Gauss sums and the number of solutions to the matrix equation $XAX^T = 0$ over GF(2^p)

by

PHILIP G. BUCKHIREN (Clemson, S. C.)

1. Introduction. Let GF(q) denote a finite field of order $q = p^r$, p a prime. Let A and B be symmetric matrices of order n, rank m and order s, rank k, respectively, over GF(q). Carlitz [2] has determined the number $N_s(A, B)$ of solutions X over GF(q), for p an odd prime, to the matrix equation

$$XAX^T = B$$

(1.1)

of arbitrary rank when $n = m$. Furthermore, Hodges [4] has determined the number $N_s(A, B, r)$ of $s \times n$ matrices X of rank r over GF(q), p an odd prime, which satisfy (1.1). Perkins [6], [7] has determined the number $N_s(A, B, r)$ of solutions X over GF(q), $q = 2^p$, to the matrix equation $XAX^T = 0$ and has enumerated the $s \times n$ matrices X of given rank r over GF(q), $q = 2^p$, such that $XAX^T = 0$.

The purpose of this paper is to determine the number $N_s(A, 0)$ of solutions X over GF(q), $q = 2^p$, to the matrix equation $XAX^T = 0$. In determining this number, Gauss sums, as developed in Section 2, are used. Also needed are Albert’s canonical forms for symmetric matrices over fields of characteristic two ([1]).

Throughout the remainder of this paper, GF(q) will denote a finite field of order $q = 2^p$ and V_n will denote an n-dimensional vector space over GF(q).

2. Gauss sums and alternating bilinear forms. For a in GF(q), let t be the mapping from GF(q) into GF(q) defined by $t(a) = a + a^2 + \ldots + a^{q-1}$. Then t maps onto the prime subfield of GF(q). Hence, for each a in GF(q), $t(a) = m \cdot 1$ where $m = 0$ or 1. Let σ be the map from GF(q) onto the multiplicative subgroup $\{-1, 1\}$ of the reals defined by

$$\sigma(a) = (-1)^m \quad \text{where } t(a) = m \cdot 1.$$

(2.1)
Clearly, \(t(a + b) = t(a) + t(b) \) for all \(a, b \) in \(\text{GF}(q) \). It follows that \(e(a + b) = e(a) + e(b) \) for all \(a, b \) in \(\text{GF}(q) \) and that

\[
\sum_{\beta} e(a\beta) = \begin{cases} \frac{q}{2} & (a = 0), \\ 0 & (a \neq 0), \end{cases}
\]

where the summation in (2.2) extends over all \(\beta \) in \(\text{GF}(q) \). From (2.2), it follows that

\[
\sum_{\alpha, \beta} e(a\beta) = q,
\]

where the summation in (2.3) extends over all \(a, \beta \) in \(\text{GF}(q) \).

Perkins [7] has shown that

\[
\sum_{\alpha} e(\sigma(DB)) = \begin{cases} q - 1 & (D = 0), \\ 0 & (D \neq 0), \end{cases}
\]

where \(D \) is a symmetric matrix, where the sum extends over all upper triangular matrices \(B \), and where \(e(DB) \) denotes the trace of the matrix \(DB \).

Let \(f \) be a symmetric bilinear form on \(V_n \times V_n \). Let \(V_n^* = \{ y \in V_n | f(x, y) = 0 \} \) for all \(x \) in \(V_n \). We say that \(f \) is nondegenerate if \(V_n^* = \{ 0 \} \). Clearly, \(V_n^* \) is a subspace of \(V_n \). The rank of \(f \) is defined to be \(n \)-dim \(V_n^* \). It is said to be an alternating bilinear form if \(f(x, x) = 0 \) for all \(x \) in \(V_n \). An alternating matrix over \(\text{GF}(q) \) is a symmetric matrix with 0 diagonal. Chevalley [3] has shown that for each nondegenerate alternating bilinear form \(f \) on \(V_n \times V_n \), there exists a basis for \(V_n \) such that, relative to that basis, \(f(\xi, \eta) = \xi \eta^T \) for all \(\xi, \eta \) in \(V_n \), where

\[
D = \begin{bmatrix} I_r & 0 \\ I_r & 0 \end{bmatrix},
\]

an alternating matrix of rank \(2r \). Chevalley [3] has also shown that if \(f \) is a bilinear form of rank \(t \) on \(V_n \times V_n \) and if \(f(\xi, \eta) = \xi \eta^T \) for all \(\xi, \eta \) in \(V_n \), then the matrix rank of \(A \) is \(t \). It follows that if \(f \) is a nondegenerate alternating bilinear form of rank \(p \) on \(V_n \times V_n \), then there exists a basis such that, relative to that basis, \(f(\xi, \eta) = \xi \eta^T \) for all \(\xi, \eta \) in \(V_n \), where

\[
D = \begin{bmatrix} I_r & 0 \\ I_r & 0 \end{bmatrix},
\]

and, hence, \(p = 2r \).

