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1. Introduction. In the following paper we shall first extend Theorem
I of [6] 50 as to remove in that theorem the unnatural condition that

. & certain effectively computable polynomial does not vanigh. To be precise

we obtain the following result:
. d
Let z denote a complex variable; let D denote e let 1 denote

a fixed integer larger than or equal to one; and let each g(z), for 1 £ <,
denote a polynomial of degree at most j—1 that has coefficients in the
Gaussian field; i.e. Q(¢). Suppose that ., ..., y, denote any ! lineatrly in-
dependent solutions of '

¥
(1) ¥ = > gy Dy.
: J=1

Suppose further, that for some 0<{t<1-1, Y1y «eoy Y belong to the
vector space over C generated by all differences of two branches of a so-
lution of (1). Let 2,, ..., 2,, denote any m 2> 1 distinct points of ¢ (i) none
of which are zeros of g;(z). : '

TomoreM I. The. field F generated over Q (i) by the numbers D%y, (z,),
Jor L<i<l1<k<m, and 0 < < oo, has dimension over Q{5 at least
ml(l—1)7" '

Also we shall prove: :

TaporeM II. If y = 0 satisfies an equation of type (1) and 2, and z,
are two distinel poinis in Q(3) such that ¢,(z,)g,(z,) # 0, then there ewists
a power series coefficient of y(2) at either & = 2, or 2 = 2, which is not in
Q). | |
In {6] the conjecture was made that if g,(#) has I —1 distinet roots
then we would “usually” be able to choose functions Yyyoery Yy BDOVE
80 that ¢ =1-—1. (Some qualification is necessary since one may plek
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the various coefficients in our equation so that each solution of (1) is
entire.) Suppose now that X,,..., Xj_, are {1 fixed distinet points
!

in ¢ such that [](z—X,) belongs to @[4,#]. Consider the equation
j=1

-1 . -1
@) wo= (3 mad) Doyt I
‘ o ]

where the I(1-1)/2+1 paramoters ¢ and the v, take values in ¢, Let G

denote ¢ minus cuty from each X; to g = no.

TreoREM TLL. Given any 2y in @ (3) NG thers epist 11, fmwbwm “5’1, .
Yo, of y, the v;, end 2 which satisfy (1), whioh satisfy T (2,) = fSH,
[ ,

for all 0 < s <T—2 {and all points in C L ) and whioh are such - that
there cmst a simple closed curve ¢, that does not pess through any of the

points Xy, ..., X, and solutions W (l i1y of (1), which are
z(z+1) .
analytic on G ° x@Q such that the difference between any W; and its
continuation around ¢ is hyY;, where each h, is a non-zero cwntire funclion
AR

+1
of v und the y; . Therefore, if the parameters in (2) have a valuo De (@) *
the Y1y -, Yy are chosen as lincarly indopendent solutions of (2) at the pomt
r whwh are in the vector space over O spamned by the Y, l=j<i-1)
and the Yo 1, ..., Y are chosen so that, at I, 4y, ...,y are a fundemental
sysiem of solutiom of (2), then we are in the case described by Theovem I

-1

above, unless the entire funotion y ([T k) vanishes at I'.
. it
However, more is true:

THrOREM IV. Bven if ( ” hy) vamishes ai T, the field T generated over

Q (%) by the power séries cosffwwms of the y;, 1. < § <1, at the points 2y, ..., 2
(where cach =, belongs to ¢ ( @) and no 7,18 an X, 1 < i, <5 1-~1) has d@mensim
©oover Q1) at least mI(l-~1)"

Comments. In [6] we already gave several examples of Theorem I.

~ Algo Theorem IV allows us to see that Theorem I applies in very many

cases with ¢ == I -1, There 18, however, loss of information in our present

more general case a8 to exactly which elements 6f J' can not be simulta-

- neously approximated very well. Thus it is difficult to formulate a theorern.
analogous to Theorem IV of [6]

The results in this series of papers extend work done by Popken,
in his thesis [7], on the simultaneous diophantine approximation of power
series coefficients of an entxre solution. of an equation of type (1) at o Ta-
tional pomt
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In the Addendum at the end of this paper we use Theorems ITT and
1V, along with their proofs, to see that under certain circumstances collec-
tions of I—1 elements of F can be approximated better than almost all
elements of B, despite the theorems in [23-[6] and the present paper
which might suggest otherwise.

In the seeond section of this paper we apply one of the new methods
used in the proof of Theorem I to an analysis of the algebraic structure
of some of the solutions of equations of type (1). (A much more complicated
approach was used in {47.)

Drrmirrons. By a purely. formal power ser ws (henceforth a p.fp.s.)

we shall mean a formal sum of the form ,.V 2 a.,w~"'*“ (T(n-+e-+-1)71
= l n=g

where the ¢s and the g, ;'8 are any complex numbers and we view each
A{M(6+1))7" as a formal object satistying merely

(i) D (ro+1))7Y) =16
and
(i) zD(MT(04+1)7Y) = o[ (T(o+1))7.

Using maultiplication by powers of # and I} we may change any linear
homogeneous differential equation with coefficients in Q[4, z] into one
of the type

H
(3) 5‘ hi{2D) D'y =0

where each kj(zD’) belongs to @[, 2D] and I is a non-negative integer.
Let K denote the set of all p. f. p.s. which are solutions of equations of
type (3). Notice that any equation of type (1) may he rewritten as identially
equal to an equation of type (3). Let M < E denote the set of all p. £. p. &.
which are solutions of equations of type {1). Let B’ =« R denote the subsel
of R consisting of all p. £. p. s. which satisfy an equation of type (3) with,
at worst, a regular singuliar point at & = oo.

