

## Linear permutation polynomials with coefficients in a subfield

b:

J. V. Brawley (Clemson, S. C.), L. Carlitz\* (Durham N. C), and Theresa Vaughan (Durham, N. C.)

To Professor Carl Ludwig Siegel

**1. Introduction.** Let  $GF(q^n)$  denote the finite field of order  $q^n$ , where  $q = p^r$  for some r > 0 and some prime p, and let  $GF(q^m)$  be a subfield of  $GF(q^n)$  so that n = ms for some integer  $s, 1 \le s \le n$ . If f is any function from  $GF(q^n)$  to  $GF(q^n)$  it is well-known that f has a unique polynomial representation

(1.1) 
$$f(x) = \sum_{i=0}^{q^{n}-1} a_{i} x^{i},$$

where the coefficients  $a_i \in \mathrm{GF}(q^n)$ . In case f is a permutation of  $\mathrm{GF}(q^n)$  the corresponding polynomial f(x) is called a permutation polynomial. The set of all such permutation polynomials under composition modulo  $x^{q^n} - x$  forms a group which is isomorphic to the symmetric group  $S_{q^n}$ . Those permutation polynomials of the form (1.1) whose coefficients  $a_i$  are in  $\mathrm{GF}(q^m)$  constitute a subgroup, the structure of which has been determined by Carlitz and Hayes [2] as a semi-direct product of certain symmetric groups and cyclic groups. In this paper we consider an analogous situation for polynomials of the form

$$f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$$

with coefficients  $a_i$  in  $GF(q^m)$ . Such polynomials (which represent a subalgebra of the algebra of linear transformations of  $GF(q^n)$  over GF(q) are generalizations of the Ore polynomials [6], [7], where the coefficients  $a_i$  are assumed to lie in GF(q). The set of all Ore polynomials under the modulo  $x^{q^n} - x$  operations of addition and composition of functions, and scalar multiplication by elements of GF(q), forms a commutative algebra over GF(q) which is isomorphic to  $GF(q)[x]/(x^n-1)$  (see [7]).

<sup>\*</sup> Supported in part by NSF grant GP-17031.

<sup>6 -</sup> Acta Arithmetica XXIV.2

In order to generalize Ore's work, put

(1.3) 
$$R_m = \left\{ f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}; \ a_i \in GF(p^m) \right\}.$$

Then  $R_m$  under the above mentioned operations is an algebra over  $\mathrm{GF}(q)$ . The case m=1 is that treated by Ore. In § 2 of the present paper we show that  $R_n$  is isomorphic to the ring of  $n\times n$  matrices over  $\mathrm{GF}(q)$  from which it follows that the group of units of  $R_n$ , the so-called Betti-Mathieu group, is isomorphic to the general linear group  $\mathrm{GL}(n,q)$ . (See [1], [3].) In § 3 we prove that  $R_m$  is isomorphic to the ring of  $m\times m$  matrices with entries from the residue class ring  $\mathrm{GF}(q)[x]/(x^s-1)$ . This includes Ore's result as well as that given in § 2 as special cases. Using this isomorphism it is easy to describe the group of units of  $R_m$  as a direct product of subgroups in contrast to the Carlitz-Hayes result. This description and several interesting combinatorial results are contained in § 4.

**2. Preliminaries.** The ring of polynomials with coefficients in GF(q) will be denoted by GF(q)[x]. If  $f(x) \in GF(q)[x]$ , the principal ideal generated by f(x) is denoted by (f(x)), and the residue class ring consisting of the elements of GF(q)[x] reduced modulo f(x) is written GF(q)[x]/(f(x)). Also if S is any ring with identity and k is any positive integer, the ring of  $k \times k$  matrices with elements from S will be written as  $(S)_k$ , and GL(k, S) will denote the group of nonsingular  $k \times k$  matrices over S. In case  $S = GF(q^n)$  the notation  $GL(k, q^n)$  is used for GL(n, S).

