Of course, for \(k < 4 \), acceptable pairings have appeared in the articles of Klarrer and Sebastian.

The construction of acceptable pairings of \([1, 2n]\) when \(n \) and \(6 \) are not relatively prime is not really so unnatural as it might appear. For example, in the case when \(n \) is of the form \(6k + 3 \), it is natural to ask: Is it possible to delete a pair of the form \((m, 2m + n) \) from the acceptable pairing \(C_\text{ex} \) of Theorem 2 and form an acceptable pairing of \([1, 2(n + 2)]\) by pairing \(m \) with \(2n + 3 \) and \(2m + n \) with \(2n + 4 \)? Examination of this question does lead to the conditions of Theorem 3.

Of course, it would be nice to have a simpler solution for this simple problem of the Shens.

It has recently come to our attention that J. L. Selfridge [5] announced a different solution in 1963.

References

UNIVERSITY OF GEORGIA
Athens, Georgia

Received on 27. 3. 1972 (267)

Some estimates in the theory of Dedekind Zeta-functions

by

W. Staš and K. Wierzbak (Poznań)

1. Denote by \(K \) an algebraic number field, by \(s \) and \(A \) the degree and the discriminant of the field \(K \) respectively and by \(\zeta_K(s), s = \sigma + it \), the Dedekind Zeta-function (see [2]).

The function \(\zeta_K(s) \) is defined for \(\sigma > 1 \) by the absolute convergent series

\[
\sum_{n=1}^{\infty} \frac{F(n)n^{-s}}{n^{\sigma}}
\]

where \(F(n) \) denotes the number of ideals of the field \(K \), having the norm equal to \(n \).

The function \(\zeta_K(s) \) can be continued over the whole complex plane as a regular function, except \(s = 1 \), where there is a simple pole.

In the region \(\sigma > 1 \)

\[
(1.1) \quad -\frac{\zeta_K'(s)}{\zeta_K(s)} = \sum_{n=1}^{\infty} G(n)n^{-s}
\]

where

\[
G(n) = \sum_{(\mathbb{Z}p)^m = n} \log p
\]

and the series in (1.1) is absolutely convergent in this region (see [2], p. 89).

A. Sokolovski [7] proved that \(\zeta_K(s) \neq 0 \) in the region

\[
(1.2) \quad \sigma > 1 - \frac{c_1}{\log |\mathfrak{d}|}, \quad |t| > c_2, \quad \gamma > \frac{\gamma_K}{2},
\]

where \(c_1, c_2 \) are constants depending on the field \(K \). Theorem (1.2) is a deep improvement of E. Landau’s classic result, \(\gamma = 1 \) (see [2], p. 105).

The subject of this note is an investigation of the equivalence between the domain (1.2), in which \(\zeta_K(s) \neq 0 \), and the estimate of the difference

\[
(1.3) \quad \sum_{n \leq x} G(n) - x^\alpha = \Delta(x, K),
\]

which is the remainder in the Prime-ideal Theorem (see [4]).
In the case of the Riemann Zeta-function such equivalence was discovered by P. Turán (see \cite{6}, p. 150) and was also investigated by the first of the present authors (see \cite{5}).

2. We will prove the following theorems:

Theorem 1. Suppose that \(\zeta_K(s) \) has no zeros in the domain
\[
\sigma > 1 - c_0 \eta(|t|), \quad c_0 \leq 1,
\]
where \(c_0 \) is a constant depending on the field \(K \), and \(\eta(t) \) is for \(t \geq 0 \) a decreasing function, having a continuous derivative \(\eta'(t) \) and satisfying the following conditions:
\[
\begin{align*}
& 0 < \eta(t) \leq \frac{1}{2}, \\
& \eta'(t) \to 0 \quad \text{as} \quad t \to \infty, \\
& \frac{1}{\eta(t)} = O(\log t) \quad \text{as} \quad t \to \infty.
\end{align*}
\]

Let \(a \) be a fixed number satisfying \(0 < a < 1 \). Then
\[
\begin{align*}
\Delta(x, K) &< c_0 \left\{ \frac{x \log x \log t}{\log x} - x \log (x \log x) \right\}, \\
& \quad x \to \infty,
\end{align*}
\]
where \(\omega(x) \) is the minimum of \(\eta(t) \log x + \log t \) for \(t \geq 1 \), and \(c_0 \) depends only on \(a \) and on the function \(\eta(t) \).