By a formal power series (L. p. 5.} we shall mean a forma,l sum of the

T ~

type 3 3 a,,;2"%% for complex numbers ¢; and a,;. (If w is any
Fe1 =t

f. p. 8. which iz a solution of a linear homogeneous differential equamon

with coefficients in Q[4, 2] then w satisfies an equation of type (3).

no ¢; is a negative integer then we may write w as %, a p. L. p. &, in an
obvious way. As a p. L. p.s. % satisfies the same equation of type (3} as
w except that, in general, there is a non-homogeneous term which is a
p. £. p. 5. with a finite number of terms each of the form b_pz~"(I'(1 — 8))7"
where f is a positive integer. Thus, multiplying through by (2D —1)
...(eD—N) for some positive integer N, we see that i< R. Note
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also that if % is a p. f. p. s. formed from w by first deleting all terms with,
6+ ¢; equal to a negative integer and then rewriting what is left ag a p.f.p.s.,
if follows that we R.)
Let us define y+y, for ¥, and y, in B by
(10, + 1)) a2 (I{0,+ 1)) = P (0,4 0, +1))7
for each pair of complex nambers ¢, and 6, and extending by linearity.

TrROREM V. The set R is a ring wnder % and .

taporEM VI. (i) If y(2)e It and yy(2)e M ihen yy(z)wy,(t2)e M for
all algebraic values of L with bul of most o finite number of exceptions.

(i) If 4o (2)e B and iy,(s) ¢ M then we always have that yy(2)xy,(2) e M.

Clearly in the above Theorern we may apply Theorem IX if y, (2)wy,(te)
doeg belong to M and the p. L p.s. for y,(a)ry,(fz) does converge to
a fonetion on some deleted neighborhood of z == 0. However, more ia
frue.

TaROREM VII. Suppose that y< M and that y represents a not identically
zero funcltion on some deleted neighborhood of z = 0. Suppose that y con
be continued analytically to some non-zero point 2y« K where [K:Q(4)] < oo.
If there emists an equation of lype (1) which is satisfied by 4 and of which
zy 48 not o singular poind then

"(4) max. {|ly" (z,)

0kl

— g} > gl

for all Qaussian iﬂtegers Py, and g with lg| sufficiently large, where d > 0,

1> 0, and the lower bound on |q| each depend on y and z,.

Tamorem VITL, Suppose thet v, == 0 belongs to R, 1, 5= 0 belongs fo
M and that y = y,*y, belongs 1o M. Suppose that ¥, and y, each represent
Junctions in & deleted neighborhood of z = 0. Let X denote the largest region
which is starshaped about zero and which containg no non-eero singularities
of the respective equations for 4, and y,. Let K denote any finite extemsion
field of Q(1). Then (4) holds for d > 0,1> 0, and the lower bound on |q|
each depending on 4 and #,. .

. Comments (continued). The theorems in Section IT allow us to
seo that one may construet many functions to which we ean apply The-
orem I (or Theorem VII) and which are not entire functions at all. One
would like to prove a theorem showing that either M or the set of all
solutions of equations of tiype (1) is closed under ordinary multiplicuiiow,
sinee then a transcendent&l‘ty proof might be possible. This iy trivially
impossible since 1 = ¢%e™" = 4@ e™"® where w;(s) is a solution to
plw) =2 for any p(w)e @i, w]. Using asymptotic expansions about
2 = co one can find many other such examples. To see that, in general,
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M i3 not closed under * note that

_1_"___1__-113.5 /%
zzf—(ze )(z&

and take inverse Laplace transforms of both sides of the above equation.

This yields
(-t 1 @
at)? *g (n1)?

The latter two functions s&tlsfy Yy = 4 DzDy while the funetion ¢ can not
satisfy an equation of type (1) by, say, Theorem IL.

¥

Section 1

DerFiNITIONS. By a formal series expansion about 2z = oo (f. 5.} we
mean an expression of the form

r &
Dgallogz)) 3 exp(p;a(s"™) £;,4(2)
bl i=1
where k2> 1,7 > 1, and r > 1 are each integers, each p; ;(z} and each
#n(@)e O[x], and each fj,(2) is a £ p.s. in 27 Two £. 8. are equal iff the
g8, the p; '8, and the f; ;’s are identical (see [1]).
Proof of Theorem I. In this proof we shall consider a more general
clasg of algebraic functions than we considered in [6]. Let m > 1 be a po-
sitive integer. For ¥,,..., ¥, and 2z each sufficiently near zero

e
m n(w—Ykz—zk) =z
k=1
m
defines #n distinet algebraic functions (note if 2 = 0 we have tha,tkn (w—)
s |
= 0, and the 2, are distinet by assumption). Regarding the ¥y, ..., ¥,
as indeterminants and letting L denote the field of algebraic numbers
with ¥, ..., ¥,, adjointed we know that there exist m f. p. 5. expansions
in #7! which satisfy (5). In each expansion we see that beginning with
a dominant term other than one of the ¥ ,# is impossible, since otherwise (5)
could not possibly hold. (Recall m > 1.) Algo interchanging the ¥;'s can
only send one expansion info another. Thus the m different expansions
gtart ¥,2+ ... for 1 < k< m. Uging similar reasoning we see that thete
are m f. p. 8. expansions in w™' of the form ¥;'w + ... which are also
solutions to.(5). Let us denote by w,(¢) and = (w), respectively, the £. p. 8.
above, a3 well as the functions to which they converge, with the epume-
ration being the obvious one.
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In [1] it is shown that given any linear homogeneous diffevential
equation of order I with coefficients meromorphic at 2 = co it possesses I
linearly independent solutions which are each f.s. expansions involving
only one exponential. Also in [1] it is shown that no more than § such
linearly independent f.s. solutions exist. In am equation of type (1) the
formal solutions must each have a non-constant exponential factor since,
as one may verify immediately upon replacing y in (1) by z“(ln(z)}", iy
expansion in terms of powers of # and a finite number of powers of hi(z)
can not be a solution.

