufficiency. Tf d(y1) = 0, there is obviously a solution
@,y In o for (5). Therefore we agsume bD(pA) # 0. _

by) Let w be odd. By (3) there exist @, y in F that satisty (5). If ¢
igodd, (B) implies & ==w -+ 2 ordy < 2 ovd », henee ordz >0, ordy = 0, since t > w
by (4). If ¢ is even, (5) implies ¢ = 2orde < w--2ordy, hence ordz > 0,
but alse ordy 3= 0, sinee otherwise it would follow from (B) that ordbd(pd)
= orddy® << w, coniradicting (4). Ienco always yeQ(L).

by) Let w be oven. Then » > w. T § 20, introduce the variable @,
= g in (B). The resulting equation can be solved by some @,, ¥ in o in
virtue of Lommn .13 of [8]. Now Lok ¢ < w, Then £ i evon, sinee otherwise
(&) would imply ¢ = ord d(vd) > w. Now (i) and (4) imply 2¢+1 = ordd(»A)
=w, Wo can assume that —d == 2™(1-4a"""e) and pi = (14 a’y)
with § =2 —i--ordb(pd) for some units & % of o, under the convention.
7® = 0. In the new wvariable @, = 52 g—at*"* the equation (8) reads

(8) : (1 . ﬂv—-ws)yz o :’L‘% __I_2n—('w-—t)lzm1 _ ns—-wHﬁ_
Tt sufficos to find a solution @y, y in o for (8). First, let v < e+ (w +t)'/2.
In view of the conncction bebween (5) and (8), there exists a solution
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@y, y in I for (8). Assume ordw; < 0. Then @, = 2! for some 2z in F with
ordz > 0, and (3) implies
G- 0-pd

(9) (1476 (o)t == 1420 g~ 0.

We infer that ordyz = 0, hence the quadratic defect of the left hand

side of (8) iy p°~%, whereas the one of the right hand side is conbained
in pﬂ‘“(w-t)/z“ ,_|_ps-"w~<-5"“~’ < p*™ by (4), which is impossible. Tienee orde,
> 0, and also ordy = 0 by (8). This solves (8) in o. Secondly, lot » > e:.}«
4-(w+1)/2. Then sz e+ (w—1)/2 by (4). Pub 2y =y, a - g1 g2
and § = 27 a0y, Then (8) iy solved in o if we can solve Lor arbitvary
k> 0 the congruence ¥ — ay* = f modp® by some ¢ in o; bub this is easily
done by indnetion on %, using only the facts orde > 0 and oxdg z 0.
This cormpletes the proof.

Following Richmn [5], we define for non-zere fractional ideals o of #
and for regular lattices L the lattice I, ag the lattice whose dual L¥ is
generated by all vectors wel® with @(#)ea. It is ovident that I iy a
regular lattice with FL, = FL, L = I* and I € L,. I nl* < q, then
L, = L. SBealing L by any ael yields the formwla (L*), == {L,)% In [5]
i ig shown that it is easy to compube L, Lor any given a and I of dimen-
sion < 2, and that L is non-modular and nld < a it I, iy 2-dimensional
and non-modular.

Let the symbol K — I denote the representation of o latlice I by
o lattice L. By the prineciple of duality one knows that the two state-
‘ments
(10} E—+L and I¥*-K*
are equivalent for any two regular lattices K and I of the same dimen-
gion. From (10) and the definition of I, one infers that the three state-
ments

{11) KL, I*->Ef K, 1L

are pairwise equivalent for any two regular latbicos I amd I of the same
~ dimension and any a with nZ" < a.

