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pour tout ¢ positif appartenant & I, on a quand @ tend vers +oc

M (logloga)t™? g—1 ) ( q
@) — dgw = (g—1)! (logw)® (A (loglogm R0 (loglogz)? ))

uniformément pour 1< g < ¢loglogw.

7. Généralisations.

7.1. Le théoréme foudamenﬁ&l pourra,lt étre généralisé en suppo-
sant f & valeurs entiéres pas forcément = 0. ‘ .

La conclusion serait alors une formule semblable & (2) mais valable
seulement pour |2/ = 1, la fonction F et les fonctions 4; étant définies
sur la eirconférence |z| = 1 et continues sur cette circonférence.

On powmrrait encore en déduire un développement asymptotique de
v,(%) analogue & (34), valable cette fois pour ¢ quelconque appartenant
4 Z. On D'obtiendrait en partant de ce que

4

‘ 1 . .
o) =gz [ (S em)eean,

-7 N

Les polynomes P, seraient remplacés par des fonctions entidres de

type exponentiel F; telles que, quand |X| tend vers -+ oo,
FyX) = O~ X |71,
Le
oz H(loglogm)““l
(logm)™*
serait remplacé par .
| o(mm {logloga) ™%} |
(10gm)'"’"‘1

7.2, On pourrait aussi évaluer la somme

Z‘ 2T

nml(m-ﬂ‘(lk)
ot le nombre des n <@ tels que % =1l{modk) et f(n) =
7.3. Enfin on pourrait ne plus supposer quel'on a f(p) = O et f(p?) =1
pour tout p, mais gue I'on a f(p) = 0 et f(p®) = 0 ou 1 pour tout p, Pen-
gemble des p pour lesquels f(p?) = 1 étant un ,,bon enserble” de densité
positive, ce terme ayant la signification qui Ini est attribuée dang AS
(p. 139).
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W. Narkiewicz has shown ([11], [12]) that if K is a puorely transcen-
dental extension of a number field, then the only polynemials Pe K [X]
which admit infinite invariant sets in A (i.e. subsets F of H with P(H)
= ) are the linear ones. He conjectured [13] that more generally if £y
and P, are two polynomials over  such that there is an infinite subset
E < K satisfying P, (F) = P,(F), then P, and P, have the same degree.
In [5], this conjecture was verified in the case of algebraic number fields
under the additional assumption that the polynomial of lower degree
ig injective on H. This was generalized by D. J. Lewis [9] to the case of
finitely generated fields K and also to morphisms over such fields of
projective n-space into itself,

However, as noted in [5], the conjecture as stated is false. PI(X
= X*+X +1, Py(X) = P,{F(X)) where F(X) =X*-X+1, and E the
set consisting of 0, 1, F(1), If’(F(l)), ... was the counter-example given
there. The main resulé of this paper states that under certain conditions
this is the only possible kind of counter-example.

TEROREM 1. Let K be a field of characieristic zero such that the algébmio E
dlosure in K of any subfield fiwitely generated over the rationals Q is finitely
generoted. Suppose P, and Py are polynomials over K with degree Py < de-
gree Py. If there is an infinite subset B of K satisfying P,(B) = P,(E) or
P, (B) c Py(B) and if every component of Pi(X)—Py(¥) = 0 containing
an nfinity of poinis of ExE has a polynomial parametrization, then
Py(X) =P F(X)) for some polynomial F over K.

The applicability of Theorem 1 depends on being able to verify that
the components of P, (X)—P,(¥) = 0 which admit an infinity of points
of B x B, have polynomial parametrizations, In the proof of Theorem 1,
it ig shown that # containg a set which in addition o satisfying the reguire-
ments of F also is contained in & subring 4 of K finitely generated over
the infegers. But then one ean apply M. Fried’s characterization ([2],
Th. 3 and it corollary) of genus 0 curves with separated variables having
infinitely many A-valued peints. (The corollary holds for a ring like A
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provided one uses a stronger form of Siegel’s Theorem ([7], pp. 127, 135).)