Theorem 2. Let \(\eta_1(t) \) be a function satisfying besides (a), (b), (c) also the additional condition
\[
\eta_1(t) \leq c_0 \quad \text{for} \quad t > c_0,
\]
where \(c_0 \) is a sufficiently small positive number and let \(\omega_1(x) \) be the minimum of \(\eta_1(t) \log x + \log t \) for \(t \geq 1 \). Suppose further the estimate (2.2). Then \(\zeta_K(s) \neq 0 \) in the domain
\[
\begin{align*}
\sigma > 1 - \frac{\log t}{400 \log \omega_1(\log t)}
\end{align*}
\]
\begin{align*}
t > \max \left\{ c_0 \left(\frac{\log(|t|+1)}{\log(\log t)} \right)^{10}, |t|+1, \eta_1^{-1}(e^{-r}) \right\},
\end{align*}
where \(\omega_1^{-1}(x) \) denotes the function inverse to \(\omega_1(x) \).

Theorem 2 easily implies

Theorem 3. Under the conditions of Theorem 2, we have \(\zeta_K(s) \neq 0 \) in the region
\[
\begin{align*}
\sigma > 1 - \frac{\alpha_0}{40} \eta_1(\log t)
\end{align*}
\]
\begin{align*}
t > \max \left\{ c_0 \left(\frac{\log(|t|+1)}{\log(\log t)} \right)^{10}, |t|+1, \eta_1^{-1}(e^{-r}) \right\},
\end{align*}
where \(K_1 = \left(\frac{6}{\pi^2} \right)^{1/2} \).

Choosing \(\eta_1(t) = \eta(t) = \frac{1}{\log^2 t}, \quad 0 < \gamma \leq 1 \), we obtain from Theorems 1 and 2 the following

Theorem 4. If \(\gamma_3 = \sup \gamma \) for which
\[
\Delta(x, K) = O(x \exp (-c_3 \log^2 x))
\]
and \(\gamma_2 \) is the infimum of the numbers \(\gamma \) for which \(\zeta_K(s) \neq 0 \) in the region
\[
\sigma > 1 - \frac{c_0}{\log^2 |t|}, \quad |t| > c_0,
\]
then
\[
\gamma_1 = \frac{1}{1 + \gamma_2}
\]
and the constants depend on \(\gamma \) and the field \(K \).

3. The proofs of Theorems 1 and 2 will rest on the following lemmas

Lemma 1. Let \(z_1, z_2, \ldots, z_n \) be complex numbers such that
\[
|z_1| > |z_2| > \ldots > |z_n|, \quad |z_1| > 1
\]
and let \(b_1, b_2, \ldots, b_n \) be any complex numbers.

Then, if \(m \) is positive and \(N \gg n \), there exists an integer \(r \) such that \(m \leq r \leq m + N \),
\[
|b_1 z_1^r + b_2 z_2^r + \ldots + b_n z_n^r| \geq \left(\frac{N}{18e^2(2N+m)} \right)^{1/2} \min_{1 \leq i < \lambda} |b_i + b_i + \ldots + b_i|.
\]

This lemma is Turán's second main theorem (see \cite{6}, p. 52).

The next lemmas concern the properties of the function \(\zeta_K(s) \).

Lemma 2. For \(\sigma = 2 \),
\[
|\zeta_K(s)| > K_4
\]
where \(K_4 = \left(\frac{6}{\pi^2} \right)^{1/2} \).

Lemma 3. In the region \(-1 \leq \sigma \leq 4, -\infty < t < \infty, \)
\[
|\zeta_K(s)| \leq K_2(|t|+1)^{2s}
\]
where \(K_2 = c_{10} |\Delta|^{2s}, K_3 = \frac{1}{2} r^2 + 2, \) and \(c_{10} \) is a numerical constant.

Lemma 4. For the coefficients \(G(n) \) of (1.1) we have the following estimates:
\[
G(n) \leq K_4 \log^{2n} n,
\]
where \(K_4 = n/\log 2 \).

As regards the proofs of Lemmas 2–4 see \cite{4}. From Lemma 2 and 3 it follows that \(K_2 > K_4 \).
Lemma 5. If \(s_0 = 1 + \mu + it \), \(0 < \mu \leq 1/40 \), \(t' \geq 10 \) and \(N_1 \) stands for the number of roots of \(\zeta_K(s) \) in the circle \(|s-s_0| \leq 8\mu \), then

\[
N_1 < \frac{c_1 \mu \log((|t|+1)t')}{\log(8\mu)}.
\]

This lemma follows from (3.3) by the use of the Jensen inequality (compare [6], p. 187).