The following Thooremn 2 roduces the problom of xepresentation of
2-dimengional lattices by 2-divensional ones to the guestion already
angwered in Theorem 1. :

TaroreM 2. Let M and N be 2-dimensional regular lattices and p Q) (N
with yo = nuN*. Put m = nN*. Then M -~ N if and only of the following
conditions hold:

(12) FM = FN,
(13) _ nM,snN and vM, sV,

(14) v eQ(M).
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Proof. In view of (11) the necessity of the conditions (12)—(14)
is obvious. Now to their sufficiency! By scaling we may assume that
$N —o. It M, iz modular, we have N* —» M¥ by Theorem 6.12 of (57
hence M — N by (11). Now let M, be non-modular. A Jordan splitting
yields M = {a) 1 {f) for some o, in F with ordm < orda < ord f
= —ordnM,,, since nl¥ < wm by the foregoing remarks., Furthermore &
is also non-modular, since otherwise it would be unimodular, which would
imply ordm = ordn¥ = —-ordn¥ > —orduM,,. Therefore N* iz non-
modular, hence yo =sN*, and (> splits N¥* by [3], 82 : 15, which
moans N¥ o« (> | {8 for some § in F with ordy < ordd, By (14) we
have n¥# < w3, hence ordy = ordm > ordnM¥ = ord e > ordnt, hence
ordy = orde = ordnM¥. From this, (14) and [3], 82:15 it follows
that {y) splits also 0, which means M¥ & ¢y | (5> for some 8 in F,
Taking diseviminants in (12), we infer that & 81<F*, and by (13) that
ordd’ < ordd, hence (&) (8>, hence N¥ -+ M¥ hence M >N
by (11), q.e.d.

TrworeyM 3. Let K and L be 2-dimensional regular lattices, »eQ(H),
Ae@ (L) with o2 = nK and vi=nL. Then K o L if and only if the follow-
ing conditions hold: '

(15) sK =sL, dK =~ dL,
(16) (% —dE)y, == (4, —dL),,

dL(nly™"  if orddL is odd,

17 % == A mod
{47) B(—dL)y (L)~ 4-2pCra4NR  oiherpise. .

Proof. Since (16) is a consequence of FK ~ FL and sinee (17)
follows from weQ)(ZL) and Theorem 1, the mecessity of the conditions
{(16)-(17) is clear. Now to their sufficiency! It suffices to prove that the
laftices M = K* and ¥ = L* satisfy (12)-(14) with respect to m = nl,
ginee thet M ~» N by Theorem 2, hence L ~ E by (10), and also K — L
by the gymmetry of (18)-(17) in K and I, hence K =~ L. Condition (12)
Is & consequence of (15) and (16). By (17) woe havem = nl, hence M, = I,
and therefore (13) is satisfied in virtue of (15). Finally, Theorem 1 and
(15)=(17) show the validity of (14), g.e.d.

We say that two latticos (nof necessarily in the same space) are
in the same class it they sre isometric. Similarly, two clements o and §
of I are said to be in the same class or in the same dlass modulo a (where a
iy any fractional ideal of F) if azs f or a = § moda regpectively. For
any non-zero fractional ideal n and -any 4 ¢F define the ideal h(d, 1)
to be dn~' if ordd is odd, and to be b(—dyn~' -+ 2p*A2 oitherwise. If L.
is a regular Iattice; we denote by g(L) any AeF with A¢@ (L) and Ao = nl.

6 — Acta Arlthmetica XXIV.2 .
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Put .xp(L) = (—q(L), —dZ),. Then Theorem 3 shows that for any 2-di-
mensional regular lattice L the gquantities sL, clasy of 4L, yx,(L) and
class of ¢(L) modulo b{dL,nL) form a complete set of eclass invariants.
The relations between these invariants will be exhibited in the
next theorem, The invariant nature of y,(L) can also be seen from
the relation

(18) Xp(L) = (—1, '“1)pgp(—l;1L)-

Denote by h,(d,n, ) the number of classes of all 2-dimensional regular
lattices L with df =2 4, nl =n and sL = s

LEmma 1. a) AU wnits & 1 of o with b(e) b(n) = 4o sabisfy (s, u), = L.
b) If = is & unit of o with d(e) > 4o, there exists o unit u of b with
ble)d{n)= 40 end (s ) = ~1.

