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1. Toiroduction. Liet G (¢") denote the finite field of order ¢", where
g = p" for some r > 0 and some prime p, and let GF(4™) be a subfield
of GF(¢") so that n == ms for some integer s, 1 <% 8 < n. T fis any function
from GF(g") to GF(¢") it is well-known that f has a unique polynomial

repredentation
(ln:‘_" 1

(1.1) flw) = > e,

()
where the coefficients a;e GF(g™). In easef is a permutation of GF{g™)
the corresponding polynomial f{x) is called a permutation polynomial.
The set of all such permutation polynomials wmder composition modulo
a® — 2 forms a group which is isomorphic to the symmetric group 8.
Those permutation polynomials of the form (1.1) whose coefficients a;
are in GF(¢™) constitute a subgrowp, the strueture of which has been
determined by Carlitz and Hayes [2] as a semi-direct product of certain
symmetrice groups and cyelie groups. In thia paper we consider an analo-
gous sitnation for polynominls of thoe form

. ne 1

(1.2) o) = 3 apt

drf)
with enefficients a, in GF(¢™). Such polynomials (which represent a sabal-
gebry of the algelbra of linear transfornations of GIF (g™ over GI'(g) are
generalizations of the Ore polynomials [6], [7], where the coetficients a;
are assumed to lie in GI(g). The set of all Ore polynonials under the
modulo #% —» operations of addition and composition of functions,
and scalar multiplication by eclements of GF(g), forms a commutative
algebra over G¥(g) which iy isomorphic to GE'{g)[#]/(a"—1) (see [7]).
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In order to generalize Ore’s work, put

-1

(1.3) By ={flz) = 3 aat; se GF™).
i=:0

Then R, under the above mentioned operations is an algebra over GF(g).
The case m = 1 ig that treated by Ore. In §2 of the present paper we
show that R, iz isomorphic to the ring of » xn matrices over GF(g) from
which it follows that the group of units of &, the so-called Botti-Mathicn
group, is isomorphic to the general Iinear group GL(n, q). (See [1], [3].)
In §3 we prove that R, i isomorphic to the ring of m xm matrices with
entries from the residue clags ring GIF{q)[#]/{z* —1). This includes Ore’s
result as well as that given in §2 as speeial cases. Using this isomorphism
it is eapy to describe the group of units of &, as a direct product of sub-
groups’ in contrast to the Carlitz-Hayes result. This deseription and
geveral interosting combinatorial results are contained in § 4.

2. Preliminaries. The ring of 13013711011111)1% with coefficients in GIF(q)
will be denoted by GIF (¢) [#]. It f(2) e GF(¢)[2], the principal ideal gener-
 ated by f(#) is denoted by (f(x)), and the residue class ring consisting of
the elements of GF(¢)[x] reduced modulo f(x) is written GF (¢)(x]/({f(x))-
Also if § is any ring with identity and % is any positive integer, the ring
of & x & matrices with elements from § will be written as (8)y, and GL(k, 8)
will denote the group of nonsingular % xk matrices over 8. In case S
= GI'(¢") the mnotation GL(k,¢") v used for GL(n, §)

Oongider the finite field GF (g™} ag a vector space of dimengion
over GF(g). Let L be the algebra of lincar transformations of GF(¢™
over GI'(g). The set K, of all polynomials of the form

n—1

(23) J@) = 3w

T}

~ with the coefficients a;e GT'(g™), equipped with the modulo 4%° — & opera-
tions of addition and compogition of functions and gealar multiplication
by clements of GI'(g), ix an algebra over GF(g), which iy in fact iso-
morphic to the algebia L.

TnrorEM 2.1, The algebras R, and L are isomorphic.

Proof. For each f(a)« B, let f be the funetion from GF{¢") to GTF(¢")
defined Dby substitution and let » denote the mapping that talkes f(@)
to f. Then for each f(w)eR, w(f(x))eL as (& —1_17)‘1" == £0 4 p® and
(B = 275 3 for all integers ¢ 0 and £, ne GH (g™, e GF{q),
- Le, p: R, —~ L, Moreover, it is immediate that :

w(fle)+g(x) = f+yg,
v(Af () = if,
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and

v{flg@)) =fo g,

so that y is an algebra homomorphism. ¢ is one- 0110 bV the remark in the
fivst paragraph of §1, and sinee |R,] = (¢")* = |L], the proot iz
complete.

It follows immediately that

CoroLLARY 2.2. The algshra R, is isomorphic fo (GT(q)),,.

