Linear permutation polynomials with coefficients in a subfield

by

J. V. Brawley (Clemson, S. C.), L. Carlitz* (Durham, N. C.),
and Theresa Vaughan (Durham, N. C.)

To Professor Carl Ludwig Siegel

1. Introduction. Let GF(q^n) denote the finite field of order q^n, where $q = p^r$ for some $r > 0$ and some prime p, and let GF(q^n) be a subfield of GF(q^n) so that $q = n^s$ for some integer s, $1 \leq s \leq n$. If f is any function from GF(q^n) to GF(q^n) it is well-known that f has a unique polynomial representation

$$f(x) = \sum_{i=0}^{q^n-1} a_i x^i,$$

where the coefficients $a_i \in$ GF(q^n). In case f is a permutation of GF(q^n) the corresponding polynomial $f(x)$ is called a permutation polynomial. The set of all such permutation polynomials under composition modulo $x^{q^n} - x$ forms a group which is isomorphic to the symmetric group S_{q^n}. Those permutation polynomials of the form (1.1) whose coefficients a_i are in GF(q^n) constitute a subgroup, the structure of which has been determined by Carlitz and Hayes [2] as a semi-direct product of certain symmetric groups and cyclic groups. In this paper we consider an analogous situation for polynomials of the form

$$f(x) = \sum_{i=0}^{n-1} a_i x^{i^n}$$

with coefficients a_i in GF(q^n). Such polynomials (which represent a subalgebra of the algebra of linear transformations of GF(q^n) over GF(q) are generalizations of the Ore polynomials [6], [7], where the coefficients a_i are assumed to lie in GF(q). The set of all Ore polynomials under the modulo $x^{q^n} - x$ operations of addition and composition of functions, and scalar multiplication by elements of GF(q), forms a commutative algebra over GF(q) which is isomorphic to GF(q)[x]($x^{q^n} - 1$) (see [7]).

* Supported in part by NSF grant GP-17031.
In order to generalize Ore's work, put

\[(1.3) \quad R_m = \{ f(x) = \sum_{i=0}^{n-1} a_i x^i; \; a_i \in \text{GF}(p^m) \}. \]

Then \(R_m \) under the above mentioned operations is an algebra over \(\text{GF}(q) \).

The case \(m = 1 \) is that treated by Ore. In § 2 of the present paper we show that \(R_m \) is isomorphic to the ring of \(n \times n \) matrices over \(\text{GF}(q) \) from which it follows that the group of units of \(R_m \), the so-called Betti-Mathieu group, is isomorphic to the general linear group \(\text{GL}(n, q) \). (See [1], [3].) In § 3 we prove that \(R_m \) is isomorphic to the ring of \(m \times m \) matrices with entries from the residue class ring \(\text{GF}(q)[x]/(x^m-1) \). This includes Ore's result as well as that given in § 2 as special cases. Using this isomorphism it is easy to describe the group of units of \(R_m \) as a direct product of subgroups in contrast to the Carlitz-Hayes result. This description and several interesting combinatorial results are contained in § 4.

2. Preliminaries. The ring of polynomials with coefficients in \(\text{GF}(q) \) will be denoted by \(\text{GF}(q)[x] \). If \(f(x) \in \text{GF}(q)[x] \), the principal ideal generated by \(f(x) \) is denoted by \((f(x)) \), and the residue class ring consisting of the elements of \(\text{GF}(q)[x] \) reduced modulo \(f(x) \) is written \(\text{GF}(q)[x]/(f(x)) \).

Also if \(S \) is any ring with identity and \(k \) is any positive integer, the ring of \(k \times k \) matrices with elements from \(S \) will be written as \((S)_k \), and \(\text{GL}(k, S) \) will denote the group of nonsingular \(k \times k \) matrices over \(S \). In case \(S = \text{GF}(q^m) \) the notation \(\text{GL}(k, q^m) \) is used for \(\text{GL}(k, S) \).

Consider the finite field \(\text{GF}(q^m) \) as a vector space of dimension \(n \) over \(\text{GF}(q) \). Let \(L \) be the algebra of linear transformations of \(\text{GF}(q^m) \) over \(\text{GF}(q) \). The set \(R_m \) of all polynomials of the form

\[(2.1) \quad f(x) = \sum_{i=0}^{n-1} a_i x^i \]

with the coefficients \(a_i \in \text{GF}(q^m) \), equipped with the modulo \(x^m - x \) operations of addition and composition of functions and scalar multiplication by elements of \(\text{GF}(q) \), is an algebra over \(\text{GF}(q) \), which is in fact isomorphic to the algebra \(L \).

Theorem 2.1. The algebras \(R_m \) and \(L \) are isomorphic.