Accordingly one finds that the components in question have polynomial
parametrizations in each of the following cases:

(i) P, and P, have relatively prime degrees;

(if) B is contained in an infegrally closed subring B of K with only
a finite number of units, e.g. B = Z, the ring of integers of a complex
quadratic tield, or Z[X,, X5, ..., X, 15

(iify K = Q the field of rational numbers and the greatest common
divisor of the degrees of P, and P, is neither ¢ven nor a multiple of 3.

The sufficiency of the first two conditions follows from the above
mentioned regulty of M. Fried whoreas the third requires in addition some
regults on minimal separations of M. Fried and R. I, MacRae ([3], Th. 2.3,

Th. 4.2) as well as the fact that the minimal separation of a quadratic

over Q is of degree 2, 3, 4, or 6 which can be verified directly using linear

- recurrences.

I would like to thank Prof. D. J. Lewis for extensive conversations
on this problem as well ag Prof. . Hakin for an idea used in the proof
of the proposition below and Prof. M. Fried for pomtmg out a serious’
error in. the original version of this paper.

Whereas the proof of the previously mentioned result on algebraic
number fields was based on the idea that polynomials of different degrees
grow at different rates, the idea of the proof of Theorem 1 depends on
- a somewhat more delicate property, viz. If a,, as, ... ave elements of XK
which satisfy of ; = ef, then the o; are roots of unity. The following
result is the first step toward reducing to a point where thig 1dea can be
“used. :

' THEOREM' 2. Let K be a field fiamely generated over the rationals and A
be a finitely generated subring of K. Suppose 8(X)~—T(X) = 0 is a curve
whose every absolulely irreducible component is defined over K and let m > 0,
%> 0 be the degrees of S, T respectively where m 5 n and set 7 = (m,n).
Then any absolutely irr ednczble componert V, of S(X)—T(¥) = 0 which
- admits & polynomial pcummetmzataa% is of me form Sy(X)—T (X)) =0
where

(1) 8, end Ty are polynomials over K of degree m/r and n v respectively.

(i} There is a polynomial U in K[X] of degree v such that 8(7)
== U(SJ ) and T(X) = U(T,(X)).

(i) There are polynomials F, and G, in K [X of degrees njr and m/r
respectively such that 8;(Fy (X)) = T,(6,(X)).

Further, if V, is any othezf absolutely irreducible cowapomw of 8(X)—
—-T(Y} =0 'wath @& polyromial paramelrization, then V, is of the form

Sy(X)— LT (Y)+b = 0.where & is an -th root af unity, be K, and U({X —b)
= U(X)..

icm
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Proof. Let X = F(f), ¥ = G(t) be a polynomial parametrization.
of V. Sinee Vy is a component of §(X)—~T(¥) =0, we have S{F(#)
= T(G (t))« By a result of Fried ([4], pp. 168-169) and Ritt ([14]), there
are two polynomials k, Ue K[X] with degree U =r, K{F (1) nK(G ()
= K(h(D)), and S(F'(1) = U[h{1)} = T(G(1)). It follows that there are
polynomials 8, and T, over K with h(f) = 8,(F(#)) = T,(&(?)). By the
same theorem, there are polynomials b, and h, with degree h, = (degF,
deg@), h(1) = ha(hy(3)), and E(F(8), G(t)) = K(h,(t)). Thus, there are also
polynomials ¥y, & over K with F(t) = Fy(h(t)] and G(t) = G{hy(1))-

K@)

P, Kk, ‘

8, by~ &
K(h(t) Fia)

(8{F(#))

The degrees of 8,, T';, #;, and @, are clearly mfr, n/r, nfr, and mfr respec~
tively. Now X = Fy(t), ¥ = 64(t) also parametrize V, and §,(F.(2))
= Ty{@4(1) since h(t) = Sy{Fs(hy (1)) = T(G4(R:(2))). Finally §,(X)—
—T{Y)is mbsolutely irreducible by Ehrenfencht’s Theorem ([173), and so
U, Fyy Gy, 8y, and T, satisfy the conditions of the theorem.

