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0. Introduction. We shall follow the motations introduced in [27;
in particular any product w(n) = y(n)n® is called a generalized Dirichlet
character. We set |lw| = ¢(l#|4-1), where ¢ is the modulus of the Dirichlet
character y. If Q is a finite set of generalized characters, we denote by
[£] the cardinality of 2 and by D = D() the sup Jw'w]. £ iz said

oo
w,w’eld

to be d-well spaced i for each w, v'cQ, 0 # w0 = y(H)nt, o’
= 7'(n)n" we have either [1—#|>8 or 5y non-principal. 4 de-
notes the set of integers between N/2 and N. Moreover we define

the Dirichlet geries operator 2 = Z(4, 2) as in [2]; thne one hag the

inequality
3] 3wt < 191,( 3 o
@ ra N

We denote by N (a, T'; ) the number of zeros ¢ = B+iy of- L(s, %)
in the rectangle a < f <1, ly| < T'; N (e, T) denotes the number of zeros
of {(s) in the same rectangle. For any finite set X of Dirichlet characters
x wo get

Nia,T; X) = X N(a T g).
xe X

Wo associate to each zero g = f4-4y of L(s, x) the generatized character
w(m) = g(n)n~"; following the method infroduced in [1] we ghall de-
termine certain cocificients a, <€ #* such that the Dirichlet polynomial

2 @ (n)y for a guitable N between DV and D4, assumes large values
Fo

on a well gpaced ot @ = Q{a, T'; X) of generalized characters of cardi-
nality approximately N{e, T; X). At this point one may readily apply
the results of [2] for the Dirichlet series operator to obtain. the following

* Remearch supporbed by Cousiglio Nazionale delle Ricerche.
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Tamorem 1.1. For any p,q=2 and for a suitable constant €20
one has

'———Q‘a—l—a
Nia, T} X)L ”-@“q,qu logO-D’
Note that if the eonjecture
1 L AL e
|2y, p <(H* +D? )N* 7

in [2] Section 4 held, one would obtain from Thez’nfgﬁ'}.l, with ¥ = I¥,

p = 2/ the density hypothesis N (a, T X).<D e, .
Using the estimates proved in [2], we doeduce first of all foi tht? xI-

functions {(ef. [6]) the classical result of Ingham for the zeta-function:

+e)

3(1—a)

ple) € —5—>

Wherepl(a) is the least exponent such that
N(a, T; X) < DA

uniformly in I a1 o _ ,
Continning in this direction we obtain the following dqnmty theorems,
which improve some of the recent results of Montgomery and Huaxley
(cf. [5] and [6]):
TrrorEM 2.1. We have

N(a, T; X) ,< _DH1(0()+3’

where .
45
— _{d—a) for 3<a<li,
B lo) = .
2(1L—a) for aaﬁ_“gm‘/E:.sus...

Remark. Arguing a little more carefully in the proof of the theoremn,

. 45 4 +]
one may replace the eon.stantm == 2.4633 ... by a slightly smaller

one. The corresponding congtant found by Montgomery [6] was 3

For the zeta-function we obtain (compare with [5]):

TesorEM 3.1. Let a* = .8079 ... be the greatest root of the polynomial
64a®— 28a% — B0 +33. Thon

Nla, T) & T+,
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" where
Zl—a) for i<e<l,
tu]. (a) g *
2(1—a) for azda.

Remark., Huxley [5] bad obtained the density hypothesic for the
zeta-function for o> . _

As is well known, density estimates for the zeros of the I-funetions
and the zeta-function have important arithmetical applications. For
example, using in the arguments of Gallagher [3] the above value ¢

45
<m,_one obtaing quantitative improvements of Theorems 2 and

3 in [3] concerning the distribution of primes in progressions having

& prime power as modulug. In particular one sees that the smallest prime
45

in an arithmetic progression of modulus p* is <pp2°“‘/3.