Consider the finite field  $GF(q^n)$  as a vector space of dimension n over GF(q). Let L be the algebra of linear transformations of  $GF(q^n)$  over GF(q). The set  $R_n$  of all polynomials of the form

$$f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$$

with the coefficients  $a_{i\epsilon} \operatorname{GF}(q^n)$ , equipped with the modulo  $x^{q^n} - x$  operations of addition and composition of functions and scalar multiplication by elements of  $\operatorname{GF}(q)$ , is an algebra over  $\operatorname{GF}(q)$ , which is in fact isomorphic to the algebra L.

Theorem 2.1. The algebras  $R_n$  and L are isomorphic.

Proof. For each  $f(x) \in R_n$  let f be the function from  $GF(q^n)$  to  $GF(q^n)$  defined by substitution and let  $\psi$  denote the mapping that takes f(x) to f. Then for each  $f(x) \in R_n$   $\psi(f(x)) \in L$  as  $(\xi + \eta)^{q^i} = \xi^{q^i} + \eta^{q^i}$  and  $(\lambda \xi)^{q^i} = \lambda^{q^i} \xi^{q^i} = \lambda \xi^{q^i}$  for all integers i > 0 and  $\xi$ ,  $\eta \in GF(q^n)$ ,  $\lambda \in GF(q)$ , i.e.,  $\psi \colon R_n \to L$ . Moreover, it is immediate that

$$\psi(f(x) + g(x)) = f + g,$$
  
 $\psi(\lambda f(x)) = \lambda f,$ 

and

$$\psi(f(g(x))) = f \circ g,$$

so that  $\psi$  is an algebra homomorphism.  $\psi$  is one-one by the remark in the first paragraph of § 1, and since  $|R_n| = (q^n)^n = q^{n^2} = |L|$ , the proof is complete.

It follows immediately that

Corollary 2.2. The algebra  $R_n$  is isomorphic to  $(GF(q))_n$ .

The Betti-Mathieu group is by definition the group of units of  $R_n$ ; hence we have reproved (see [1], [3])

COROLLARY 2.3. The Betti-Mathieu group is isomorphic to GL(n, q).

3. The algebra  $R_m$ . If n = ms, where m and s are positive integers, we define the algebra  $R_m$  to be the set of all polynomials of the form

(3.1) 
$$f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$$

with coefficients  $a_i \in \mathrm{GF}(q^m) \subseteq \mathrm{GF}(q^n)$ , equipped with addition and composition of functions and scalar multiplication by elements of  $\mathrm{GF}(q)$ . When m=n, the algebra  $R_n$  is, as we have seen, isomorphic to the algebra of all linear transformations of  $\mathrm{GF}(q^n)$  over  $\mathrm{GF}(q)$ . When m=1, the algebra  $R_1$  is the algebra of polynomials studied by Ore in [6], [7] who has shown that  $R_1$  is isomorphic to the residue class ring  $\mathrm{GF}(q)[x]/(x^n-1)$ . The next theorem is a generalization of these results.

THEOREM 3.1. If n = ms, where m and s are positive integers, then the algebra  $R_m$  is isomorphic to the algebra  $(GF(q)[x]/(x^s-1))_m$ , of  $m \times m$  matrices with elements from the residue class ring  $GF(q)[x]/(x^s-1)$ .

Proof. For convenience, let  $S_m = (GF(q)[x]/(x^i-1))_m$ . Fix any ordered basis  $B = \{\beta_1, \beta_2, \ldots, \beta_m\}$  for  $GF(q^m)$  over GF(q). If  $f(x) = \sum_{i=0}^{m-1} a_i x^{q^i}$  with coefficients  $a_i$  in  $GF(q^m)$ , let  $[f]_B$  denote the matrix in  $(GF(q))_m$  which represents the linear transformation f(x) in the ordered basis B.