Proof. Part a) is proved in [4], pp. 174. As for part b), we choose
an o in o with (a,8), = —1 by [3], 63:13. Consider the quadratic
gpace V o= {1> i {—e>. Then a¢@ (V). By [6], Tweinma 3.7, there exists
a unit % in o such that b(e)d(yn) =~ 40 and anye(V), hence (¢ n),
= —1, g.e.d.

THEOREM 4. Gdven eny non-gero fractional ideals n,s of F and any
elements d, p of 7 with po =1 and ony number se{l, —1}. Pul % = ordn,
8 == ords, v = ordb{—d) and w = ordd.

' () There exists o 2-dimensional regulor latlice I with sL = s, 4L = d,
aplL) = & and ¢(L) = pmodb(d, n) if and only if the following condi-
tions hold:

(19) _ w = 28;
(20) w==¢ 4 w>28; s uLmin(ets [6/2]) if w = 28;
(21) & = (—py —d)p if w2629 or w =e+s0r v> e+ utw/2.

(b) hy(d, 1y 8) > 0 &f and only 4f (19) and (20) are satisfied, and

then
1 i wuwzeis, .
WP G < ebs, w < 26++28, 2w,
' < e-utwi2,
(Np)lle-whefi]  gf gy < gtg, w < 20428, 2 |,
hp(d: mns) = _

> e+uw2,
(Np)ell=s  4f < 8¢4-28, 21w,
(NMp) if w = 2e+2s,
2(Np)® if w> 2e+2s.
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Proof. By scaling we may assume that s — 0.

- 1) We prove the necessity of (19)-(21). The condition (19} is obvious,
also (20) for w > 0. If w = 0, the condition (20) is clear by [3], 93: 17.
As for (21), we observe that & = (—p, —d), &, where k = (g(Z)p~, —d)p.
If w20 or 0= e utw/2 and it w iz odd, we have % = 0 and b(d, n)
< 40, hence d(g(L)u~") =0, henee k= 1. If w>2¢ or v > e-u w2
and if w is even, then H(d, 1) = 4p¥ """ hence k = 1 by Lemma 1. Finally,
if 4 == ¢, then w = 0 and » > 2¢ by (19) and (20), hence & = 1 again by
Lemma 1. Thus (21) iy proved.

2) Now %o the sufficlency of (19)—(21) for part a)! First, let w > 0.
We show that there is a wnit » o= 1 mod b(d, n) with (my —d)y = —1
it w< 2 and v < e+w/2 If w is odd, we have b(d, 1) » 40, and there-
fore every unit 5 of quadratic defect 4o has the desired properties by [3],
63 :1la. If w is even, we observe that b(—dz~") » 4o so that we can
find a unit » by Lemma 1 with (g, —d),= —1 and b(y) = p**+* <} (d, ).
Now the lattice L o= {u) | {du~"> satisfies the assertion, unless (—p, —d),
= —¢ Ww<2¢ and v<Let+w/2. But in the latter  case the lathice
Logz {umy 1. 4d(pm)™"y (with the wunit % constructed before) has the
required. type. Sccondly, let w = 0. Then -—d 2214 for some & in o
with D(1—d) = do = p". The lattice L = (A4 (u, du~1)> meets the requi-
rements, unless (—~u, —d), = —¢ u < ¢ and v < ¢-+u. Bub in the latter
case v < Z¢, henee Lemma 1 implies the existence of & unit 5 with (ny, ~—d)yp
= ~1and b(y) = p*" = b(d, W)n™", and the lattice I = {A (uz, 8un)™ ")
patisfies the assertion.