Proof. For each \(f(x) \in R_m \) let \(f \) be the function from \(\text{GF}(q^m) \) to \(\text{GF}(q^m) \) defined by substitution and let \(\psi \) denote the mapping that takes \(f(x) \) to \(f \). Then for each \(f(x) \in R_m \) \(\psi(f(x)) \in L \) as \((f(x)) = \sum_{i=0}^{n-1} a_i x^i \) and \((\lambda f(x)) = \sum_{i=0}^{n-1} \lambda a_i x^i \) for all integers \(\lambda \geq 0 \) and \(\xi, \eta \in \text{GF}(q) \), \(\lambda \in \text{GF}(q) \), i.e., \(\psi: R_m \rightarrow L \). Moreover, it is immediate that

\[\psi(f(x) + g(x)) = f + g,\]

\[\psi(\lambda f(x)) = \lambda f,\]

and

\[\psi(f(x)) = f \circ g,\]

so that \(\psi \) is an algebra homomorphism. \(\psi \) is one-one by the remark in the first paragraph of § 1, and since \(|R_m| = (q^m)^n = q^{nm} = |L| \), the proof is complete.

It follows immediately that

Corollary 2.2. The algebra \(R_m \) is isomorphic to \((\text{GF}(q))^n \).

The Betti-Mathieu group is by definition the group of units of \(R_m \); hence we have reproved (see [1], [3]).

Corollary 2.3. The Betti-Mathieu group is isomorphic to \(\text{GL}(n, q) \).

3. The algebra \(R_m \). If \(m = ns \), where \(m \) and \(s \) are positive integers, we define the algebra \(R_m \) to be the set of all polynomials of the form

\[(3.1) \quad f(x) = \sum_{i=0}^{n-1} a_i x^i \]

with coefficients \(a_i \in \text{GF}(q^m) \subseteq \text{GF}(q^s) \), equipped with addition and composition of functions and scalar multiplication by elements of \(\text{GF}(q) \). When \(m = n \), the algebra \(R_n \) is, as we have seen, isomorphic to the algebra of all linear transformations of \(\text{GF}(q)^m \) over \(\text{GF}(q) \). When \(m = 1 \), the algebra \(R_1 \) is the algebra of polynomials studied by Ore in [1], [7] who has shown that \(R_1 \) is isomorphic to the residue class ring \(\text{GF}(q)[x]/(x^{n-1}) \). The next theorem is a generalization of these results.

Theorem 3.1. If \(m = ns \), where \(m \) and \(s \) are positive integers, then the algebra \(R_m \) is isomorphic to the algebra \(\{(\text{GF}(q)[x]/(x^{n-1}))_m\} \) of \(m \times m \) matrices with elements from the residue class ring \(\text{GF}(q)[x]/(x^{n-1}) \).

Proof. For convenience, let \(R_m = \{(\text{GF}(q)[x]/(x^{n-1}))_m\} \). Fix any ordered basis \(B = \{ \beta_1, \beta_2, \ldots, \beta_m \} \) for \(\text{GF}(q^m) \) over \(\text{GF}(q) \). If \(f(x) = \sum_{i=0}^{n-1} a_i x^i \) with coefficients \(a_i \in \text{GF}(q^m) \), let \([f]_B \) denote the matrix in \(\{(\text{GF}(q)[x]/(x^{n-1}))_m\} \) which represents the linear transformation \(f(x) \) in the ordered basis \(B \).

We first note that any element of \(R_m \), say

\[(3.2) \quad g(x) = \sum_{i=0}^{n-1} a_i x^i; \quad a_i \in \text{GF}(q^m) \]

may be rewritten as

\[(3.3) \quad g(x) = \sum_{i=0}^{n-1} \sum_{k=0}^{m-1} a_{ik} x^{i+k} \]

If we let \(g_i(x) = \sum_{k=0}^{m-1} a_{ik} x^{i+k} \) for \(i = 0, 1, \ldots, s - 1 \), then we may write

\[(3.4) \quad g(x) = \sum_{i=0}^{m-1} g_i(x^{i+s}) \].
On the other hand, any element F of S_m has the form $F = \{f_i(x)\}$ (for $i, j = 0, 1, \ldots, m-1$), where each $f_i(x)$ is a polynomial over $GF(q)$ of degree less than s, and we may rewrite the matrix F as follows:

\begin{equation}
F = F_0 + F_1 x + F_2 x^2 + \cdots + F_{s-1} x^{s-1}
\end{equation}

where each F_k ($k = 0, 1, \ldots, s-1$) is an $m \times m$ matrix over $GF(q)$, and the (i,j)th entry of F_k is the coefficient of x^k in the polynomial $f_i(x)$.

Now for each F_k, there exists a polynomial

\begin{equation}
g_k(x) = \sum_{i=0}^{m-1} b_{ik} x^i
\end{equation}

such that F_k is the matrix representing $g_k(x)$ in the ordered basis B, that is, $F_k = [g_k]_B$.