The Betti-Mathiew group is by definition the group of unity of R, ;
henee we have reproved (see [17, [3])

Cororrary 2.3. The Belti-Mathicw group is isomorphic to GL (%, ).

ny

3. The algebra R,,. If # = ms, where m and s are positive integers,
we define the algebra R, to De the set of all polynomials of the form

g1
(3.1) Z az?

with coefficients a;e GF(¢™) € GF (g™, equipped with addition. and
composition of funetions and scalar multiplication by elements of GF(g).
When m == n, the algebra R, is, as we have seen, isomorphic to tho algebra
of all inear transformations of GF (¢") over GF (g). When m = 1, the algebra
£, is the algebra of polynomials studied by Ore in [6], [7] Who has shown
that R, is isomorphic to the residue class ring GF(g)[#]/(a"—1). The
next theorem is a gencralization of these resulis.

ToworEyM 3.1. If # = ms, where m and s are posilive integers, then
the algebra R, is isomorphic to the algebra (GX () [x]/(z ——1)),,‘, of mxm
matrices with elements from the residue class ring GF(q Vel /(x" 1),

Proof. For convenience, let 8, = (GF(g)[n]/(z*— 1)}n. Fix any

oy Bt FOr GIF(¢™) over GF(q). T f(a) = 2— g s

with coefficients a; in GF(g™}, lot [f], denote the mafrix in {GF(, ))m
which represents the lincar transformation f(#) in the ordered basis B.
We first note that any clement of R, say

ordered basis B = {#, 5,

el
o - {1 i o
(3.2) glw) = M aw’;  agc GF(g™)
LET]
may he rewritten ad
81 hr-1
, ! gtk
(3.3) glay = 3 3 a0t
w0 o
Hi—1
I we let g, () 2 Gty i’ o™ for § = 0,1,...,8—1, then we may write

1

£3.4) Z g: (™).

()
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On the ofher hand, any element ¥ of &, has the form F — (fi ()}

(for 1,4 = 0,1, ..., m—1}, where cach f;(») is a polynomial over GF (¢)
of degree less than ¢ and we may rewrite the matrix F as follows:

(3.8) F = Fy--Fyp+Fyat 4 oo +F,_ 2"

where each Fy (b =0,1,...,5~1) is an m xm matrix over GF{g), ani
the (, j)th entry of I, is the coefficient of 2 in the polynomial fy(w),
Now for each I, there exists o polynomial

M- )
(3.6) | gu(@) = > bya®
' Fml)

such that Fp, is the madrix representing g, (#) in the ordered basis B, that
is, Fy = [gxls.

It is now fairly obvious how fto define an isomorphism between S,
and &,. If Fis given by (3.6) and the corresponding g,{#) are given by
(3.6}, define a mapping ¢: 8, - R, by
(3.7) P T = g™
where it is nnderstood that map ¢ is to be extended lineaaly to all of §,,.
It is clear that this is indeed a map from &, to R, since cvery element
of &,, may be written in the form (3.4). Xvidently addition and sealar
multiplication by elements of GF(q) are preserved, and it follows from
Theorem 2.1 that p is bijective. I remaing only to show that the map ¢

preserves composition. Suppose that & = [gl, and H = [h]y; are any

two matrices in (GF (g)),- Then if ¢ and % are positive integers less than
& and i--% == j(mods), we have

(3.8)  p(Geh) o p(HD") = g(a"") 0 k(@) = glh(@®"y") = gln(a™)

since the coefficients of h(w) are elements of GIF (™). Since Ga® Ha® = GHa',
and p(GH'y = g(h(x”"")), it follows that
(8.9) ' g (Ga') o g (Ha®) = p(GH2)
and 50 @ preserves eomposition. Thus ¢ is an isomorphism. This completes
the proof.
4. The group of wniis of R, and related results. [n order to charachorize
the group of units of B, we will use the following kuown facts.
Lmmyma 4.1. If 8 is o commutative ring with 1 which has the direct
¢ '
(8)y =D X (8 and moreover

ie=l

sum  decomposition, S = @ 3'8,;, then
fom

t -
GLi(m, 8) = @ 3 GL(m, 8,) so that

Tl

!
(4.1) |GLi(m, 8)} = [ [ 16T(m, ).

t==1
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Tmwnia 4.2, If 8§ = GF(q)[«]/(P{2)%) where P(z) is an iwedﬁcible
in GF(q}[x] of degree d, then _ Y
(4.2) IGL(m, 8)] = Q”d””z”(l _ Q.—-id)'

=1

The proof of Lemma 4.1 is easy. As for Lemma 4.2, one can use the
formula of MeDonald [5] onee it is noted that & is a finite Iocal ring.
Basically, the proof mses the correspondence theorem for rings together
with the facts that (1) M = P(z)-8 is the unique maximal ideal of &
(i) 8/M = GF (g% and (iii) A < ( 8),, is nonsingular iff g (4) = (,u(a,ﬁ))e(S 123 ),,1
is nonsingunlar where p: 8 — 8fM is the natural homomorphism.