The above results are based only on trivial estimates for the order
of the functions L and { in the critical strip. Using deeper estimates (see
e.g. [4], [7]) we can extend slightly the interval of validity of the density
hypothesis, ag well as improve the bound Ha(a) < 2(1 —a) in regtricted
ranges. In this way, we have both proved the density hypothesis for the
zeta-funetion for o> .8059 and obtained some bounds slightly better
than Huxley’s for a> & : :

Added 20. 9. 1972. Affer having finished thiz paper the authors
learned of further improvements made independently by M. Jutila and
M. N. Huxley. In particular, Jutila’s results allow one to replace the

45 :

20-V3

3 — .
eonstant by—fg (94+V17) = 2.4605... in the statement of The-

5+V3 . B

orem 2.1 above, ay well as 3 by E.Results of the same strength have

been obtained by Huxley.
The process which we have used, based on.the general estimate

(1.18) below, differs from the methods of Jutila and Huxley and may

be congidered a direct application of the ideay developed in [2].

The authors are indebted to Professor Bombieri for a number of
helpful suggestions.

1. Preliminary results.

Levma 1.1, For any a, T, X there ewists a set of zevos of Ls, 1) xe X,
o the rectangle o < o <1, [t| < T, such that the set £ of associate characters
satisfies the following conditions:
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(i) @ és log?D-well spaced;
(i) 19 > N(e, T; X)log™2D for a suitable constant 4 = 0;
(iii) there emist cogfficients a, <& n" such that for cach we Q

N ‘
(1.1) Y ago(n) 3> Nog™ D

V2
for & suitable N between DU~ amd DEHFOOA Capith 4w arbitrary,
0< A<ly>0. In pariicler we may lake N between DY and Dt
(8’ < 6'”). . .

Proof. Subdivide the rectangle a=lo«l 1, | T in horizontal
strips of height logD. Sinee N(a, t--1; x)—N (a5 x) <€ logD, each
strip combaing O(logdD) zerog of L(s, x) for every yeX. Let us chooge
a zero from every third strip. The set £2, of characters associated to these
zeros obviously has carvdinality |2,[ 2 X (e, T ylog™3 D. Setting 2,
= | 2,, we see that 2, is log" D-well spaced, and thatb

“ 123 3 N (e, T; p)log™D = N(a, T; X)log™D.
e

Let 2, be the set of thowe characters w(s) = 2(m)n~7e 2, such that
(1.2) Lis, g} 0 for [t—9] < log® D, ,
and set @, = 02, — £,. Tt follows that |2, < ¥ (a8, T; X). Therelore,
either
(1.3) N, I'; X) <€ |2|Tlog>D
or

oz a+ gy,

N(o, I'; X) <€ Nlats,T; X);

in the second cage one can argue as above for the zeros in a5 < o= 1,
|| < 7. Thus we may assume that (1.3) holds. From (1.2) it follows (seo
e.g. [1]), for 5 > &,

1 . . ;
(1L4) L <€Dy, <D inozaty [f—y| < tlog?D.
L(s, %) _
Now let
I N YL OF1C)
g(‘?? X) - L(_S’, Z) "—" % w
and ‘

Jr,n(8; %) =
¥ ¥ < D?, we obtain from [2], Lemma 2.1, choosing § = a-}-5— o, and
from (1.2), (1.4) above, that: '

grals ) < D' ¥ in o< atn, [i—y) <} logt D,
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We observe that
L8, )9ra(s 1) = O bu i V) g(m)n",
with " |
boa¥) = Y i@ 7 <o
¥ Y <Z <€ DF, we then have (;g; [2], Lemma 2.1)

1 by (¥ ~(2)F
A5 (Do Drate, s = > 22T, 6

= I8, 0)9ru(s, 1) FO(DZ T+~ max Lo+ 541t 1)]),

it—y|<ilogiD
for ~kf2<d<0,0<<atyp—4.

d\k .
If m< Y'F (0 < A< 1), we have e 7 = 1+0(Y""™), from which

it follows that

1 forae=1 .
b, o (¥) = O (y—#tey
#(T) |O for fn>1}'+ { )
Hence
d b XY g(m) (i
n=1 - -

Zl1+4 .
O Dz
- Orp2) 2 (%) pi-a—dkiey
1+ I% e o )