Albert [1] has proved the following theorems:

Theorem 2.1. Every matrix congruent to an alternating matrix is an alternating matrix.

Theorem 2.2. Let \(D \) be an \(s \times s \) nonsingular alternate matrix over \(\text{GF}(q) \). Then there is a nonsingular matrix \(P \) such that

\[
P^T A P = \begin{bmatrix} I_r \\ I_r \end{bmatrix}.
\]

Theorem 2.3. Let \(D \) be an \(s \times s \) alternate matrix of rank \(p \) over \(\text{GF}(q) \). Then there is a nonsingular matrix \(P \) such that

\[
P^T A P = \begin{bmatrix} I_p \\ I_p \end{bmatrix} (p = 2r).
\]

Theorem 2.4. If \(A \) is an \(s \times s \) symmetric, nonalternate matrix of rank \(r \) over \(\text{GF}(q) \), then there is a nonsingular matrix \(P \) such that

\[
P^T A P = \begin{bmatrix} I_r \\ I_r \end{bmatrix}.
\]

Let \(D \) be an \(s \times s \) matrix over \(\text{GF}(q) \) and let \(g_D \) be the bilinear form defined by \(g_D(\xi, \eta) = \xi D \eta^T \). Define

\[
T(g_D) = \sum_{\xi, \eta} e[g_D(\xi, \eta)],
\]

where the summation extends over all \(\xi, \eta \) in \(V_n \).

Theorem 2.5. Let \(D \) be an \(s \times s \) alternate matrix over \(\text{GF}(q) \). If \(M = P D P^T \) for a nonsingular matrix \(P \), then \(T(g_M) = T(g_D) \). Furthermore, if \(D \) is of rank \(2r \), then \(T(g_D) = q^{r(s-r)} \).

Proof. We have

\[
T(g_M) = \sum_{\xi, \eta} e[g_M(\xi, \eta)],
\]

\[
= q \sum_{\xi, \eta} e[\xi M \eta^T] = \sum_{\xi, \eta} e[(\xi P) D (\eta P)^T]
\]

\[
= q \sum_{\xi, \eta} e[D \eta^T] = \sum_{\xi, \eta} e[g_D(\eta, \eta)] = T(g_D),
\]

since \(P \) is nonsingular.

By Theorem 2.3, if \(D \) is of rank \(2r \), there is a nonsingular matrix \(P \) such that

\[
P D P^T = \begin{bmatrix} I_r & 0 \\ I_r & 0 \end{bmatrix}.
\]
Thus, \(T(g_B) = T(g_R) \), where

\[
R = \begin{bmatrix}
0 & I_r \\
I_r & 0
\end{bmatrix}.
\]

But

\[
R(e^{i \xi}, e^{i \eta}) = e^{i \eta} R e^{i \eta} = \sum_{k=1}^{r} e^{i \eta} \cdot \sum_{i=1}^{r} e^{i \xi}.
\]

Hence,

\[
T(g_B) = T(g_R) = \sum_{e \in \mathcal{A}} \sum_{e \in \mathcal{A}} g_{B} (e, \eta) = \sum_{e \in \mathcal{A}} \sum_{e \in \mathcal{A}} g_{R} (e, \eta) = \sum_{e \in \mathcal{A}} \sum_{e \in \mathcal{A}} g_{B} (e, \eta) = \sum_{e \in \mathcal{A}} \sum_{e \in \mathcal{A}} g_{R} (e, \eta) = \sum_{e \in \mathcal{A}} \sum_{e \in \mathcal{A}} g_{B} (e, \eta) = \sum_{e \in \mathcal{A}} \sum_{e \in \mathcal{A}} g_{R} (e, \eta).
\]

Thus, \(T(g_B) = q^{(t^2 - t)} q^{t^2 - t} = q^{t^2 - t} \). Define

\[
\mathcal{A} = \{ B \mid B \text{ is an } s \times s \text{ upper triangular matrix with 0 diagonal} \}
\]

and

\[
\mathcal{A} = \{ D \mid D \text{ is an } s \times s \text{ alternate matrix} \}.
\]

Let \(M(s, 2r) \) denote the number of \(s \times s \) upper triangular matrices \(B \) such that \(\text{rank}(B + B^T) = 2r \). Let \(K(s, 2r) \) denote the number of \(B \) in \(\mathcal{A} \) such that \(\text{rank}(B + B^T) = 2r \). Let \(I_0(s, t) \) denote the number of \(D \) in \(\mathcal{A} \) of rank \(t \).