With the y;, L=0j =, as in the hypotheses and the functions w,(2),
1< k= m, 88 above wo wish to show that the composite fTunetions fa/j(w,\,(z)}
have a not identically zero Wronskian, as a function of 2, ¥, ..., ¥,,.
Suppose not. We may write their Wronskian matrix as 4 (2, ¥y, ..., ¥,)
times (yf,”’ ('w,u.(z))w}ﬁ(z)), for 1ejeall, 002 0~1, Loh<sm, and
0= m—1. I was shown in [6] that the determinant of this latter
matrix is a power product of the Vandermonde determinant of wile), ...
+ -3 10, (2) and the Wronskians of the y,{wy(2)), ..., y,{w,(2)), for L« & < m.
Thus 4 (2, ¥y, ..., ¥,,) must be singuiar. It follows, ginee 4 (2, X5, ..., ¥)
has entries in Q(i,¢, ¥,,..., ¥,) that the rows of A {z, Y., ..., ¥,), and
hence of the Wronskian of the g;{w,(2)), are linearly dependent over
Q7,7 Xy, ..., ¥p). Thus there exists a linear homogencous differential
equation with eoefficients in ¢4, 2, ¥,, ..., ¥,,] which hag ovder less than
md and which is satisfied by each w;(w,(2)). We shall show that this i
impossible. One may choose ¥y, ..., 7 to be | lincarly independent f. s.
solutions of (1), Then we notice that for each choice of Yy, ..., ¥,, the
. composites yj(u:,c(z)) may be written as £. s. algo, using the f. p. 5. expansion
aboub z == oo for w,(z). Thus for each choice of Y. 1303 Xy, tho gj(‘zf:,ﬁ(z))
are f. 5. solutions to our differential cquation of order less than ml. We
shall obtain & contradietion by showing that for some choice of Y 1 eery XV
for which our differential equation 8 not identically zero the il (2))
-are linearly independont. This will show that the order of our equation
is actually larger than or equal to ml. Recall the definition of equality of
two 1.y, is that the serios be cxactly identical termwise. We notice that
setting cach i

Ty = exXp (ay e M0 g L) times a series freo of exponentialg,
where g h(j) + 0, then overy :

Filte(2)) = exp o i’,rz_')""'”*”) ) thmes @ sories free of

' oxponentials.

H we choose ¥,,..., l’,,; to be algebraically independent over Qaygyy -
sy ) thgn the differential equation does not vanizh and the yj(w,ﬂ(z)),
if they are linearly dependent, must satisfy a minimal dependence relation
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{having a minimal number of non-zero terms) in which only one wvalue
of k, say k,, appears. Now substitute &, (w) for # in the dependence relation
and we have a dependence relation among the %;. Thiz contradiction
proves that our differehtial equation has order at least ml which contradicts
the assumption that the Wronskian of the y;(w,(2)) vanishes identically.
Thus we have seen that the g;({w,(2)) have s Wronskian which is a not
identically zero function of 2, ¥y, ..., ¥,,. :

At the point 0 = ¥, = .., = ¥, =2 the Wronskian must be ana- .
lytie, since the 2, are distinet and none of them ave singularities of the
#;(2). Also there must exist & region Dy in O™ which contains (6, ..., 0)
and a region D, in ¢ which contains 0 such that the Wronskian is analytie
on D; x D,. Further there must exist a ray in D,, given by (¥,, ..., ¥,)
= (HK,¢,..., K,8) for 0 < s 1 where (K;,...,H,) is a non-zero veclor
in (@ {4))™, such that on [0, 1] x D, the Wronskian, W (s, 2), is not identically
zero. Thus there must exist a non-negative integer M such that s~ W(s, z)
is analytic and not identically zero when s = 0. Also we may choose our
ray so that our linear differential equation for the y,(w.(s, 2)) with coeffi-

- cients in @i, s, 2] is not identically zero. Then dividing through by an

appropriate power of s and taking the limit as & - 0 we have a non-zero
linear differential equation with coefficients in @4, 2] which is satisfied
by the ¥ (1w (0, 2)). : _

Suppose that above M > 0. Then at ¢ = 0 the rank of the Wrongkian
matrix is less than ml. This says that at 8 = ¢ there is a linear relation
among the columns, with constant éoefficients, sinee the yj(w,ﬂ((), 7))
satisfy a common linear differential equation which is not identieally
zero. The coefficients of the dependence relation may be chosen to be
in the field F since the power series coefficients of the y;(w,(0, 2)} at
#z =0 are in. F, by definition. Suppose that we have actually carried
out all of the above procedure on the Wronskian of the functions

s o Fod E {5, 2)) — sl (s, 2)), for 1<F <1 and 2 <k < m,

-and the functions yy(w, (s, ), ..., yi{w, (s, 2)), enumerated in this ofdel'}.

Then at s = 0 there is a dependence relation which Involves only columns
in an initial segment of 1, ..., ml of minimal length. In the Wronskian -
we may replace the funection in the Iast column involved in the dependence
relation by s~! times the linear combination of functions which is, at
§ = 0, identically zero. Then these functions have a Wrongkian which
vanishes to the order M —1 at s = 0. Continuing, we arrive at a set of
ml functions &, (s, 2), ..., D,u(s, 2) which satisfy our original linear diffe-
rential equation, which are analytic on [0, 1] X D,, which have a Wronskian

. . . . . 0 n
. that dces not vanish identically at & = 0, which have each (%) @,(0,0)
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in ¥, and which are such that each
e d\° '
D;(0, z) E‘Pj(z) =t gy = Z (2 ;W (—0-8—) S (0, z))

orf 00

for a collection of 4, , in F. From now on. let w,(2) = w, dencte w,(0, 2).
We recall from differential equations that

W(Agjn ey Mbml) = ”MW(‘DN seny ml)r

where W denotes the Wronskian, if A ix analytic. Set 2 equal to a power
of ' ‘ '

LG [] =)