Suppose now that V, is another absolutely irreducible component
of §{X)—T{Y) = 0 with a polynomial parametrization. As in the case
of V;, we can find U’, P, 1, 8; and T;. Now 8(X) = U8, (X))

= ['(8](X)) and, since U and U’ are of the same degree, there is a linear
polynomial ¥, over K with U, = U,oli? and §; = 1,08, ([4], p. 169).

. Applying the same argument to T(X), we get a linear polynomial I,

over X with l,oT, = T. It follows that V, is the curve §,(X) = l,olc
ofy(Y). Further T(X) = U{T(X)) = U(zl(za(TI(X)))) implies U(X)
= U(l (I, (X))) and so the leading coefficient of 1,(1,(X}} is an rth root
of unity. This completes the proof of Theorem 2, :
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We will need to know that we can obtain almosgt all of the points
of 7, defined over K by taking values in K of the parameter 2. _This iy the
content of the following proposition. _

ProrosITION. If 8;(X)—T((X) = 0 is an affine plane eurve defined
and porametrized over a field K by X = F,(1) and ¥ = G4(1) whem F,
and G4 are polynomials having relatively prime degrees, and if P is amy
simple point over K of 8,(X)—T(¥} =0, then P = (Ty(t,), G4(ty)) for
some tye K, : '

Proof. Since K(F, (1)) NE(G(1)) 2 K(8:(Fy(t))) and the degrecs of
F, and @ are relatively prime, it follows by @ result of Fried (147, p. 169)
that K(Fl(t), Gl(t)) = K (#). Now the coordinate ring of 8;(X)— T (¥) =0
is L[, (t), &4 ()], and so its integral closure is I [4]. Suppose % is the prime
ideal corresponding to a simple point P of 8 {X)—T,(¥) = 0 which ig
defined over K, and that %" is the prime Iying over it in A [t]. Then
K[F (1), &1(0)]e = K[tly.. Now P ig parametrized by the value of ¢.in

K/ K[i] e K[Fy(t), G (1) o /VE [Fy (1), G1(1)]y = K
which shows the result.

Note that, since 8,(X)—T(Y) =0 has at most a finite nomber
of singular points, replacing K with some finite algebraie extension field

wonld allow us to make the same conclusion without the restriction that P

is simple.

For the proof of Theorem 1, we will need several lemmag on Tcheby-
chef polynomials. Recall that the nth Tchebychef polynomial is the unique
polynomial with integer coefficients such that T, {cos8) = cosnd for all @,

1

1 .
wfor kb =0,1,...,n~1 and

The roots of T, are therefore eos

ke .
differentiating shows the roots of T,,(X) = 0 to be cos——for k=1,2,...,

n~1. -Adding the expansi'ons of cos(n-+1)f and of cos(n—1)0 gives
the recursion formula:

T X) = 2XT,(X) T, _, (X).

From this, it is easy to see that 7/, is a polynomial of degroe n with
(i) leading coefficient 2", :
(i) trace 0,
(iii) coetficient of X"? equal to —a2"?, and
(v) congtant term equal to 0 for » odd and (—1)* for n even,
- LevMA A, If n2>2 and

al, (bX +o)+d = TN(X),
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then ¢ = 0. and ab™ = 1. If further m =3, then b = +1 and d = 0. If
however m = 2, then d = a—1. o B :

Proof. Comparing coefficients using (i) and (ii} above, gives ab™ = 1
and ¢ = 0. If %> 3, comparing the coefficients of X% pives af"~? =1
and §0 b = 1. Comparing constant terms gives aT,(0)4d — T.(0).
T nis 0dd, (iv) gives d = 0. T n = 2, then T,(0) = —1 and so d = @ —1,
If nis even and > 3, then ab™ = 1 implies ¢ = 1 and 50 4 = 0 as desired.

Lmynia B. Suppose n =2 and m = 1. If g is a polynomial with-g{0) 70
and I, 1, arve linear such that

T,(d) = o X"g(X)"ol,,

then _

(0) g{lo(X)" = constant = n =2, 1,(0) = -1, 1,(0) = 0,

(i) g(le(X))" + constant = 1,(0) = 41, m = 2.