3) It remains to compute h, = h,(d, n, 5) under the conditions (19)
and. (20). Denote by & the number of classes modulo b{d, 1) within the
set of all elements u of F satisfying ordu = w. By part a) and Theorem 3
we have h, =26 if w < 2¢, w < e and o << e+ u-+w/2, and Iy, = @ other-
wige. It is eagy to see that & equals the number of selutions & modulo
p? of the congruence £ =1modp” in o, where g = —u+ordb(d, n).
Therefore by [1], p. 236 we obtain & = (Np)" or 2(Np)® according as
¢ < 2¢ or not. This yields the assertion for Py

2. Tsometry over mon-dyadic local fields. The terminology of the
preceding section iy kept throughout this section, except that here T
is supposed to be a non-dyadic local field. To this case the definition
of hy(d,n,s), g(L) and x,(L) for 2-dimensional regular latbices L can
be earried over, (18) remains true. For d in 7 and for non-zero frac-
tional ideals n of F put b(d, n)= n.or np according as dn~?=por not.

Limvma 2, Lot K and L be 2-dimensional regular lattices. Then I o= L
if and only if AK = dl and g{K) =2 ¢(L) mod b{(aL, nL).

Proof. Clear by [3], 92:2b.
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Limya 3. Given any mon-zero froctionsl ideals w, 5 of I and any ele-
menis dy p of I with po =m.
_ a) There exists o 2-dimensional vegular latéice L with sl == s, 4 oo d
and g{L) o« pmod b(d, 1) 4f and only if

(22) n=g and dutco,

holds. -

b} fiy(dymy 8) > O if and only if (22} holds, and then hy(d, n,s) =1
“or 2 according as dn”? =0 or nol,

Proof. The necessity of (22) iy obvious. The wadficiency of part a)
fallows from the fact that the lattice L sz () | {du"") meets the requive-
ments. As for part b), wo note that Lemma 2 and part a) imply
hy(d, n,5) = @, where ¢ denotes the number of classes modulo B(d, 1)
within the get of all elements u of F with uo == 1. Now ¢== 1 or 2 accord-
ing a8 B(d, m)n™' =0 or not, q.e. d.

The following remark will be useful later. Tf T is a 2-dimensional
regular lattice with ordnl = u and orddl = w, we have by thoe propertics
of the Hilbert symhol

{23) sp (L) = (=1~ (L ~a " d L)},
where {a), ddnotes the quadratic residne symbol modulo p for « in o,

3. Isomeiry over complete archimedean ficlds. In this section let
o =1F and either F =R or (¢, where B denotes the ficld of real
and (¢ the field of complex numbers. Let p bo the spot at which ¥ is
complete. We state known rogults in a form convenient for our later
PUrposes. ‘

(&) Let # = (. For given del thore exists up to lwometry exactly
one Z-dimengional regular lattice L with 4L s d, and then

SP(L)W (“"1: "_‘1);:_ =1,

(b) Let F = R, For regular lattices . pul (L) = ind*L, where
ind* is defined as in [3], § 6LA. For given de and te{0, 1,2} there

-exists a 2-dimengional regular lattico T with (1) == ¢ and 46 o= a

if and only if
(24) ' Cd e (1Y,
and then L is uniquely determined up to isometry, furthermore

.(25) o Sp(L) = (—1, —1),( —1)¢-De,
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4, The number of genera. Throughout this section o is the ring of
integers of an algebraic number field #. Let 2 be the set of all spots on
', let § be the subset of all non-archimedean spots and py, ..., p, the
real archimedean spots on K. For F, quadratic gpaces V, lattices I and
fractional ideals a of & as usual #,,V,, L, and a, denote the correspond-
ing localigations at the spot pef For peS we write |2 or pf2 accord-
ing as ord,2 > 0 or not. By =, we denote any prime element of o, and
by b,(f) the quadratic defect of any g in ¥,.

THBOREM 5. Let w be eny natural nwumber. Given an n-dimensional
regular op-lattice K, for each p in Q, therve emists a vegular laftice T awith
Ly o2 Ky for all p in Q if and only if the following conditions hold:

(26) Ky is vy-modular for almost all peS;
(27) ” Sp(FpH ) = 1;
. pel2
(28) there ewists on acl with d(F,K ) = o for all peQ.