We first note that any element of  $R_m$ , say

$$(3.2) g(x) = \sum_{i=0}^{n-1} a_i x^{q^i}; a_i \in GF(q^m)$$

may be rewritten as

(3.3) 
$$g(x) = \sum_{i=0}^{s-1} \sum_{k=0}^{m-1} a_{im+k} x^{q^{im+k}}.$$

If we let  $g_i(x) = \sum_{k=0}^{m-1} a_{im+k} x^{q^k}$  for i = 0, 1, ..., s-1, then we may write

(3.4) 
$$g(x) = \sum_{i=0}^{m-1} g_i(x^{q^{mi}}).$$

On the other hand, any element F of  $S_m$  has the form  $F = \{f_{ij}(x)\}$  (for i, j = 0, 1, ..., m-1), where each  $f_{ij}(x)$  is a polynomial over GF(q) of degree less than s, and we may rewrite the matrix F as follows:

$$(3.5) F = F_0 + F_1 x + F_2 x^2 + \dots + F_{s-1} x^{s-1}$$

where each  $F_k$  (k = 0, 1, ..., s-1) is an  $m \times m$  matrix over GF(q), and the (i, j)th entry of  $F_k$  is the coefficient of  $x^k$  in the polynomial  $f_{ij}(x)$ . Now for each  $F_k$ , there exists a polynomial

(3.6) 
$$g_k(x) = \sum_{i=0}^{m-1} b_{ik} x^{q^i}$$

such that  $F_k$  is the matrix representing  $g_k(x)$  in the ordered basis B, that is,  $F_k = [g_k]_B$ .

It is now fairly obvious how to define an isomorphism between  $S_m$  and  $R_m$ . If F is given by (3.5) and the corresponding  $g_k(x)$  are given by (3.6), define a mapping  $\varphi \colon S_m \to R_m$  by

$$\varphi(F_k x^k) = g_k(x^{q^{km}})$$

where it is understood that map  $\varphi$  is to be extended linearly to all of  $S_m$ . It is clear that this is indeed a map from  $S_m$  to  $R_m$ , since every element of  $R_m$  may be written in the form (3.4). Evidently addition and scalar multiplication by elements of GF(q) are preserved, and it follows from Theorem 2.1 that  $\varphi$  is bijective. It remains only to show that the map  $\varphi$  preserves composition. Suppose that  $G = [g]_B$  and  $H = [h]_B$  are any two matrices in  $(GF(q))_m$ . Then if i and k are positive integers less than s, and  $i+k \equiv j \pmod s$ , we have

$$(3.8) \varphi(Gx^{i}) \circ \varphi(Hx^{k}) = g(x^{q^{im}}) \circ h(x^{q^{km}}) = g(h(x^{q^{km}})^{q^{im}}) = g(h(x^{q^{im}}))$$

since the coefficients of h(x) are elements of  $GF(q^m)$ . Since  $Gx^iHx^k=GHx^j$ , and  $\varphi(GHx^j)=g(h(x^{q^{jm}}))$ , it follows that

(3.9) 
$$\varphi(Gx^{i}) \circ \varphi(Hx^{k}) = \varphi(GHx^{j})$$

and so  $\varphi$  preserves composition. Thus  $\varphi$  is an isomorphism. This completes the proof.

4. The group of units of  $R_m$  and related results. In order to characterize the group of units of  $R_m$  we will use the following known facts.

LEMMA 4.1. If S is a commutative ring with 1, which has the direct sum decomposition  $S = \bigoplus_{i=1}^t S_i$ , then  $(S)_m = \bigoplus_{i=1}^t (S_i)_m$  and moreover  $\operatorname{GL}(m,S) = \bigoplus_{i=1}^t \operatorname{GL}(m,S_i)$  so that

(4.1) 
$$|\operatorname{GL}(m,S)| = \prod_{i=1}^{t} |\operatorname{GL}(m,S_i)|.$$

Lemma 4.2. If  $S = \mathrm{GF}(q)[x]/(P(x)^c)$  where P(x) is an irreducible in  $\mathrm{GF}(q)[x]$  of degree d, then

(4.2) 
$$|GL(m,S)| = q^{cdm^2} \prod_{i=1}^{m} (1 - q^{-id}).$$

The proof of Lemma 4.1 is easy. As for Lemma 4.2, one can use the formula of McDonald [5] once it is noted that S is a finite local ring. Basically, the proof uses the correspondence theorem for rings together with the facts that (i)  $M = P(x) \cdot S$  is the unique maximal ideal of S, (ii)  $S/M = \mathrm{GF}(q^d)$  and (iii)  $A \in (S)_m$  is nonsingular iff  $\mu(A) = (\mu(a_{ij})) \in (S/M)_m$  is nonsingular where  $\mu \colon S \to S/M$  is the natural homomorphism.