Proof. If 1(X) = aX +b and L,(¥) = X +d, we have .

T AX) =a(eX+a)g(eX +d)™+5.
Differentiating gives: |
T (X) = rac(eX +dy 'k
if g(oX+ad)™ =k is & constant, .
Ty (X) = acomg(eX +dy™ g (0X -+ d)
if r = 0 fnﬂ; gleX - ady™ is nof comstant, and | _
T,(X) = ae(cX +d) Ly (X +aym? {rg(cX + 65) + m(cX+d)g’(bX—i— ay -

otherwise. In the first case, n = 2 since 77, (X) has only simple rocts and
the conclusion follows. In the other two cages, the same argnment shows _

b
that m < 2 and # < 2. The roots of g{eX + d) are among the cos—— for

Tr\
E=1,2,...,,2—1. But Tn_(cos —9;) = coskrn = (—1)*. Henee b = 4-1 by

substitution, which completes the proof.

Let us say that two polynomials § and F are permutable if there are
polynomials T and G with degree § = degree G, degree T' = degree J,
and So# = Tog. There are two obvious kinds of permuting, viz.
X0 XR(X™) = Xh(X)"o X"
and ’

Tof, =1%,0T,.
Ritt’s Theorem is a converse ([14], § 4).

§ -~ Acta Arithmetica XXITI.2
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TEEOREM. Suppose S, T, F, and G are non-constant polynomials ove
a field of characteristic zero such that -

S{F(X)) = I'{@(X))
and
m = degree 8 = degree G < degree T = degree T = n,.

If (m,m) =1, then there are linear polynomials by by, 1y, and I, over 1
such that either

(i} I'o80ly = X" =1"oGoly, o Foly = X*h(X™), and I/ c Tol
= X*R(X)™ where h i3 a polynomial over the algebraic closure I aof K o

(il) L'oSoly = Ty = 7060l and 0Tl = T, = 7o Fol,.

COROLLARY 1. If 0 << m << 0 are relatively prime, then the only curve,
of the form S(X)—T(¥Y) =0 where degree S = m, degres T =0,
which have. an infinity of points defined over a ring finitely generated ove
the integers Z, ave those of the form

LoX" ol (X) = Lo ¥ h(X)™ol,(Y)
or
LioZ,ol(X) = o0l (¥),

where 1., Ly, and I, are linear.

Proof. This follows from Ritt’s Theorem, or more simply from Fried
([2], -Theorem 3).

COROLLARY 2. Let U, 1y, and 1, be linear and 1< m < n be integers
with (m, n) = 1. Suppose that each of the following curves admit infinitely
many poinis defined over some fiwed finitely generated Ping.

{i) X™ =10 Y"1,(Y). Then 1,(0) = 0.
(i) ™ = Lol 0l (X). Then m =2 and this curve is of the form

| Ty(dX) = T,0l(X).

(1) T (X) = Lol 0l(Y). If m =3, then 1(X) = =X. If m =2,
then 1,(X) is of the form aX -+-0—1. 8o the curve is

1,(VeX) = £T,(¥).

. Proof. (i) If {0 X* = X1, where s > 2 and the {; arc linear, then
14(0) ='13(0) = 0. 8o this case follows from Lemma B and the lagt corollary.

(ii) By the last corollary and Lemma B, m = 3 is impossible. Suppose
m = 2. If the curve is of type (i) in Corollary 1, then there are linear poly-
nomials & (X) = eX +f, ,(X), and 14(X) such that I,(X?) = {l (X)) and
olioT,oly = Y'g(¥)ol; for some polynomial g. Tho First aquation
implies f = 0. I 1,(X) = aX - b, then by the second equation and Lemma
B, X = lolo(eX£1) for some constant ¢. 8o X = ¢acX 4 ea--be or

Tmuge sels of polynomials 159

a = T b. Henece I, is of the form 1,(X) = aX - a. If the eurve is of type (ii)
however, and I, (X) == aX +b, then Lemma A implies that there ig a linear
polynomial ¢X-+d such that (£aX-+b) "oX* = (2X*—1)o(eX +d) or
X = +2a(cX+dP¥F a-+b Hence 4 =0 and b = --a. So once again
[ (X) = X +-a. But now it is easy to see that the curve is of the desired
form with d = (F24)™" and L(¥Y) = F(Y).