It is now fairly obvious how to define an isomorphism between S_m and R_m. If F is given by (3.5) and the corresponding $g_k(x)$ are given by (3.6), define a mapping $\varphi: S_m \to R_m$ by

\begin{equation}
\varphi(F_{ab}) = g_k(x^{ab})
\end{equation}

where it is understood that map φ is to be extended linearly to all of S_m. It is clear that this is indeed a map from S_m to R_m, since every element of R_m may be written in the form (3.4). Evidently addition and scalar multiplication by elements of $GF(q)$ are preserved, and it follows from Theorem 2.1 that φ is bijective. It remains only to show that the map φ preserves composition. Suppose that $F = [g]_B$ and $H = [h]_B$ are any two matrices in $GF(q)_m$. Then if i and k are positive integers less than s, and $i + k = j (\text{mod } s)$, we have

\begin{equation}
\varphi(Gx^i) \circ \varphi(Hx^k) = g(x^{im}) \circ h(x^{km}) = g(h(x^{km})x^{im}) = g(h(x^{km}))
\end{equation}

since the coefficients of $h(x)$ are elements of $GF(q)$. Since $Gx^i Hx^k = Gx^j$, and $\varphi(Gx^i) = g(h(x^{km}))$, it follows that

\begin{equation}
\varphi(Gx^i) \circ \varphi(Hx^k) = \varphi(GHx^j)
\end{equation}

and so φ preserves composition. Thus φ is an isomorphism. This completes the proof.

4. The group of units of R_m and related results. In order to characterize the group of units of R_m we will use the following known facts.

Lemma 4.1. If S is a commutative ring with 1 which has the direct sum decomposition $S = \bigoplus_{i=1}^{t} S_i$, then $(S)_m = \bigoplus_{i=1}^{t} (S_i)_m$ and moreover $GL(m, S) = \bigoplus_{i=1}^{t} GL(m, S_i)$ so that

\begin{equation}
|GL(m, S)| = \prod_{i=1}^{t} |GL(m, S_i)|.
\end{equation}

Theorem 4.3. Let $S = GF(q)x_{1}/(P(x)^t)$ where $P(x)$ is an irreducible in $GF(q)[x]$ of degree d, then

\begin{equation}
|GL(m, S)| = q^{md}\prod_{i=1}^{\infty} (1 - q^{-di}).
\end{equation}

The proof of Lemma 4.1 is easy. As for Lemma 4.2, one can use the formula of McDonald [5] once it is noted that S is a finite local ring. Basically, the proof uses the correspondence theorem for rings together with the facts that (i) $M = P(x)$ is the unique maximal ideal of S, (ii) $M/M = GF(q^d)$ and (iii) $A \in (S)_m$ is nonsingular iff $\mu(A) = \mu(\alpha_0)^{\epsilon}/(S/M)_m$ is nonsingular where $\mu: S \to S/M$ is the natural homomorphism.

Theorem 4.3. Let $S = GF(q)x_{1}/(ax_1 - 1)$, and suppose that

\begin{equation}
A = P_1(x)^tP_2(x)^t \cdots P_t(x)^t
\end{equation}

where the $P_j(x)$ are distinct irreducible elements of $GF(q)[x]$, and the degree of $P_j(x)$ is d_j for $j = 1, 2, \ldots, t$. Then $S_j = GF(q[x]/(P_j(x)^t))$. Then $GL(m, S)$ is isomorphic to the direct product of the set $\{GL(m, S_j): j = 1, 2, \ldots, t\}$ and moreover

\begin{equation}
|GL(m, S)| = q^{md}\prod_{i=1}^{\infty} (1 - q^{-di}).
\end{equation}

Proof. It is only necessary to note that $S = S_1 \oplus S_2 \oplus \cdots \oplus S_t$. Then by Lemma 4.1, $GL(m, S)$ is isomorphic to the direct product of the set $\{GL(m, S_j): j = 1, 2, \ldots, t\}$. To get the equality (4.4), use Lemma 4.2:

\begin{equation}
|GL(m, S)| = q^{md}\prod_{i=1}^{\infty} (1 - q^{-di}),
\end{equation}

and from Lemma 4.1,

\begin{equation}
|GL(m, S)| = \prod_{j=1}^{t} |GL(m, S_j)| = \prod_{j=1}^{t} q^{d_j}\prod_{i=1}^{\infty} (1 - q^{-d_j})
\end{equation}

Corollary 4.4. If $R_m = \{ \sum_{j=1}^{n} a_j x_j: a_j \in GF(q)^m \}$, then the group of units of R_m is isomorphic to the direct product of the set $\{GL(m, S_j): j = 1, 2, \ldots, t\}$ of Theorem 4.3, and the order of the group of units of R_m is given by (4.4).