If the power is sufficiently high then each Ap; may be written as & linear

combination over ¢ of different wj(2)y}” (wy(2)), for 1<j <l L <R < m, )
a0, and >0, and each of Apy,..., g1y May be written as

a linear combination over ¢' of differences of branches of the wj (2)y? (wy(2))
(see the proof of Theorem IT in [6]). Clearly W(igy,..., Appa) 52 0 and
the lg; have derivatives in F at # = 0. From the statements about the
Ap; in the last two sentences we shall wltimately prove Theorem I
First we must see that the wi(z)yi” (w,(#)) satisty a common equation
of type (1). Now as we shall next see, the statement that Y satigfies an
equation of type (1) is equivalent to the statement that there exist a se-
quence of infegrals E'y,..., BVy, EV+'y, guch that D(BV+'y) = BNy
for each positive integer N and the funetions Y, By, ... generate a finttely
generated modnle over the Noctherian ring Q[4,2D]. H y satisties an equa-
tion of type (1) then infegrating the equation once and applying inte-
gration by parts we may determine By such that By is a linear combination
over Q[i, D] of y, Dy, ..., D*'y and, extending by induction, we may
choose By such that it i3 a linear combination over [i,2D] of BNy
== DIy, L, BNy = DYENy The other way i3 easier. By the
ascending chain condition. in @[4, 2D] there must exigt an oquation of
‘type (1) which is satisfied by E°y for some positive integer e. Thus.y
satisfies an equation of type (1). It suffices now to show that if y satisfios
an equation of type (1) then 2y satisfies an equation of type (1) also.
This i3 true sinee then we would have that each 2°y® (o) satisfies an equ-
ation of type (1), so.by Theorem V of [6] each (s (2))* 5P () matisties
an equation of type (1) also, and finally by the a. ¢. e. of Q[4, 2D7] & linear
‘combination of all of these above functions; for bounded « and 8, with
coefficients which are arbitrary constants satisfies an equation of type
(1). Now we may define each ¥ (ay) to be — NEY 1y |- (¢D)EV+1y and
we -have shown that 2y satisfies an equation of type (1).
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We may next show that our equation of type (1) may be assmmed
% have a regular point at z = 0. AIl that we need to do is to show that
there exists some linear differential equation with coefficients in Q1, 2]
which is satistied by all of the above functions and which has a regular
point at & = 0, sines we may multiply this Iatter equation by a high power
of D and add it to our equation of type (1) above. Now the

w P m . W
( [ [ loloi2) (W ( [ ] e —~j})) ) DNy oy (2)))

B=1
generate  finitely generated modide over ¢ [4, #]. By the a. ¢. c. of Q[4, 2]
we see that our wf(s)y w,(z)) satisfy a linear.differential equation with
coefficients in Q[4, 2] with a regular point at z = 0.

Little remains to be done. We may now apply Theorem I of [37] (as
strengthened in the proof of Theorem IT of [6]) to our equation of type
(1) satistied by gy, ..., APim—my+¢ and such that the A 1< (m—1)1e,
are each linear combinations of differences of branches of sobutions of

the equation. Then we conclude that for all choices of ¢; (exeept each
. {m— T+ ’

6 equal to zero) some derivative of 2 oy I8 Dot in Q(). We have

=1 _ .

& non-zero linear differential equation with coefficients in @4, 2] and of

order at most ml which ig satisfied by the %8 a8 was seen by sefting s = 0
in an equation satisfied by the different &5 :

Obvicusly this former equation must have order exactly ml. Iz = 0

ig not a singular point of the above equation then we know that every
(m—2)L+¢

derivative of 3 ¢y may be written as a linear combination over
F=1 )

(i) of at most ml distinet derivatives. (We shall be able to show thig
last, later, even if there is a singnlarity at & = .) Bince the Jg; each satisty -
a differential equation with a regular point at 2 = 0 it follows that there
are 00, < l,<... < Oim-nr+¢ TON-negative integers, such that the
matrix ((2g)®) is non-singular at z = 0. Without losz of generality
one may asgume that the 6,1 < k< (m—1)I-t, are among the mi
linearly independent derivatives mentioned above. Turther one may
construct constants ¢;, in. 7 such that each
) (m—1)i4i -
BPH(0) = 6.+ )5 (0) = &%
i=1
for Ly < (m—1)1-1. Then if [F: Q(8)] = d < ml{l )~ we may solve
(d—1)(1—1) homogeneous linear equations with coefficients in Q(4) in
(m—1)14¢ variables and find a non-zero set of A, in (i) sneh that every
m—1yT+¢ .

derivative of( _\j) +-Ar@, at 2 =0 is in @(4). This contradiction shows

pa=] :

-3 — Acta Arithmetica XXIIT.4
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that d = mi(I—1)
ease.

Since the Ag; ave a fundamental system of solutions of the equution
referred to above and since the g, are each analytic at z = 0 our equation
must have at worst a regnlar singnlarity at 2 == 0, Nong of the roots of the
indicial equation at 2 == ¢ can be other than non-negative integers and
in the Frobenius cxpansiong about 2z == 0, with coofficients in @ (4), no
powers of log ¢ can occur. Thus there exist ml power sories in g, vy, which

are a fundamental systein of solutions at the above equation and which
(me-1)i41
¢ Ay ad G linear combination,

—3, in. the above case which we shall show is the general

have coefficients in @ (4). One may write
of the v, with coefficients which are linear forms over ¢(7) in mié depi-
(m—1)l L
vatives of
<1
Proof of Theorem II. We shall establich that if 2, ..., 2, are as
in Theorem I, %,,..., y; are any fundamental system of solutiong of an
equation of type (1) satisfied by y, and 2, and #2, are as in our present
' hypotheses, then defining w,{2), ..., w,{2) by each wg(0) =2, and

¢;Mpy 86 2 = 0. This proves Theorem I.