Given we £;, let g = f-+iy be the associated zero. Setting

-
Oy = bn;k(y)e s <%e,

we have from (1.5) and (1.6), for s = g,

. Zl+l
(1.7) Z n @, (n)
pi—i
= =140 (Y L (D2 Yo7 max  |L{+ 8-+, 1))
li—y|<3log?D

Now let o* = %; following [1], we define u(o, o*) as the least exponent
gueh that
L{o -ty 3) € (qTy

uniformly in g, for { in the intervaly ¢ —y| < log? D, undel the condition
that L{s, ) = 0 for ¢ > o*, [t —v| < log?.D. Obviously g (o, o*) is a convex
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function of o; furthermore u(o, o*) = }—o+u(l—o, o*) and, by (1.;1;),
0 for
t—c for

It then follows from (1.7) that
Zi+4

Z a~t g, 0(n) = —~1-40 (yl—ﬂ—ﬂk-l~s) +0( Al ! J)M(ﬂ+d.u-{-n)+')_

yl—i

'Y
c=0,

. *
o, o) =
ploy o) <10

By the convexity of (s, o*) we obtain that p(a-+4, a-+7) < —
Hence, for ¥ = I, 2 = D¥'+u,
Zl4-A

Z ﬂ"ﬁanw (’ﬂ) = —14+0 (Div(l—q—ﬂcﬁ-a)) + O (_Ddsl-{-_(y.i,})q.{.g) .
yl-3

IR

i
+2-

(r+Hn+te

Ohoosing k > L and 6 < —
A £,

, 'Wo gee that

Dplie-bag) (14+4)
(1.8) D aa,0n) = —~14o(l).
oy~
For the mke of brevity we set #(1—4) =&, (3--v+e)(L+4) = b; we
gubdivide the interval D% < s =< D® into subintervals

I L L 2D (1< h K m; m <€ logD).
For every we _Qb, by (1.8), there exists a % sueh that
sk p
(1.9) _ 2 g, (%) > log=tD.
ofo1pd

Thug, for a suitable k,, the set Q of those we Q, for which (1.9) holds
“i8 such that

(1.10) . 191> |@llog™D.
For N == 2% D% it follows from (1.3), (1.9) and (1.10) that 2 and N satisty
the required conditions. Q.B.D.

Romark. Let y(a) —lim £0TH %D

. We have
P —h
wlatd, a--n)
n— 8
we may thercfore replace the exponent }+v-+¢, in (iil) of Lemma 1.1
by y(a)+»+e.

<ylatn)+e < yla)+a
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From (1.1) we obtain, for ¢ =0,

2 ] i @, 00 (1) ‘q > [Q[N*log™?

2 V2

from which follows immediately (2 = Z(¥, £)):

TaeorEM 1.1. For any p,q= 2 and for a suitable constani O = 0

one has ' :
' 2 —gats a

(1.11) Nie, T; X)L || 2HE N * log®D.

For the applications of Theorem 1.1, we shall use the resalts of Sections
3 and 4 of [2], in particular the estimates (Theorems 4.1, and 4.2 of [2]):

e (NG N2 (A OIRE,

B

L NG (A 9

(1.12) @) <N :

(1.13) ”9( )lnk ok

together with the esmmates of ||Z,,, contained in Seetion 3 of [2], in
particular
(1.14) 2. < N +D10g“1),

1 a8, 4
18 (1 —t) e
(1.15) 2 <L N+ N Di-*e| Q|4+ N D? 2+(1 2}”1(1 )+

for 0 <8< 4,

{Theorems 3.2 and 3.4 of [2]), where p,(«) denotes, as in the sequel, the

' least exponent for which ¥ (a, T; X) <& DAal+s,

2. Density of the zeros of L-functions. From now on we let ¥ = D%,
Hence we may chooge £ so that

(2.1) | < ES hto”
From (1.11), (1.13) and (1.14) we obtain.

(¢ < ).