_ (iii) If m = 3, then Lemma B says that this curve must come from
pertauted Tchebychef polynomials. Bufi then the result follows from
Lemma A. If m = 2, then (ii) says that we have a curve arising from per-
muted Tehebychef polynomials. Again Lemma A gives the form for .
This completes the proof of Corollary 2.

Repucrion LEMMA. Let m and n be relatively prime integers both of
which are at least 2, and let X be a field of characteristic 0. Suppose §,(X) —
V(X)) =0 for i =1,2,...,8 are curves with polynomial parametriza-
tions such that S; and V; are polynomials of degree m and n respectively. If
there is an infinite sequence {a,} of elements of K such that for each %, there
s a j with 8;(e) = Vy{a;y,) and such that no element of K oceurs more
than a finite number of times in the sequence, then for some j, 8 (X)—=V,(¥)
=0 has an infinity of points of the form (a;, tiz1) and both 8; and V; are
af the ferm -
_ LoX*ol, or loTol,
where 1, and 1, are linear and T, is o Tchebychef polynomial. ‘

Proof. By disearding some of the curves §;(X)—V;(¥) = 0 and an
initial segment of the a;, one can assume that all the curves have an
infinity of points of the form (o, a;,;). Theorem 2 shows that 8;(X)—
—V;(¥) == 0 has a parametrization of the form X = Fi(t)and ¥ = G4 (1)
where F; and @; are polynomials of degree » and m respectively. After
discarding an initial segment of the sequence of a;, one can assume by
the proposition that for each ¢ there is a §; in & and a j(2) such that

Fiay(Be) = o and Gy (B;) = ayy,-
Now
' Fya(Bi) = o = Gayy (Biy)-
Further 8;{F(t)) = V,(@;(1)) and so &, and V; permute with polynomials
of degree n and m respectively. . ,

Taking a suitable set of eurves F;(X)—@;(¥) = 0 and a final segment
of the f#;, one can repeat the construction again. (Here one uses those
Fy(X)—6,(Y) = 0 which admit an infinite number of solutions .of the
form (B;, p;_,) and so the curves have polynomial parametrizations by
Hried ([2], Th. 3 and its Corollary).) After repeating the process k times,
one sces that some 8; and some V; permute with polynomials of degree n*
and m* respectively. By choosing % large enough so m®, n* are groater
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than =, m respectively, one sees by Corollary 1 that 8; and V; are within

linear change of variables either powers or Tchebychef polynomials. Tt

m > n, then §;(X)—V;(¥) = 0 satisties the conclusion of the lemma by

Corollary 1. Similarly, if m < », then §;(X)—V,;(¥} works, This completes
- the proof of the lemma. : '

Remarlk 1. In the above proof, it was shown that at each step, at
least one of the curves Fj(X)-G,ﬂ(Y) = 0 arising from the parametri.
zations X = F,(4) and ¥ = G,{{) bas an infinity of points defined over
a finitely generated subring .A. This fact will be used below in the proof
of Theorem 1.

Levma C. If K, is a findtely generated field exiension of the rationals Q
and if 8 and T are non-constant polynomials of diffevent degrees, then there
are af most a findte number of finite sets F' = K, with S(I) = T(F).

Proof. In the case of algebraie number fields, this result ocours as
Theorem 2 of [b]. One can reduce to this case by the same method as is
uged in the previously mentioned paper of D. J. Lewis [9]. To do this
we need. only make a few changes in his section 5. In Lemma 5, replace
condition (i) with “X is a union of finite sets X such that F(X,) = G(X,)".
In the proof of that lemma, omit the condition (XI) on the point a and
replace the & ; . . with

Gjoe = Vg [X X — X0 X,

Conclude that H is finite.