H (wh——zk) =2 it follows that for sufficiently large m the g;(w,(2)

K1

linearly independent. If we establish this then y{w.(2))—y(w.(2)} 5 0

iz the difference of two branches abt a golution of an eguation of type (1)

with an ordinary point of 2z = 0 (we can always sxrange this last by the

argument uged above in the proof of Theoram I) and Theorem 1I follows

at once by Theorem I of [3). ‘

Possibly renumbering the w,(s), set each wy(?) = o™+ ... where

o = exp (2rnim™"). Recall from the proof of Theorem I that there exist !
" linearly independent £. §. solutions of our equation of type (1} with cach
telm in a given solution having the same, non-constant, expomential
factor. Tet us divide the solutions imto digjoint sets acecording to the
bighest power of ¢ which appears in this exponential factor. If, ug in the
proof of Theorem I above, we substitute the L. p. #. for each w,(z) into
the above f. 5. and do some rewriting we have mi L. 8. which, if

W("/t('wl(z)) 3 Jr(wm )) w0, .
satisfy a linear homogeneous -differential equation with coefficients fn
Q[4, 2] of order less than ml. If we can ghow that the m! formal seifes wre
linearly independent. for some gufficiently large m we will have shown
that the y(wy,(2)) are lineaxly independent and we will be through, A mini-
mal dependence relation (one involving a minimal number of terms)
among the formal series would have to be among the composites of all

- of the wy () with all of the £. 5. in one of the above sets. If one set containg
i 8. with exponential factors looking like exp(a, ;2" - ...} where no

) are

icm

@,; 18 zero then let §, denote the (finite) set of all (s, ; (a,,;,) ")

A method in diophantine approvimation (VI) 349
! with
Ji ¥ Js If we have a mlmmal dependence relation among the composite
series, involving only composites of the above set of 1. 5. then for each j
and % actually appearing in the dependence relation the a,; (657 must
be equal so the g"17*2¢ 8, , for any two values of % appearing in a dependence
relation. For any two distinet primes m, and m, the set of m,;-th roots
of unity is disjoint except for the root ¢ = 1. Thus if m iy a suffieiently
large prime and there is a minimal dependence relation involving composite
series for this value of m it must be that ¢"1=*2 = 1 for all %, and %, with
wy, (2) and Wy, (#} appearing in the dependence relation. Thus only. one
w(2); 8ay wy (€}, appears in this dependence relation. Tt was shown in
[1] that a dependence relation among £. 5. is equivalent to their Wronskian
identically vanishing. Substituting o~#1™ for 2™ in the Wronskian
gives us a‘gmn an identically vanishing Wronskian. Now for some 1 < %,

< my by H (z—z)) =2 Looking a.t the expansions about # = co we

see that here by = m. Substituting H (z;
i=
again get an identically vanishing Wronskmn — this time for a eollection

of linearly independent f.s. solutions to. our original equation of type
(1). This contradiction proves Theorem IT.
Proof of Theorem ITT. Congider the differential equation
-1 '

(6) D(” (z—Ij).D—l-Bj)y =0

Fe=1

for # in the Wronskian we

11
where the X; are distinet, fixed, algebraic numbers such that H (e—X;)

fo=
€ Q[i, 2] and each 6, is a complex number with real part between 0 and 1
det det

Set 0, = X; = 0. Then the general solution of (6) looks like

71 —3 - z

26 (H [e—Xi )™ [ a—Xp ) 5z-j+1]) (e =X~

=0  j=2 X35+

where the ¢ are arbitrary constants and where each f fiz) o

J

Notice that if f(2) iz analytic at 2 = Xj and equals 2 by —X,

(z— X, f

is analytic at # = Xj also. Then the 1—1 functions above with coelfi-
cients 6y, ..., ¢;_y are linearly independent, since each has only one sin-
gularity and these singularities are at different points. Consider next

f fle) de.

)“”“1 then.

X)) = 3 by (n+ 0;)7 (2 — X,)°

fie==1
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the differential equation

-1 i~
(7) vy = D 3 ) D+ ([T te—x) D'y
k=0 0<i<k {=1

where the X’ ave as before and the g}j, p and y are pavsmeters taking
values in C. If
lot 1 eV ITT rv g vt
W= N ma X (] [ &= x)

it &t

is not an integer there exists a unique serios solution of (7) whout the poiub

X, beginning with the term (z-—X,)~"%. These series are well defined for

all values of the parameters except when 0, is o negative integer. It wo

now restrict ouwr parameters to any simply eonnoetoed boundod region B
41

of ¢" 27" we may make each of the series dofined (ag f. p. 8.) on the

N
closure of B by multiplying through by some power of IT(0,-+5), for some
Jeml,

positive integer N. Let uy call these new L. p. s., depending on B, 7, ..
ey Py - It is posgible to estimate the absolule values of the coefficients
of the series, if the parameters are in 3. Thus each series 7, CONVErges
on Bx (some open set N, in €} to an analytic function of E(l-+-1)/24-2
variables. Lot ¢ denote ¢ minus euts from the X’s to 2 == o,

Let 2, «G. The Pieard Hxistence Theorem. gives T solulions each ans-
Iytie on B and having I as their Wrongkian mafrix at 7. Using thig
we may continue .(2) to be analytic on the simply connected region

B x @ Alternatively we may define cach F(2) to be a multiple-valuad
=1

analytic function on B x(0--{X,..., X;,}). H we continue 2 e
tm ],

around X, where the ¢, are axbitvary constants, and take the difference
of the branches we obtain (for z near X » and thus in general) a function
proportional to 7, (). The coefficients of the arbitvary constants ¢ in the
proportionality factors (for each value of k) must be fumetions meromor-
phic on B, Turther, we shall show that these cocfficients forn 1 non-singular
matrix. Suppose that the rank of this matrix iy less than I —1. Then wa

could choose constants ¢, (which aré functions analytic on B) not wll zere
-1 :

so that D' e, is single valued on Bx (¢—{X,,..., X;_}). We have
=t
~already seen that for the choice of the parameters in (6), it is Ipossible
_ -1
to choose non-zero constants ¢ such that 3 ¢,%, is single-valued on ¢ -
S =1

~{Xy; ..., X;7;}. There must exist a ray out from this value of the para-
_ meters on which the coefficients ¢, are not identically zero, XIts, 0 g7 1,
is the parameter of this ray, then dividing by & to an appropriate power
and taking the limit as s - 0 we obtain a non-zero function of the forim
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-1 . .
2 bi.(2), for constants b, which is analytic on O. This contradiction
{=1 .

ghows that the previously mentioned coefficients must have a non-gingular
matrix. ' :

Tt we choose 2,6 @ (1) —{X,, ..., X, .}, then we shall show that the
Wronskian of 7, ..., #;_, does not vanish identically at 2 = z,. Assume
this for the moment. Then we can comstruct ¥, ... y X1, linear combi-
nations of the 7, (with coefficients meromorphic on B) such that ¥ (2,)

= 8/~ Wotice also that one could choose coefficients ¢; , analytic on B
-1

such that, sefting W, = ¥ €,:%;, we have that the difference of W;
i=1

before and after being continued around ¢, & simple closed curve which

encloses the X's, is h; ¥, where k; is non-zero and analytic on B. Now

we show that the Wronskian of %y, ...,%,_, dees not vanish identically.