Nio,T; XY &£ DEE(—a)+e . Plkili-ta)e
whence

#2(a) < max {2%E (L —a), 1+ kE(L—20)},
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for any choice of the positive integer k. Since 2L&(1— o) 2 1+ k&(1L —2a)
if and qnly if k& >= 1, we have, with

1
| (2.2) k= [?],

{2.3) iy (e) < minf{2(k-F 1) EQL—a), L+-EE(L—20)}.
1 ) " vy e _u_‘_‘__,i,l:#_,_ T T .
Since 2(k4-1)6(t—a) = 1+hE(L~2a) for &g, it followy

from (2.8), for o suifable %, that

2{k-+-1) (1 —a)

(24) mle) S T

Note that one may assume % 3> 2, because were = 1 it would follow from
(2.2} that &> 4, contradicting (2.1). Moreover the right-hand side of
- {(2.4) docreases a8 b increases; thus, with & == 2, wo obtain (ef. [6]):

3L~
(2.5) te) < 2522

- '
From (1.11), (1.13) and (1.15) il follows that
: N(a, T; X) <D2?c$(1-—a)+a e _Di—ﬁ-l-i’cﬁ(l-l-d-—ﬂa)~|-aN(a, ,T; X) +

1 48 ]
s el Lo gy (10 o (1 6 Bt} - 6
| + PP ( 2) 1 ,
whence, with the assumption
(2.6) 3—04+kE(A - 6—2a) < @,
we conclude that
2.7) )
- 1 6 8
& max 1 25E(l— a),-z— -5 L ry (L= Y BE(L -} 6 —2a)

“for every positive integer k and every 6 gach that O < § 5 %
From now on we guppose that (2.2) holds. It

(2.8) (L) < 20,
we obtain the demsity hy‘pothea'is

(2.9) - pala) < 2(1—a),

icm
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provided that e satisfies
1—0
ke 7
P—E6+ 4
1—kE

20> 146
(2.10)
Za 1464

It being obvious that k& > %, the inequalities (2.10) imply that 1 —86-+
V3

+46*2 0. The largest value of ¢ is, therefore, § = lm—é—, and thus

wo have the following

s
Levva 2.1. For o= 6+V3

the density hypothesis py(a) < 2(1—a)

holds. _
We will now obtain an estimate of the type

(2.11) pr(a) < o(1—a) |
(¢ constant), wniformly in << a1 By (2.8), (2.11) is obviously valid

Cif &< /(26 +-2); otherwise %&£ > /3, whence, by (2.6) and (2.7}, (2.11)

holds whenever

1 I '
5~ 0t (L+s—20) <0,
and
1 ] ] ¢
TR +(1—5) p;(1—6)+§(1+5~.2a)§a(l—«a).

Let us suppose now .
(2.12) pa(1—8) < bé;

in order that (2.11) hold it suffices that

. 2a>1+6+—3"-(-l-—ﬁ)a
¢ \2
(2.13)

2a.fg4—-—25—%{1+(2b—1)5mbaz}. .
N

The inequalities (2.13) are compatible if

214 I L
: > — )

By Lemma 2.1, (2.12) bolds for b, =2, 6, = 3—;;/3— From (2.14) we
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then obtain that o> 0-V8_ . d from the first i lity
en onTain ant ¢ Qg o= a1 (axael 6 Iirg mequaly
=0T a4v3) 9
381 —5V3

f (2.13) that ez gy = . We may therefore put b, = e,

16(30—V3)
8, =5%<l—ap in (212), (2.18) and (2.14) and verify directly that
(2.12) holds for

47 B(2—V3)

b="——“ R mrmr—
207 T a(5—v/3)

On the ofher hand it follows from. (2.5) that {2.11) holdg pi'ovided.thwé';%
o< 2—3/0; from the firgt inequality in (2. 13) (2.11) will hold in the

whole interval 4 < a1 if 4:v--—>1+5+ (3~9), o
| 3(5—28) |
(215) [ "5-(3_-::-6—)-.‘]

For § == §;, (2.18) gives c,» - I/m’ which iz greater than the v&lue

given by (2.14) for b == by, 6 = 8.
This proves the following
Loynra 2.2, For § < a <1 we have

45

20 _v3 LT

Ml( ) <

We summartrize the preceding results in the following
TrEoREM 2.1. We have

N(a, T; Xy L DH®,
where

t<ag,
+V3
8

4B » |
_20~_V§< —a for

2(1~a)

Mz(“}_g

.
for az = 8415 ...