Levwva D. Let 8, Te E[X] be polynomials with coefficients in o field %
of eharacteristic 0 and V,, be the algebraic set defined by the squations: §(X,)
=T(Xa), 8$(Xo) =T(X,),..., 8(X,) =T(X,), 8(X,) =T(X,). Sup-
pose that 8 and T are not both constants. Then V,, is of dimension 0 except
possibly when 8 and T have the same degrees and the ratio of their leading
coefficients is an n-th voot of unily in k. S

Prooi. By the Lefschetz principal, we are redueced to the case where &
is a subfield of the field of complex numbers. First let ns prove the

FAor. The only bounded algebraic sets V of € are those of dimension
2670,

Proof. It suffices to congider the case where V ois irreducible of
dimension, say 7> 0. Let C[V] = C[®,, #,...; @,} be the coordinate
ring of V. By the Noether normalization theorem, there are linear combi-
hations 'y, (i =1,2,...;7) of the @; with complex coefficients such that
Cly1s Yoy -+, Y118 @ polynomial ring in 7 variables, and €[V is integral

over Clyy, ¥, ..., 9,] The'points of ¥ are the finite spceializations in C*
of (@, @, ..., @,) over C. Suppose the set of these iy bounded. Then the
seb of finite specializations in € of (@, Ta, vvy @y, Yy Yey -+ -, ) OVEL C
B also bounded, say by M > 0. But (yi, ¥s, ..., %) = (M 41, 0y...,0)
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can be extended to a finite specialization of (y, #,, ..., @,, ¥1, Ye yoney Y
by the lying over theerem which is a contradiction.
Now to prove the proposition, we may suppose

8(X) = X*+ F(X), T(X)=aX+G(X)

where a # 0, degree F < s, degree G <, and s,t> 0. If V¥, is not of
dimension 0, then by the fact, it is unbounded. Suppose for example that
it is unbounded in the first coordinate, and choose points Py o= (@7, Bygy
-ovy @) 10V, with @] > oo as j — co. Now since 8(u);) = T (my),

[@a5] = 00 a8 § — oco.

Similarly |zl > oo as j oo for i =3,4,...,n By deleting a finite
number of the P;, we may suppose that @, ...z, = 0 for all j. Mul-
tiplying the equations for V, together and dividing by (X,X,... X,)

gives
=1 1

=1 e
The right hand member approaches a® = 0 as j ~» co. But then § =1
and " = 1 which shows the result.
Proof of Theorem 1. Suppose S§{#) = T(F) where & and T are of

_ different degrees and F is an infinite subset of a field K which satisfies

the hypothesis of Theorem 1. First note that there are but a finite number
of finite sets ¥ = K such that S(¥) = T(F). This follows by Lemma D
and Lemma C applied to the algebraic closure K, in X of the field generated
over by the eoefficients of § and 7.

The sequences {o] {20} < ¥ such that T(q) = Sa;_,) for i >0
clearly cover B. If the {a,} is of finite cardinality for each such sequence,
then for every a,¢ B there iz o finite fequence ag, ay, ..., o, where ;e I,
Slo;_y) = T(e;) for 0 <i<<m, o, = a for some r < n, and a;, ..., a,
are distinct. Clearly F(ay) = {¢ 11, Gpysy ..y @} 18 a finite seb satisfying
S(F(ap)) = T(F (a0)). Since there are but a finite number of such sets,
some ¥, = F(a;) for an infinity of a,e B. On the other hand, for any b
there are but a finite number of solutions of & (X) = T(b). It is therefore
possible to construet by induction, nsing the sequences {agy ...y a,} for
which Iy = F(a,), a new sequence of distinet elements Bay b1, ... such
that §(p;,,) = T(B,) for all 4> 0.