One may construct functions B; which are solutions of (T) such that the

difference of the two branches of each E; when it is extended around e
is g,%; for some non-zero function ¢; analytic on B. Chooge our parameters
(+0 :

o be in (Q(2)} with y 5 0 and each g; non-zero. One may choose
8§, a linear combination of the B3 such that the differences of its deri-
vatives (on the two different branches) at 2 = 2, are zero up to the (I —1)-8t
derivative ‘which iz either 0 or 1. Now apply Theorem I of [3] to 8
and ¢ and obtain the contradiction that 0 or 1. is irrational.

All that remains to he shown is that the ¥; are each analytic on
Ui+1) .

c? x @ If we choose B, > B satisfying the same assumptions _
as B then we will arrive at a new collection of 7,’s each-equal, wheie they
are both defined, fo a polynomial in the parameters times the cld 7.
It follows then that the new ¥s are continuations of the old ¥,'s. Thus
we need only show above that each ¥; is analytic on B x &. Clearly it
is meromorphic on B X &, Further ¥;(z,) has only one possible analytie
continuation to all of B, ity constant value. Then, since the clogure of B
is compaet and we may repeat the above argument with B’ = B instead
of B, it follows that ¥} is analytic on B x N where N < & is a neighborhood
of z,. It then follows, as before, that one may analytically extend this
solution of (7} to all of B x @& This proves Theorem IIT.

Proof of Theorem IV. Let W,,..., W,_, be as in the proof of
Theorem IIT. : '

Levva. We may define, for each 1< §<1—1, a sequence of repeated -
integral operators Ky, B, ... such that (i} given any equation of type (1)
satisfied by ¥; = X;(p™" ¥i1y -y Vier,100, &) W6 Mmay integrate the equation
repeatedly, using inlegration by paris lo differentiote powers of ¢ while
integrating D°¥; into D*'Y,, ... T, B ¥;, Bl ¥, ... to obtain a valid
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identity and (i) |BY T, < KV ) ™ for some K == K (¥;) > 0 independent
of N. Purther one car catend each Xy from X, to be defined on every
ki
wh(2) T (wy(2)), for 0 < B, y << + cowhere wy is any root of [] (w—gp) =z,
Jeum]
with properties (1) and (i) for wf(z) X (w,(2)} instead of Y.
Proof. By what woe have seen in the proof of Theorem IIL we may
find sueh an B ¥, if h; does not vanish at this ehoice of the parameters,
by setting it equml to

(hy)™* f (e — V(W

where the path of integration is from z o ¢ along a eurve on which the
difference of the branches of W(4) cquals % ¥, The inequality (ii) is
eagily seen to be satisfied. Tf one formally integrates an equation of type
(1) in ¥, in the manner indicated in (i) one can only differ from having
an identity in that, in general, one would have to add a non-homogeneous
term which would be a polynoemial in 2. However, each

— 1)) W (8 el

<

B Y, = ()™ [ (e =0V (I~ 1)) W () de —

a

m(h,)-~1f (g =ty (W —
13
where ¢ = ¢(}) on the curve o == o(¢) (0 = ¢ % 1) and the respovtive paths
of integration ave ¢{4--1/2) and o(f—1/2), auch of these lagh fwo mualtiple
integrals of ¥; must give rise to the same non-howmogencouy term above;
henee, the Ejv ¥y give rise to the non-homogeneous term zero. This defines
BT ¥, satistying (1) except at values where ; = 0.
Suppose that at some value of our parameters we have iy = (. Then
AU
on gome ray oub from thiz point in ¢ * parameterized by 0 - ¢ = <1
hy(s) 5= 0. IE hy(s) = s%gy(s) whers g; (0) # 0 then as 3. 0 oux

B X ) [ (=0~ 0) 5 W0, 0)

')“’1 W(t)ae

4

uniformly. This latter expression satisfios (1) and (H) abovo,

Substituting 2" W, for W, above in the definition of &Y ¥, we may define
B 2’ ¥, 50 a5 to satisty (1) and (ii), Next wo wish to define B} (w, (2))7 ¥ wy(2))
for all non-negative integers § and y by

()™ [ le=p )"V —1
£(2) .

Y2 () wf Y ()
n

where p(w) = [] (w—z;) and the path of integration is a simple closed
Fe=1

curve beginning and ending at the point w,(z) which is such that the
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difference of the branches of each W;(z) around ¢(2) i3 h; ¥;. The same
proof essentially ag in the case of the E} Y, shows that (1 and (i) each
hold. Tf h; = 0 then on gome ray &Y (w] (2) )f’ Y (s, (2)) approaches

Y]

(w@))"H{@F -1 p ’(u)uﬁ( 0

(g?'((}))—l f(z——p a5 n?

cl2)
This proves the lemms.