THEOREM 4.3. Let  $S = GF(q)[x]/(x^s-1)$ , and suppose that

$$(4.3) x^{s}-1 = P_{1}(x)^{e_{1}}P_{2}(x)^{e_{2}}\dots P_{l}(x)^{e_{l}}$$

where the  $P_j(x)$  are distinct irreducible elements of GF(q)[x], and the degree of  $P_j(x)$  is  $d_j$  for  $j=1,2,\ldots,t$ . Set  $S_j=GF(q)[x]/[P_j(x)^{e_j}]$ . Then GL(m,S) is isomorphic to the direct product of the set  $\{GL(m,S_j): j=1,2,\ldots,t\}$  and moreover

(4.4) 
$$|GL(m,S)| = q^{m^2s} \prod_{j=1}^t \prod_{i=1}^m (1 - q^{-id_j}).$$

Proof. It is only necessary to note that  $S = S_1 \oplus S_2 \oplus ... \oplus S_t$ . Then by Lemma 4.1, GL(m, S) is isomorphic to the direct product of the set  $\{GL(m, S_j): j = 1, 2, ..., t\}$ . To get the equality (4.4), use Lemma 4.2:

$$|\mathrm{GL}(m, S_j)| = q^{e_j d_j m^2} \prod_{i=1}^m (1 - q^{-id_j}),$$

and from Lemma 4.1,

$$\begin{aligned} |\mathrm{GL}(m,S)| &= \prod_{j=1}^{t} |\mathrm{GL}(m,S_{j})| = \prod_{j=1}^{t} q^{e_{j}d_{j}m^{2}} \prod_{i=1}^{m} (1 - q^{-id_{j}}) \\ &= q^{sm^{2}} \prod_{j=1}^{t} \prod_{i=1}^{m} (1 - q^{-id_{j}}). \end{aligned}$$

COROLLARY 4.4. If  $R_m = \{\sum_{i=0}^{n-1} a_i x^{q^i}: a_i \in GF(q^m)\}$ , then the group of units of  $R_m$  is isomorphic to the direct product of the set  $\{GL(m, S_j): j=1,2,\ldots,t\}$  of Theorem 4.3, and the order of the group of units of  $R_m$  is given by (4.4).

COROLLARY 4.5. Under the hypothesis of Theorem 4.3, if also (s, q) = 1, then the group of units of  $R_m$  is isomorphic to a direct product of general linear groups.

Linear permutation polynomials

Proof. If (s, q) = 1, then each exponent  $e_k$  appearing in the factorization (4.3) of  $x^s-1$  is equal to one, and each  $S_j$  is isomorphic to the field  $GF(q^{d_j})$ . Then  $GL(m, S_j) = GL(m, q^{d_j})$  is a general linear group.

It should be noted that (4.4) can be derived directly from the result of Farahat [4] which gives the order of any finite ring S with 1 in terms of |radS| and the structure of S/radS as assured by the Wedderburn-Artin Theorem. This involves however computing |radS| and knowing exactly how S/radS decomposes into a direct sum of matrix rings over finite fields.

As final items we consider several interesting combinatorial questions. Suppose we are given the polynomial

(4.5) 
$$f(x) = \sum_{i=1}^{m-1} b_i x^{q^i}; \quad b_i \in GF(q^m),$$

so that f(x) acting on  $GF(q^m)$  as a vector space over GF(q) is a linear transformation f. The questions are (i) How many  $\varphi(x) \in R_n$  when acting on  $GF(q^m)$  equal f and (ii) How many of these  $\varphi(x)$  are in the group of units of  $R_n$ ; i.e., are permutations of  $GF(q^n)$ . The answers to these questions are the content of our last theorem.