If, however, at least one of the sequences {e;] 2 0} had infinite
cardinality, then by deleting segments of the form gy Ogy1y -0y B, Where
% = Opyq, ODE cAN assume that all the o are distinet. Up to switehing the
roles of § and T, it has been shown that there is an infinite sequence
{o;} of distinet elements of & such that § {a;) = T(a;;) for 1= 0. From
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now on we assame F = {o;}. B is contained in a subring of K finitely
generated over Z ([10], p. 132}

In order to complete the proof, it suffices by Theorem 2 and Fried
and MacRae ([4], Theorem 3.5) to show that the degree m of § is a mul-
tiple of the degree n of T or vice versa. Suppose therefore that such i
not the case. Let v = (m,n), s = m/r, and { = njfr. By Theorem 2, the
components of §(X)—T(Y¥) =0 which admit polynomial parametri-
zations are of the form 8,{X}—V,(¥) = 0 where 8; and V; are of degree ¢
and t respectively. By discarding an initial segment of the sequence gy
one can suppose that for eanch 4, (a;, a;.,) lies on at least one of the 8;(X)—
—V;(Y) = 0. The Reduction Lemma now shows that at least one of
thege components, say §,{X) = V,(¥) has 8, and V, either a powor or
a Tehebychef polynomial (up to linear change of wvariables). Now consi-
dering each of several possible cases, it will be shown that §{X)~ T(¥) = 0
must have & very special form. '

Case 1. Suppose S {&X)—V (¥) =0 15 of the form
X0l {X) = l,o Yol (¥)

where the I, are linear. By part (i) of Corollary 2, this can be rewritten as
X1 (X) = Y'ol,(¥) with I, linear. Further, by replacing the «; with
I,{ay), we are reduced to X* = Yol (Y) where I, = [,ol7". By Corollary 2
and Theorem 2, the other components of §{X)—T(¥) = 0 containing
an infinity of points of the form (a;, a;,,) are all of the form X* = ¥
oly(Y) where { is an nth root of unity. These are parametrized by X = Z°,
Y =1 'o{7"Z% So, by Remark 1 after the Reduction Lemma, at least
one of the curves X' = 17'0{"' ¥* hus an infinity of points over 4. By
Corollary 2, 177(0) =1,(0) = 0. Let I (X) == ¢X and choose a ¢ with
d™" = ¢”. Bxcept for components with only a finite number of points
of the form (a;, a;,,), S(X)—T(¥) = 0 iz of the form X™ = "¥Y" By
replacing the o; with de;, we are reduced to the case of X"~ ¥" = 0.
Case 2. Suppose 8;(X})—V,(¥) = 0 is of the form

Pyol, (X) = T,0ly(Y)

and thati ¢, 1> 3. As in case 1, we can reduce to the case where I, (X)= X
by replacing the e; with the 7, (¢,). By Corollary 2 and Theorem 2, the only
other possible component of §(X)—T(¥) = 0 containing an infinity of
points of the form {a;, ay.,) is Ty(X) = —T,(l,(X)). If, say ¢, is 0dd, these
curvey are parametrized by X = T,(X) and ¥ = L 'oT,(2). So by
Remark 1, at least one of the 7,(X) = 41" (7,(Y)) has an infinity of
points over 4. By Corollary 2, ;' = I, = £ X. Therefore, with the excep-
tion of components containing at most a finite number of points of the
form (g, az4), S(X)—T(¥) =0 is T,(X) = +T,(T).
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Clase 3. Suppose S,(X) = V,(Y) is of the form
' Tyoly(X) = Tyl (T)

where ¢t = 3 is odd. As before, we may suppose (X} = X, Remark 1
shows that for some linear Iy, both a T,(X) = T,(l;(Y)) which is a com-
ponent of S{X)—-T(¥) =0 and l;l(Tz(X)) = T{¥} have an infinite
number of points defined over 4. By Corollary 2, this last curve looks like
T,(eX) = +T,(Y). This is parametrized by X = ¢ ' 14 (Z) and ¥ = T,(Z).
Again we may assume -+T,(X) = ¢ *7,(Y) has an infinity of points
defined over 4. By Corollary 2, ¢! = 4-1. Hence S§(X)—T(¥) =0 is
Ty(X) = +T,(Y) ap to compenents with only a finite number of points
of the form (o, «; ).