There exists an equation of type (1), with a regular point at 2 = 0,
which is satisfied by all of the (wy(2))’ T (wy(2)), 1< << and 0 B,
y < M for some positive integer B3, as may be seen using the proof of
Theoremn 1. Integrate our equation of type (1) formally many times,
using integration by parts to differentiate the powers of z and integrate
the DFy into D*'y,...,w, By,... Replacing our parameters y~' and
y.; by values in @(¢), setfing z = 0, and replacing B°y by F(s) we have
& relation of the fiype appearing in the hypotheses of Lemmsa IT of [5].
From what we have seen above candidates for F(s) which gatisfy the
conditions of the hypotheses of Lemma IIT of [B] are certain s-fold inte-
grals of the (10,(2))’ T (wy.(2)) for 1< k< m and 1<j<I—1. (Since
the differential eguation was regular at 2 = 0 the condition that F(s)
not be zero from some point on is automatically satistied if (w,(2))" Y5 (14(2))
s£ 0.) Also there are integrals of the

(wi(2)) Y (wr (2] — w1 (2))° X (o0 (2),

for each 2 < &< m, which satisty the assumptions on F'(s). Therefore
there exist such integrals for all linear combinations of the '

(0 (z)) f%'m ('M’Jc (z))

W;{0, u)) du.

for 1< k<t and the
(o (2P0 o 2)) — i (2P ) w0 4) |
for t+-1<j=< 1 and j # 1. Following the argnment for Theorem I, if

M iy sufficiently large and @ = [F: Q)] < m{I—~f~", we may con-
strrct @ non-zero F(s) as & linear combination of these last mentioned
s-fold integrals which alwaye has values in @ (4). This contradiets Lemmia 11
of [6]; therefore, we have proven Theorsm IV. s

Section IT

Proof of Theorem V. Suppose ye K. Then y is a . i, P8, le. .

-3

=1 mn

k‘i{

Ms

BTN (0 46— 1))

|
=1
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for some set of complex numbers ¢; and a, 4, and y satisfios an equation
E

o
of type (3). Let § denote the £.p.s. > ¥ a, ,#*"% Then § sabisties an
Feeml fhme )
squation of the formn

(8) | Z Iy (eD)a™if = 0.

i=b

Any linear homogencous differentinl equation with coefficients in @[3, 2]

may be written in form (8). (Multiply through by u sufticiently high power
)

of 2 g0 that one can write the equation as > g,(21) ey, for some eollection
.’t’."""'zl

of g;(2D) in @[i, 2D]. Then multiply through by 24, using 2 (aD) =

(2D -+1)27,) Thug B egnals the setof all p. £, p. 8. which satisty a linear homo-
geneous differential equation with coefficients in @[7, 2] (or XK [2] where

[K: @(#)] << oo, since in this latter case one may apply a vector space

argument to gee that there existy an equation of type (8) with coetficients
in @4, 2] which is satisified by §). Notice that the correspondence ¥ -»
is 1-1 and ombo B. If ¥y and ¥, belong to R then cleatly 24,7, belongs
to R, since B must be closed under both multiplication of functional
values and +. Now under our correspondence zfi, i, could only have

»

come {rom yyy,. Thuy yky,e R, Also since el corresponds o

Y1y, we ses that y, -y, ¢ L. This proves Theorem V.

We also see from the above that we need only roguire that the
coefficients h,;(2D) in (3) ave in K [2D] where [K: ((i)] < oo sinee given
any solution w of such an equation we may still form 7 and 7 will satisfy
an equation. of type (8) with coefficients in K [2D], so :T./ejfﬂ and ye B.

Proof of Theorem VI. Suppose that we are given two equalions
of type (3) with coefficients in K [2D] where [K: Q)] < co. If wo take
two fundamental systems of solutions (f. s. solutions), one for each oqua-
tion, and congider the set of all products of an element from one syslem
times an. element of the other system we obtain a collection of furetions
(£. 8.) which. span the space of all solutions (£ 8. molutiong) to n third
equation. of type (3) with coefficients in K [aD]. (This follows ritee the
Wrongkian matrix of the set of produets of any two fundamental pystiems,
1.4. or actual functions, will equal the product of a matrix with entriey in
K [7] and the tensor product of the Wronglkism matrices of the two fun-
damental systems. Thas the Wronskian matrix of the product has rank
d if the maticix with entries in K [#] has rank d, and then there is an. aquwhion.
of type (8) with coefficients in K [2D] of order exactly d which has as
its solution space (f. &, solution spaee) the space spanned by the colloction
of products above.)
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If yie B8 and y,e M then Y1 Y€ R. We wish to see when #y,9/,¢ J.
We see from looking at (3) that if w i8 & f. p. 5. which satisfies an equation
of type (8) where h,(2D) equals some non-zero constant then we 3. This
last requirement, that %,(2D) be a constant, is implied by .the statement
that each f.§. solution of the equation of type (8) has a nonconstant
exponential factor. Then with 7, and ¥, as above if ¢¢ K there are at
most & finite number of values of ¢ for which 7, (f2)(¢,) is not in M, ie.
those values for which the above products of £. 5. solutions corresponding
o our equations for ¥, (2z) and (2¥,) contain at least one series with a con-
stant exponential factor. This proves (i). If 371515’ then there exigts some
equation of type (8) which is satisfied by ¥, and iz such that each f. s.
golution is a £ p.s. in 27! (i.e. each exponential factor iz a constant).
Thus §,(e¥.) is always in M. This proves (it).

Proof of Theorem VII. Let us define an integral operator E on
p. £ p.8 by ' '

B (S’ 4, 2" ({n+ a+1))‘1) = j @, 2" e (Pn 11 a+1)7*
nw=0 . ’

n=(
and linearity. If y satisties (3) then, for each positive integer ¢,

1
th(zD—s)E“’y = 0.

J=0

I y satisfies an equation of type (1) with a regular point at 2, then we

_may rewrite this lafer equation ag one of type (3} with Ay(2D) = —1

which has a regular point at # = 2,. Therefore we may assume that
4 .
(9) By = Y'1Iy(2D—s) By
: i=1

for all integers s and that (9) has a regular point at z = 2,. For some
82 0,

By — [ (st (g, — 1)1 (By () at.

Thus _ _
]Esyl < Ks-}-l('g!)«l

for some X, > ¢ indspendent of s, and this estimate now holds where
# =7 and the path of integration avoids the singularities of y(2). Now it _
%1€ (4) one may apply Lemma IT of [5] with F'(s) = By (2,). (As rematked

in the proof of Theorem IV gince &, it not a singular point of (9) the con-
dition that E°y(z,) does not vanish from some point on ia eagily seen to
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be satistied.) TE 16 & whem [H: Q(i =2 ) < 00 then we mfw ’qr{')ly the

by &not.her equabion of the same kmd This proves ’l‘heorem VII.