Proof. (a) Necesgity. We have
{29) nK gy = (nl),, vEy =(ol), forall pes,

hence (26) is satisfied. The conditions (27) and (28) are clear by [3], 72 : L.

(b) Sufficiency. (26) implies that S, (F K p) =1 for almost all p
in £, hence by (27), (28) and [8], 72 : 1 there exists a regular guadratic
space V ‘over F' with V, = F K, for all p in 2. Take any lattice M
on V. Then . ‘

{(30) FoM, o~ F,Kg for all pef.
Applying (28), (30) and [3], 92:1 o pt2, we obtain
(31) My = Ky for almogt all ped.

By (30), (31) and. [3], 81 : 14 we find a lattice L on V with L, ~ K, for
all p in 8. But for p in £—8 we have then L, = M, a2 Ky, by (30). This
completes the proof. ‘

Weo say that two lattices K and L (not necessarily in the same space)
are in the samo genus if K, o« Iy for all p in £2. '

THROREM 6. Given any o n lf:', any non-zero fractional ideals v, n, s
of I and any nuwmbers by, ..., tin {0, 1, 2}, Dencle by O = H(a, 0,11, 6, b3, ..
«eey ) the number of genera of all 2-dimensional regulor lattices I satisfying
A(FL) = a, oL =v, nL =m; sL =5 and t(L,) =4 (i =1,...,7). Put
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w(p) = ordyp, w(p) == ordn aend T = [, ~1} ... 4 L{t,~1)]1/2. For
H > 0 the following three conditions are necessary:

(32) a( =L)%ely (6 =1,...,7);
(33) ordya = w(p) mod 2 for all peS;
(34) [ ]y —ali® = (=1)F if a savisfies

peff
(4) . 2lordya for all pesS, dy(—a) & dav, for all pl2.
Under the conditions (32)-(34) we have
(35) H e kb [S] Ry (g, T 5p),

pe

where It =1 or 1/2 according as o satisfies (A) or not, and where
(36) dy = aml® with g(p) = w(p)—ord,a.

The quantities b, are computed for P12 in Theorem 4 and for p+2 in Lemma 3.

Proof. By (24) and (29), the conditions (32) and (33) are clear. '
" The condition (34) follows from (27), using the formulas (18), (23), (25),
Temma 1 and the reciprocity law for the Hilbert norm residue symbol.
Now we compute . We may assume the validity of (82)—(34) and the
existence of 2-dimensional regular op-lattices Koy with dE, = d,, i
=My, $H =g, for all p in 8 and with Ay == a for peR--8, H{E )
=1 (4 =1,...,7), wheve d, iz defined by (36). Namely, this definition
is necessary (up o cquivalence) and sufficient for the validity of (26),
(28) and oKy, =1, From Theorem 5, (18) and (25) wo infer that ¥
equals the number of setis {Ep)lpea satistying

(37) T (i) = (—1)%,
pad

where for each pe2 the Iattice Iy is of the kind degeribed before and -
restricted to o fixed system of representatives for the o,dsemetry classes.
If o satisties (A), the condition (37) holds for all such sets in virtae of
(34), heneo (35) i true for k «= 1. Asswme now thab « doeg nob sabisly
(A). Then there cxists a spot p in. & which violates (A). By applying the
Theorems 8 and 4, Lemma 1 and [8], 68 : 1la o $ho oase pl2 and the
Lemmas 2 and 3 and (23) to the ease P72, we sce that for this p the
invariant () takes on any given sign ay Ky, varics within the limits
defined before. Therefore hero (35) is satisfiod with % = L /2, q.e.d.

In concluding, wo remark that if ¥ iz the field of rational nunbers,
the property (A) simply amounts to the condition »-—aeI;”’, and thon (34)
becomes superfluous. But in general, ‘as examples show, this remark
does not apply to ficlds I of degree > 1. '
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