TneoREM 4.3. Let N = GI'(¢)[]/(@~1), and suppose that

(4.3) &1 = Py(&)1P, (a) ... Py(m)

where the Py{w) are distinet irreducible elements of GF{q)[z], and the degree
of Pi(w)ds d;forj = 1,2,...,t Set §; — GF(Q)[:B}/(P?-(m)”J). Then GL{m, 9)
18 isomorphic to the direct product of the set {GY(m, S =1,2,...,1) and
Moreoves”

3 m
(4.4) G, §)) = g [T T (1.~ %),
_ J=1 Q=1
Proof. It is only necesgary to note that & = 5®8,D...08,.
Then by Lemma 4.1, GL(m, 8) is isomorphic to the direct preduct of the
set {GLi(m, 8;):§ = 1,2, ..., th To get the_ equality (4.4), use Lemms 4.2+ -

i

IG‘IJ (m, SJ‘)E — Qﬁjdj'mzn (1_g~«i{lj),

. )

and from Lemma 4.1,
| ! "m
|GTi(m, S)] == ]’] |GL (e, &) = H g [T (1—g %
S je1 (=1 .
‘ g e ' ’ '
= []T] =),
Fol fT.

e 1

COROLTLARY 4k, [f Ry = { N aa®: ae GF(¢™), then the group

Faal)
of units of R, is isomorphic to the direct product of the set {GL(m, 8)):
J=1,2,...,8 of Theovem 4.3, and the order of the growp of wnits of R,
s given by (4.4, )
COROLLARY .5, Under the hypothesis of Theorem 4.3, if also (s, g) = 1,
then the group of wmits of R, is isomorphic to a direct product of general
linear groups. o
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Proof. I (s, g¢) = 1, then cach exponent ¢, appearing in the factoriza-
tion {4.3) of #°—1 is equal to one, and cach S§; is isomorphic to the field
GF(¢%). Then GL(m,S;) = GL(m, ¢%) is a general lincar group.

Tt shounld be noted that (4.4) can be devived directly from the result
of Farahat [4] which gives the order of any finite ring § with 1 in terms
of [rad 8] and the structure of SfradS as assured by the Wedderburn—
Artin Theorem. Thisz involves however computing |radd| and knowing
exactly how Sfrad8 decomposes into a direct sum of matrix rings over
finite fields.

Ags final items we consider several interesting combinatorial questions,
Suppose we are given the polynomial

Wy ], ; )
(4.5) floy = D) by bie GT(¢™),
i=1

80 that f(2) acting on GF (¢™) as a vector space over GF (¢) 18 a linear trans-
formation f. The questions are (i) How many p(#)e B, when acting on
GF (g™} equal f and (i) How many of these ¢(2) are in the group of units
of R,; i.e., are permutations of GF(g™). The answers fto these questions
are the content of our last theorem.

TrworREM 4.6. The number of polynomials

(4.6) pla) = 5 a0y

g1

aze GF (¢"),

whose restriction to GF (¢™) define the same funclions as (4.5) ig ¢™*™,

Of these, the number which are in the group of units of B, is zero if f(x) is

not one-one on GF(g™) and is ¢™ ™ |QGL(n—m, g)| if flw) is one-one
i1

on GF(g™), where |GL(t, q) is the well-known number [T (¢ — ). Thus,
. o)

in. particular, the number of such extensions of f(x) is independent of the
Sunction f{z). _

Proof. Any ¢(w) of the form (4.6) may De rewritten as

IE Ee GIF (9™} then
fqi.).mj’ o Eqi §qmy‘ . Eqi’

80 that
) M1 g1 )
) = 3 (3 toum) €7
X PECC £
Hence
g(&) =f(&) for all £« GF(¢™)
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i and only if
g1
Dy =y (6=0,1,...,m-1).
i=u

The nmher of solutions (ay, ay, ..., @, .} to this system of linear equa-
tions iy independent of the particular bls and is gue-Im — gntw-m)
which completes the first part of the theorem.

As for the second part, clearly if f(z) is not one-one on GF (¢™) none
of the ¢{#) maps on K, whose restriction to GF(¢™) equals f{®) can be
one-one; thus, assume f(z) is one-one on GF(¢™). Any linear map is
completely deterrnined by its action on a basis. Thug if f(2) is given linear
and one-one on GF (¢™), then the number of ways to extend f(z) to a one-one
linear map on GIF(g") is precisely the number of digtinet ordered linearly
independent sequences of n—m elements of GF(4*) which are bases for
complementary subspaces of GF (¢™). By a standard argument, this number
is given by : :

qm+1) . (an qn—l)
= gM g =1 Mg T )

(¢"—g")(q"—
coe g (g g

R
= g™ n (gn—mw__g'f) — Qm(""_m)JGL(%——m, ol
Foand
This completes the proof.
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