Proof of Theorem VIII. What we shall show firgt ig that it
suffices to prove that EVy(z,) is not zero for all sufficiently large integers
(even if #, is & singular point of our equation of type (9) for y) and to apply
the argument used above in the proof of Theorem VII in order to prove
Theorem VIIL. The functions y, and 4, each satisfy an equation, of their
respective types, which has only regular points in &' --{0}. Thus so do
By, and By, for each pair of non-negative intogers s, and #,. For large
enough values of &, and s,

(B )% (By jF‘*lyl ) (B ()
¢

where the path of integration i, say, the ray from 0 to 2. As in [4] we
see that By x H2y, iy analytic at each point of X — {0} Algo nedr 2 = 0,
and hence in general

Py )% (BPypy) o BVYR(yny,) = By,
Y1 Ys

Thug ¢ and each E'y are defived on all of X--{0}. Then we have (9) for
all z in X —{0} and need only show that if #,¢ X {0} it iz impossible
that fob some positive infeger s,,

[ 07
0

If the latter integrals were all zero then we would have that

IPoy)dt =0 for b =0,1,...

[ ot (@oy )at =

for all cormplex polynomialy p(f). One may first wniformly approximate,
on this ray; the real part of B y(#) and then the imaginary patt and thon
conclude that E%y(z) = 0. This comntradiction proves Theorem VIIL

Addendum. Although the regults in this sovies of papers have showr

that the numbers in question can not be approximated too well vy rationals

“(Gaussian rationals) it is poasible — wusing Theorems IIT and IV along

with their proofs — to show that in some eases the order of approximation

possible i bebter thah is possible for almost all elemoents of, in these cases,
R Suppose that { > 2 and consider the equation,

-2

Loy v =3, 3y Dy 4 D 1) Dy

Jem2
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where each p;(2) e Z[2] and has degree at most § — 2. Let us apply Theorem
III with #, = 0. Bach X; has absolute value one. Each ¥, {see the proof
of Theorem ITI} is a function defined in a neighborhood of z — X; by
a convergent f. p. s. with coefficients and emponents depending on y and
the 4y ;. Since here, at our value of the pammeters y and y;,, each ¥,

o

7]
# = X, we gee that each — W(0, 2), see the

proof of Theorem IV, must be bounded on |z < 1 Thus B ¥,;(0)|
< E(NH™ foir each 1<j<1—1, where K > 0 is independent of .
Upon applymg BY to (10) and setting z — 0 we obtain, using the

notation of (7) now, that
(1) EYY(0) = (—1'N ... (¥
I~2  J-3

+ 2D Vi) (D —t—1) ..

t=" Kzt

has a zero of order one at

~1+2) BN Y, {0) -+
(N — &) EF - 7,(0) + BN 7,(0).

If we express E L’N Y;(0) as a linear combination over the integers of ¥;(0),..
.y X{79(0) we see that the term arising from choosing ¢ = 1 in each
case in (11) has abgolute value less than

: —(=1(-1)
Iy = (NN @

for some K, > ( independent of N¥. There exists some K, > 0 such that
the substitution in this above proceedure of some term corresponding
to %> 1 at and only at the point where we have n substituted for N
yields a tierm with absolute value less than Iy K,n > for% — 1,2, ... Then
the sum of the abgolute values of all of the coefficients is less than

2

Iy {14+ HE,—
lv(-l- i

for some K, > ¢ independent of N.
 Recall that each Y®(0) = &+ for 1<j,at+1<

2 - 71:2
+ K — (— ~1) + ) < KTy,

-2, Thus for

. each pogsitive integer N we have [—1 forms ¢y¥{2(0)—Py; where

gy and Py, arve integers, each

g X§H0) =Pyl < K(NI)_I
and
—(I=1)I—1)
gyl < K, K (N)'N 2

for some K, > ¢ independent of N. Then for each 0 < ¢ < 1 there exists
2 ¢(g] > O such that for ¥ =1, 2, :
-2

max {lgy F{{0) - ) lg1®0" l(mgle) )

i1 _N J|} < (0'
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It 1 >4 our I—1 numbers l’lﬁl“”(()) may be approximated better than
almost all (I —1)-tuples in R~ Tt is not difficult to show, by the methods
of these papers, that one can never approximate much better in the above
cage, Lo, with a somewhat larger exponent on the logigyl the lust ine-
quality could only he satisfied finibely often for amy choice of ¢, and

-PN,:,' *
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On the difference of consecutive terms of sequences
defined by divisibility properties, II
by
E. 8zZEMEREDI (Budapest)

In a paper of the same title P. Erdos proved the following theorem:
Let &, < b; < ... be an infinite sequence of integers satisfying

Vil

e b, (B, by) = 1.

Denote by a,, a,,... the sequence of integers not divisible by any b.
Then there is an abgolute constant ¢, independent of our sequence b, < b,
<C... 80 that for all sufficiently large z the interval (2, @ +24%) contains
a'a. '

P. Erdds conjectured that perhaps a; +1— % = 0(a;)" holds for every
¢> 0. We are unable to prove this at present, but we are going to prove
the following sharpening of the result of P. Erdos.

TEEOREM. Lot B = {b, < b, < ...} be an increasing sequence of positive
niegers such that

. -
(1) Z—-( ja'e)
' i=1 b
and
(i) (i b)) =1 if i . |
Then for every &> 0, if # is large enough, the interval (, & -t
containg @ number a which is divisible by no b;.

Proof. We can agsume b, > 1. Let us define & and « 80 that

(1) 8, = min{ﬁ(l — —;—), sz}
and ) jxl j

(2)

of:
Q‘IH

&

< &8 < /8.
=

We shall assume that @ iy greater than a suitable function of &, & and o.