MacWilliams [5] has found that

\[
I_0(s, t) = \begin{cases}
0 & \text{(if } t \text{ is odd)},
\prod_{i=1}^{r} \frac{q^{2i-1} - 1}{q^{2i-1} - 1} & \text{(if } t = 2r).
\end{cases}
\]

Theorem 2.8. The mapping \(\tau \) from \(\mathcal{A} \) into \(\mathcal{A} \) defined by \(\tau(B) = B + B^T \) is a one-to-one mapping onto \(\mathcal{A} \). For each \(r = 0, 1, \ldots, [s/2] \), where \([s/2]\) denotes the largest integer not exceeding \(s/2 \), define \(\mathcal{A}_0(r) = \{ B \in \mathcal{A} \mid \text{rank } (B + B^T) = 2r \} \) and define \(\mathcal{A}(r) = \{ D \in \mathcal{A} \mid \text{rank } D = 2r \} \). Then \(\tau \), the restriction of \(\tau \) to \(\mathcal{A}_0(r) \), is a one-to-one mapping onto \(\mathcal{A}(r) \) for each \(r = 0, 1, \ldots, [s/2] \).

Proof. Clearly, \(\tau \) has its range in \(\mathcal{A} \) and is onto. If \(B_1 \) and \(B_2 \) are in \(\mathcal{A} \) and if \(\tau(B_1) = \tau(B_2) \), then \(B_1 + B_2 = B_2 + B_2 \). Thus \(B_1 + B_2 = B_2 + B_2 \), from which it follows that \(B_1 + B_2 \) is upper triangular and lower triangular. Since \(B_1 + B_2 \) has 0 diagonal, \(B_1 + B_2 = 0 \). Thus \(B_1 = B_2 \).

For any \(r = 0, 1, \ldots, [s/2] \), it is clear that \(\tau \) is one-to-one. Choose any \(D \in \mathcal{A}(r) \). Since \(\tau \) is onto, there is a \(B \in \mathcal{A} \) such that \(\tau(B) = B + B^T = D \). Since \(D \) is in \(\mathcal{A}(r) \), \(\text{rank } (B + B^T) = 2r \). Thus, \(B \in \mathcal{A}_0(r) \), and it follows that \(\tau \) is onto \(\mathcal{A}(r) \).

Since \(K(s, 2r) \) is the number of elements in \(\mathcal{A}_0(r) \) and \(I_0(s, 2r) \) is the number of elements in \(\mathcal{A}(r) \), Theorem 2.6 yields

\[
K(s, 2r) = I_0(s, 2r) \quad \text{for each } r = 0, 1, \ldots, [s/2].
\]

Lemma 2.1. \(M(s, 2r) = q^{r} L_0(s, 2r) \), for each \(r = 0, 1, \ldots, [s/2] \).

Proof. If \(B \) is any matrix from \(\mathcal{A}_0(r) \), then \(B + B^T = C + C^T \) from which it follows that \(\text{rank } (C + C^T) = 2r \). Thus, \(M(s, 2r) = q^{r} K(s, 2r) = q^{r} L_0(s, 2r) \) by (2.9).

The following lemma will be needed in Sections 3 and 4.

Lemma 2.2. Let \(A \) be any \(n \times n \) symmetric matrix. If there is a nonsingular matrix \(P \) such that \(PAP^T = C \), then \(N_s(A, 0) = N_s(C, 0) \).

Proof. Clearly \(XX^T = 0 \) if and only if \(YY^T = 0 \) where \(Y = XP \).

Since \(P \) is nonsingular, the result follows.

3. Determination of \(N_s(A, 0) \), \(A \) a nonalternate symmetric matrix.

Perkins [7] has found the number \(N_s(I_n, 0) \) of \(s \times n \) matrices \(X \) over \(GF(q) \) such that \(XX^T = 0 \).