3. Density of the zeros of the zeta-function. In the special case of the
zeta-function Theorem 2.1 can be improved, keeping in mind Remark 3.5
of [2] (ef. [5]): from (3.14) of [2], with V= 1" (0 < < 1), we obtain,

icm

Density estimates for the zevos of L.functions 389

for 0<o< Y,

L s P D S T O Y S
1918, < NT-r 4 31 g 4 o bl

Sueh an estimate, combined with (1.11) and (1.13), yields

':7(%-—6)+k5(1+ﬂ-—2a)+a

(81) N(a, T) < TeH0—a)tl—nte . p N{a, T)+

N Tx_,,{; + {110 |+ e 8m20) 4o .
Hence, for the zeta-function, we have u;(a}< 2(1L—a) provided that -
(3 —8) +kE(L+ 6 —2a) <0,
(3.2) 2ké(l—0a)+1—n < 2(1—a),
L} 38+ 0%+ RE(L+ 6 —20) < 2(L—a),
where k = B_—] and u(1—38)<24.

Inagmuech as it is convenient to choose # as large as possible in (3.2),
we will set
2a—1 -8 }
-8 J

Iy =1we Teobtaﬂin the conditiong (2.10); otherwise we have

(3.3) y = min{l, hE

.y
k§ ?
k&
(34) Zaz1+ RE(3_20)—1-+26
> 1404 e
For k¢ = § it guftices that
528
20T
(5.5) 1426280
IR = TR

' L . B—ba
From. the first inequality of (3.3) we obtain that ¢ = yrmr Thus, for
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a < i, we may put

h—Ga
(3.6) [ =~
obtaining
(3.1 640~ 28a? 60433 20

Let of =.8079... he the greatest root of the polynomial (8.7); since,
with the value of 4 in (3.6), the inequalities (2.10) aro 001111)4:1‘11‘)1(5 for
o> o, and keeping in mind that the first inequality of (3.4) is comple-
mentary to the fivst of (2.10), we have proved the following

TmaMA 3.1 For oo == 8070 ... the density hypothesis Hala)
<5 201 — a) holds for ihe zeta-function.
Note that, with the choice (3.3) for s, the exponent 25E(L—a) 41—

. . 1 5 8
in {8.1) decreases ag § increases, while 1 —q {_, -+ 2 (1 — —9:—) syl —8 } +

+ k&L 6~2¢a) increases as 8 inurea,sas; if we impose the condition
that the second exponent does not exceed the first, we obtuin

1~ 3624
L+ (20—1)§—~bor’

provided that (2.12) holds. It followy that
pa(e) < 2KE(L—a)+1 —y
ke ‘
= Tax {2765(1 —a), 14 ——L—f-?n-s— (2 8-—(3—28) a]} .
!

2145

Bince we have u, (o)< 2(k-+1) S(l——a), we may chooge £ so thatb

S(h-+1)E(1~a) = L+ ?TA {2»«%(3 26)a],

whenee, for & =2, £ m -0

* Thug we hwve proved the
(3a8)a—1—d6 Mo 1 '

following:
LrvmA 3.2, If 8, a are such thet
' e G & A B8
= 1 .hl- 6 ..|~. .._,w,.w.:!.rm S ,!n.am.e:r ey
1426 —1) 5~ bs*

365 _
B Teeai—as ¢ a)}

Gy (L—8) =108, 2n

then

o (a) = max {2 {1 ~

Putting & == 0 in the above lemms, we reobiain the following result of
Huxley [6]:

icm
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CorOLLARY 3.1. For a< i we have

3
8a—1

(1—a).

M (.a) =

Combining this corollary with Theorem 2.1 we have {cf. [5]}:
OoroLTARY 3.2. Hor J a1 we have

(o) < (1 - a).
From Lemma 3.1 and Corollary 3.2 we deduce

TeBoREM 3.1. Lot ¢ = .8079 ... be the greatest vool of the polymomial
64a® —280% —80a-1-33. Then

N{a, T) L T,

where

B o d<as,
1 = 2

2(l—a) for «

a*.
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