Corollary 2 shows that, except for the cases that we get by switching
the roles of ¢ and ¢ in the three previous cases, that we have exhausted
all possibilities of s,% > 1. If s or ¢ ig 1, then there is nothing to prove.
Hence in all cases, we have reduced §(X)—7(¥) =0 to a form where
the next lemmsa applies and gives a contradiction. :

Leyyas E. Let 8,,T,, Ty, ..., T, be polynomials such that the set of
curves 8, {X)—T,(Y) = 0 is the same as the set of cuwrves X = T,(t),
Y = 8,(t). Suppose every component of the curve S(X)~T(Y) = 0 which
has an infinity of points of the form (u;, 0;,,) is among the curves 8,(X)—
—T,(¥) = 0. If degree 8, > 1, then B is a finite set.

Proof. The set # can contair at most a finite number of points
{a;, @;_;} which are not contained in the 8,(X)—T,(Y¥) = 0. Choose 2 %,

‘suel that for ¢ > &y, (o, a;_,) is not one of these bad points and renurnber

the a; for i = k; by a,; = jap, - By replacing 4 with the integral closure
of an appropriate finite extension, we can assume via the proposition
that, for 7 = 0, the (a,;, a, ;_,) are of the form a,; = 1oy (@rg)y Bg 1 = By (ay;)
where the a,¢ 4. Without making further extension of A, we can find
e d With a;; = Tyy(ay), @, = 8y(ay). By induction, there are
ae 4 for i > k with a; ; , = 8y(a;,, ;). The same equation can be used
to inductively define the a, for k negative. The set I of all the a,, satisfies
8:(F) = F. By [12] or the one dimensional case of the theorem of D. J. Le-
wis [9], F and o fortiori E is tinite. This completes the proof of the lemma
and of Theorem 1.
We conclude with the following example.

ExAMPLE. The proof of the theorem divided naturally into two parts.
The first part treated the sets {u;} where P,(a;) = Py{e,_,) for all 4, and
the second part was concerned with the number of finite sets F which
satisly P (F) = P,(I"). Tn general, it is possible that all sets of the first
type be finite, but that there be an infinity of sets of the second type,
for example, let & — Q ({£,}) where £, is a primitive pth root of unity for
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every prime p and let Py, P, be polynomials with (degP,, degP,) =
If py, Py - .-, Dy ore the first & primes, and if » < p;, then there is no proper
extension of Q({y, Lpyr-vvy Cppd contained in K of degree < n. So by
choosing » Dbigger than the degreey of P, and P; and % large enough %0
that % > n and the coefficients of the P; and «, are in @((, ,..., gm ), We
are assured that the zets of the form {«,} are contained in Q{ 1 veen )
and are hence finite. Nevertheless, if P (X) = X" and P, (1’) = ;["n
then taking o to be any prime relatively prime to m and n, we have P 1)
= K, = Py(¥) where T, = {{| k =1,2,...,p}. So there ave infinitely
many sets of the ,second type. The same phenomenon oeeurs for Py, P,
of the same degree when I = @ ([6]).
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L. Introduction. Let A () denote the number of essentially distinet
Abelian groups of order not exceeding #. Then

A(p) = dyo+ A2 - A0+ A)

where
Arzgc(?) (T=la253)
and

A(z) < 2"log" 2.
Results of the above type with the pairs
(6,6) =0, G2, &, 50, &3, &9, (2,0, (&2

were proved by P. Brdos and G. Szekeres [1], D. G. Kendall and B. A.
Rankin [2], H. E. Richert [3], W. Schwarz [4], and P. (. Schmidt E5],
[6]. As an application of the theory of two dimensional exponent pairs T
have developed elsewhere [9], I here show that

(1) . A(CL‘) < ,W,,Iﬂsl-i,ﬂ?logﬂw.
Here the exponent 3= = 257 . 259 .
Actually the method ylelds exponents smaller than 32, but I shall

avoid the computations that will be necessary to obtain the best possible
exponent in this way.

2. Lemmas.

Levma 1 (Lemma of partial summation). Let g(m,n) denote any
numbers, real or complew, such that, if

Glm,n) = D glu, )
lsusm
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