Let \(A \) be any \(n \times n \) nonalternate symmetric matrix of rank \(q \). By Theorem 2.4, there is a nonsingular matrix \(P \) such that

\[
PAP^T = \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix}.
\]

By Lemma 2.2, \(N_s(A, 0) = N_s(C, 0) \), where

\[
C = \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix}.
\]

Consider the equation

\[
XX^T = 0.
\]
Let $X = [X_1, X_2]$, where X_1 is $s \times q$ and X_2 is $s \times (n-q)$. Then, (3.1) becomes

$$0 = XDX^T = [X_1, X_2] \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = X_1X_1^T.$$

Thus, if $X_1X_2^T = 0$ and X_2 is any $s \times (n-q)$ matrix, then $X = [X_1, X_2]$ satisfies (3.1). The number of ways to choose X_2 is $q^{(n-q)}$.

This proves the following theorem.

Theorem 3.1. Let A be an $n \times n$ nonalternate symmetric matrix of rank q. Then the number of $s \times s$ matrices X over GF(q) such that $XAX^T = 0$ is

$$N_s(A, 0) = q^{(n-q)} N_s(I_1, 0).$$

4. **Determination of $N_s(A, 0)$, A alternate.** Let A be an $n \times n$ alternate matrix of rank t. By Theorem 2.3, there is a nonsingular matrix P such that

$$PAP^T = \begin{bmatrix} 0 & I_q \\ I_q & 0 \end{bmatrix}, \quad t = 2q.$$

By Lemma 2.2, $N_s(A, 0) = N_s(P, 0)$ where

$$P = \begin{bmatrix} 0 & I_q \\ I_q & 0 \end{bmatrix}.$$

Thus, it suffices to find $N_s(P, 0)$. Since P is symmetric, XDX^T is symmetric. Hence, by (2.4), \(\sum_B e(\sigma(XDX^TB)) = q^{q-1} \) if and only if $XDX^T = 0$, and \(\sum_B e(\sigma(XDX^TB)) = 0 \) otherwise, where the summation extends over all $s \times s$ upper triangular matrices B. Thus

$$\sum_B \sum_X e(\sigma(XDX^TB)) = \sum_X \sum_B e(\sigma(XDX^TB)) = N_s(P, 0)q^{q-1}.$$

A simple calculation shows that

$$\sigma(XDX^TB) = \sum_{k=1}^{s} \left[\sum_{j=1}^{q} \sum_{i=1}^{s} x_{i+k} b_{ij} x_{i+j} \right] + \sum_{k=q+1}^{s} \left[\sum_{j=1}^{q} \sum_{i=k-q}^{s} x_{i+k-q} b_{ij} x_{i+k-q} \right].$$

Let g_B be the bilinear form defined by $g_B(x, y) = xBy^T$ for all x, y in V_s. Then, $g_B(x, y) = \sum_{j=1}^{q} \sum_{i=1}^{s} x_i b_{ij} y_j$. Thus, (4.2) becomes

$$\sigma(XDX^TB) = \sum_{k=1}^{s} g_B(x_k, x_{k+q}) + \sum_{k=q+1}^{s} g_B(x_k, x_{k-q}).$$

Hence,

$$\sum_X \sum_B e(\sigma(XDX^TB)) = \sum_X \sum_B e\left(\sum_{k=1}^{s} g_B(x_k, x_{k+q}) + \sum_{k=q+1}^{s} g_B(x_k, x_{k-q}) \right)$$

$$= \sum_B \sum_X \left[\sum_{k=1}^{s} e\left(g_B(x_k, x_{k+q}) \right) + \sum_{k=q+1}^{s} e\left(g_B(x_k, x_{k-q}) \right) \right]$$

$$= \sum_B \sum_X \left[\prod_{k=1}^{s} e\left(g_B(x_k, x_{k+q}) \right) + \prod_{k=q+1}^{s} e\left(g_B(x_k, x_{k-q}) \right) \right].$$

Thus, (4.1) becomes

$$N_s(P, 0)q^{q-1} = \sum_B \sum_X \left[\prod_{k=1}^{s} e\left(g_B(x_k, x_{k+q}) \right) + \prod_{k=q+1}^{s} e\left(g_B(x_k, x_{k-q}) \right) \right].$$

Let $X = [x_1^T, \ldots, x_n^T]$, where $x_k = (x_{1k}, \ldots, x_{nk}), 1 \leq k \leq n$. Furthermore, let $\sum_{x_k^T}$ indicate a sum extending over all vectors x_k in V_s. Then (4.4) becomes

$$N_s(R, 0)q^{\frac{n(n+1)}{2}} = \sum_B \sum_{x_1} \cdots \sum_{x_n} \left[\prod_{k=1}^{s} e\left(g_B(x_k, x_{k+q}) \right) + \prod_{k=q+1}^{s} e\left(g_B(x_k, x_{k-q}) \right) \right].$$