Corollary 4.5. Under the hypothesis of Theorem 4.3, if also $(s, g) = 1$, then the group of units of R_m is isomorphic to a direct product of general linear groups.
Proof. If \((r, q) = 1\), then each exponent \(e_k\) appearing in the factorization (4.3) of \(x^d - 1\) is equal to one, and each \(S_j\) is isomorphic to the field \(\text{GF}(q^d)\). Then \(\text{GL}(m, S_j) = \text{GL}(m, q^d)\) is a general linear group.

It should be noted that (4.4) can be derived directly from the result of Parahat [4] which gives the order of any finite ring \(S\) with 1 in terms of \(\text{rad}S\) and the structure of \(S/\text{rad}S\) as assured by the Wedderburn–Artin Theorem. This involves however computing \(\text{rad}S\) and knowing exactly how \(S/\text{rad}S\) decomposes into a direct sum of matrix rings over finite fields.

As final items we consider several interesting combinatorial questions. Suppose we are given the polynomial

\[
(4.5) \quad f(x) = \sum_{i=0}^{n-1} b_i x^i, \quad b_i \in \text{GF}(q^n),
\]

so that \(f(x)\) acting on \(\text{GF}(q^n)\) as a vector space over \(\text{GF}(q)\) is a linear transformation \(f\). The questions are (i) How many \(\psi(x) \in \mathbb{R}_n\) when acting on \(\text{GF}(q^n)\) equal \(f\) and (ii) How many of these \(\psi(x)\) are in the group of units of \(\mathbb{R}_n\); i.e., are permutations of \(\text{GF}(q^n)\). The answers to these questions are the content of our last theorem.

Theorem 4.6. The number of polynomials

\[
(4.6) \quad \psi(x) = \sum_{i=0}^{n-1} a_i x^i, \quad a_i \in \text{GF}(q^n),
\]

whose restriction to \(\text{GF}(q^n)\) defines the same functions as (4.3) is \(q^{n(n-m)}\). Of these, the number which are in the group of units of \(\mathbb{R}_n\) is zero if \(f(x)\) is not one-one on \(\text{GF}(q^n)\) and is \(q^{n(n-m)}|\text{GL}(n-m, q)|\) if \(f(x)\) is one-one on \(\text{GF}(q^n)\), where \(|\text{GL}(t, q)|\) is the well-known number \(\sum_{i=0}^{q-1} (q^t - q^i)\). Thus, in particular, the number of such extensions of \(f(x)\) is independent of the function \(f(x)\).

Proof. Any \(\psi(x)\) of the form (4.6) may be rewritten as

\[
\psi(x) = \sum_{i=0}^{n-1} \sum_{j=0}^{s-1} a_{i+j} x^{d+i+j}.
\]

If \(\xi \in \text{GF}(q^n)\) then

\[
\xi^{d+i+j} = \xi^i \xi^{d+j} = \xi^i,
\]

so that

\[
\psi(\xi) = \sum_{i=0}^{n-1} \left(\sum_{j=0}^{s-1} a_{i+j} \right) \xi^i.
\]

Hence

\[
\psi(\xi) = f(\xi) \quad \text{for all } \xi \in \text{GF}(q^n)
\]

if and only if

\[
\sum_{j=0}^{s-1} a_{i+j} = b_i \quad (i = 0, 1, \ldots, m-1).
\]

The number of solutions \((a_0, a_1, \ldots, a_{m-1})\) to this system of linear equations is independent of the particular \(b_i\) and is \(q^{(s-1)m} = q^{(n-m)}\) which completes the first part of the theorem.

As for the second part, clearly if \(f(x)\) is not one-one on \(\text{GF}(q^n)\) none of the \(\psi(x)\) maps on \(\mathbb{R}_n\) whose restriction to \(\text{GF}(q^n)\) equals \(f(x)\) can be one-one; thus, assume \(f(x)\) is one-one on \(\text{GF}(q^n)\). Any linear map is completely determined by its action on a basis. Thus if \(f(x)\) is given linear and one-one on \(\text{GF}(q^n)\), then the number of ways to extend \(f(x)\) to a one-one linear map on \(\text{GF}(q^n)\) is precisely the number of distinct ordered linearly independent sequences of \(n-m\) elements of \(\text{GF}(q^n)\) which are bases for complementary subspaces of \(\text{GF}(q^n)\). By a standard argument, this number is given by

\[
q^n q^{n-1} \cdots q^{n-1} = q^n(q^{n-m} - 1)q^n(q^{n-m} - 2) \cdots q^n(q^{n-m} - q^{n-m-1}) = q^{n(n-m)}\text{GL}(n-m, q)|.
\]

This completes the proof.

References

Received on 17.9.1972