THEOREM 4.6. The number of polynomials

(4.6) 
$$\varphi(x) = \sum_{i=1}^{n-1} a_i x^{q^i}; \quad a_i \in GF(q^n),$$

whose restriction to  $GF(q^m)$  define the same functions as (4.5) is  $q^{n(n-m)}$ . Of these, the number which are in the group of units of  $R_n$  is zero if f(x) is not one-one on  $GF(q^m)$  and is  $q^{m(n-m)}|GL(n-m,q)|$  if f(x) is one-one on  $GF(q^m)$ , where |GL(t,q)| is the well-known number  $\prod_{i=0}^{t-1} (q^i-q^i)$ . Thus, in particular, the number of such extensions of f(x) is independent of the function f(x).

**Proof.** Any  $\varphi(x)$  of the form (4.6) may be rewritten as

$$\varphi(x) = \sum_{i=0}^{m-1} \sum_{j=1}^{s-1} a_{i+mj} x^{q^{i+mj}}.$$

If  $\xi \in GF(q^m)$  then

$$\xi^{q^{i+mj}} = \xi^{q^i} \xi^{q^{mj}} = \xi^{q^i},$$

so that

$$\varphi(\xi) = \sum_{i=0}^{m-1} \left( \sum_{j=0}^{s-1} a_{i+mj} \right) \xi^{q^i}.$$

Hence

$$\varphi(\xi) = f(\xi)$$
 for all  $\xi \in GF(q^m)$ 

if and only if

$$\sum_{j=0}^{s-1} a_{i+mj} = b_i \quad (i = 0, 1, ..., m-1).$$

The number of solutions  $(a_0, a_1, ..., a_{n-1})$  to this system of linear equations is independent of the particular  $b_i$ 's and is  $q^{n(s-1)m} = q^{n(n-m)}$  which completes the first part of the theorem.

As for the second part, clearly if f(x) is not one-one on  $GF(q^n)$  none of the  $\varphi(x)$  maps on  $R_n$  whose restriction to  $GF(q^m)$  equals f(x) can be one-one; thus, assume f(x) is one-one on  $GF(q^m)$ . Any linear map is completely determined by its action on a basis. Thus if f(x) is given linear and one-one on  $GF(q^m)$ , then the number of ways to extend f(x) to a one-one linear map on  $GF(q^n)$  is precisely the number of distinct ordered linearly independent sequences of n-m elements of  $GF(q^n)$  which are bases for complementary subspaces of  $GF(q^m)$ . By a standard argument, this number is given by

$$\begin{split} (q^{n}-q^{m})(q^{n}-q^{m+1}) & \dots (q^{n}-q^{n-1}) \\ & = q^{n}(q^{n-m}-1)q^{m}(q^{n-m}-q) \dots q^{m}(q^{n-m}-q^{n-m-1}) \\ & = q^{m(n-m)} \prod_{j=0}^{n-m-1} (q^{n-m}-q^{j}) = q^{m(n-m)}|\mathrm{GL}(n-m,q)|. \end{split}$$

This completes the proof.

## References

- L. Carlitz, A note on the Betti-Mathieu group, Portugal. Math. 22 (1963), pp. 121-125.
- [2] and D. Hayos, Permutations with coefficients in a subfield, Acta Arith. 21 (1972), pp. 31-35.
- [3] L. Dickson, Linear Groups with an Exposition of the Galois Field Theory, New York 1958.
- [4] H. K. Farahat, The multiplicative groups of a ring, Math. Zeitschr. 87 (1965), pp. 378-384.
- [5] B. R. McDonald, Involutary matrices over finite local rings, Canadian J. Math. 24 (1972), pp. 369-378.
- [6] O. Ore, On a special lass of polynomials, Amer. Math. Soc. Trans. 35 (1933), pp. 559-584.
- [7] Contributions !. the the ry of finite fields, Amer. Math. Soc. Trans. 36 (1934), pp. 243-274.