Next, consider

$$\sum_{x} \sum_{y} e\left(g_B(x, \eta) \right) e\left(g_B(\xi, y) \right)$$

$$= \sum_{x} \sum_{y} e\left[\xi y_B^T + \eta B x^T \right] = \sum_{x} e\left[\xi y_B^T + \xi x^T B y^T \right]$$

$$= \sum_{x} e\left[\xi (B + B^T) x^T \right] = \sum_{x} e\left[g_{B+B^T}(x, \eta) \right]$$

$$= T(g_{B+B^T}), \quad \text{where } T(g_B) \text{ is as defined in (2.5).}$$

Thus, (4.5) becomes

$$N_s(R, 0)q^{\frac{n(n+1)}{2}} = \sum_B \sum_{x_1} \cdots \sum_{x_n} \left[\prod_{k=1}^{s} T\left(g_{B+B^T} \right) \right].$$
Since \(M(s, 2r) \) denotes the number of \(s \times s \) upper triangular matrices such that \(\operatorname{rank} (B + B^t) = 2r \), it follows from Theorem 2.5 that

\[
N_s(R, 0) q^{s(s+1)} = q^{s(n-2r)} \sum_{\sigma=0}^{[s/2]} M(s, 2r) (q^{2s-r})^{\sigma}.
\]

From Lemma 2.1, it follows that

\[
N_s(R, 0) q^{s(s+1)/2} = q^{s(n-2r)} \sum_{\sigma=0}^{[s/2]} q^{\sigma} L_\sigma(s, 2r) (q^{2s-r})^{\sigma}
\]

This completes the proof of the following theorem.

Theorem 4.1. Let \(A \) be an \(n \times n \) alternate matrix of rank \(2 \phi \) over \(GF(q) \). The number \(s \times n \) matrices \(X \) over \(GF(q) \) such that \(XAX^t = 0 \) is

\[
N_s(A, 0) = \frac{q^{s(n+1)}}{q^{s(s+1)/2}} \sum_{\sigma=0}^{[s/2]} L_\sigma(s, 2r) q^{-2\sigma}
\]

where \(L_\sigma(s, 2r) \) is given by \((2.8) \).

References

Acta Arithmetica

XXIII (1973)

Slowly growing sequences and discrepancy modulo one

by

R. C. Baker (London)

§ 1. Introduction. Let \(y_1, y_2, \ldots, y_k \ldots \) be numbers in the interval \([0, 1) \) and let \(\alpha \) be any number in \([0, 1) \). We say that \(y_1, y_2, \ldots \) is a uniformly distributed sequence if for any \([a, b) \) \((0 \leq a < b \leq 1) \), the number \(k \) of \(y_1, y_2, \ldots, y_k \) falling in \([a, b) \) satisfies

\[
k' = (b - a)k + o(k) \quad \text{as} \quad k \to \infty.
\]

One can prove [3] that if \((1.1) \) is true for all \(a \) and \(b \) \((0 \leq a < b \leq 1) \), it holds uniformly in \(a \) and \(b \) : that is, the discrepancy \(D(k) \) of the sequence \((y_k)_{k=1}^{\infty} \), defined by

\[
D(k) = \sup_{0 \leq a < b \leq 1} \frac{1}{k} \left| \frac{k'}{k} - (b - a) \right|
\]

(1.2)

satisfies \(\lim_{k \to \infty} D(k) = 0 \).

The behaviour of \(D(k) \) is closely related to that of the exponential sums

\[
s(k, h) = \left| \sum_{j=1}^{k} e^{2\pi i y_j h} \right| \quad (k \geq 1, h \geq 1).
\]

(1.3)

It can be shown that

\[
\lim_{k \to \infty} D(k) = 0 \quad \text{iff} \quad \lim_{k \to \infty} \frac{s(k, h)}{k} = 0 \quad \text{for all} \quad h \geq 1
\]

(1.4)

and, more precisely,

\[
\frac{1}{2\pi} \sup_{h \geq 1} \frac{s(k, h)}{h} \leq kD(k) \leq 150 \left(\frac{k}{m+1} + \frac{m}{h} \right)
\]

(1.5)

for all integers \(m \geq 1 \) ([7], Theorem III and [1], p. 14).

Now suppose that

\[
\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq \ldots
\]

(1.6)