Lemma 6. Denote by \(V(T) \) the number of zeros of \(\zeta_K(s) \) in the rectangle \(\sqrt{\delta} \leq \sigma \leq 1 \), \(t \leq t < T+1 \) where \(0 < \delta \leq \left(\frac{2}{t'}\right)^2 \). Then for \(-\infty < T < +\infty \) we have

\[
V(T) \leq \frac{8}{9} \delta^{1/3} \log \frac{K_2}{K_1} \left(T+1+\delta\right)^{K_3}.
\]

Lemma 7. There exists a broken line \(L \) in the vertical strip \(\frac{1}{3} \sqrt{\delta} \leq \sigma \leq \frac{1}{3} \sqrt{\delta} \), \(0 < \delta \leq \left(\frac{1}{t'}\right)^2 \) consisting of horizontal and vertical segments alternately and having the following property: if we denote by \(T_m \) the ordinates of the horizontal segments, then for each integer \(m \) there exists only one such \(T_m \) that \(m < T_m < m+1 \) and

\[
\left| \frac{\zeta_K'}{\zeta_K}(s) \right| < 17 \delta^{-1/3} \log^2 \frac{K_2}{K_1} \left(|t|+1\right)^{K_3}
\]

holds for \(s \in L \).

If \(\frac{1}{3} \sqrt{\delta} \leq \sigma \leq \frac{1}{3} \sqrt{\delta} \), \(t = T_m \), \(|m| \geq 2 \), then

\[
\left| \frac{\zeta_K'}{\zeta_K}(s) \right| < 15 \delta^{-4/3} \log^2 \frac{K_2}{K_1} \left(|t|+1\right)^{K_3}.
\]

For the proofs of Lemmas 6 and 7 see [4].

Lemma 8. If \(0 < \delta \leq \left(\frac{1}{t'}\right)^2 \), \(1 < \sigma \leq \frac{1}{3} \), \(t > 1 \) and \(l \geq 2 \) is a positive integer, then

\[
\left| \left(-1 \right)^l \sum_{n \leq x} \frac{G(n)}{n^s} \frac{\log^l(n)}{(1+s)^{l+1}} \right| < \frac{\varepsilon^{s-1}}{(l+1)!} + \sum_{s} \frac{\varepsilon^{s-1}}{(1-s)^{l+1}} \leq \frac{\varepsilon^{s-1}\log^l \frac{K_2}{K_1} \left(|t|+1\right)^{K_3}}{\min(1, (\sigma-\delta)^{2l+2})}
\]

where \(\sigma_0 = \frac{1}{2} \sqrt{\delta} \) and the sum is taken over all zeros of \(\zeta_K(s) \) lying to the right of the line \(L \).

This lemma can be proved by following mutatis mutandis Appendix V of [3].

4. We pass over to the proof of Theorem 1. As in [1], pp. 60–62, we can prove that

\[
\frac{\zeta_K'}{\zeta_K}(s) + \frac{1}{s-1} = O\left(\frac{1}{c^6} \log^2 \frac{K_2}{K_1} \left(|t|+1\right)^{K_3} \right)
\]

in the region

\[
1 - \alpha_0 t \leq \sigma \leq 1 + \alpha t \text{,} \quad |t| \geq T_2,
\]

\[
1 - \alpha_0 t \leq \sigma \leq 1 + \alpha t \text{,} \quad |t| \leq T_2,
\]

where the constant in (4.1) depends only on \(\eta(t) \) and \(a \); \(T_2 \) depends on \(\eta(t) \).

From Lemma 4 and (4.1)–(4.2) follows the estimate

\[
\sum_{n \leq x} (x-n)G(n) = \frac{x^2}{2} + O\left(\frac{x^{\log^2 \left(|t|+1\right)}}{c^6} \exp(-\alpha_0 t \log(x)) \right).
\]

The constant in (4.3) depends on \(a \) and \(t \) only. Using the relation between \(\sum_{n \leq x} (x-n)G(n) \) and \(\sum_{n \leq x} G(n) - x \), we get, as in [1], p. 64, the estimate (2.2).

5. Proof of Theorem 2 (compare [6], pp. 151–152). Put \(t \geq 2 \). By (1.3) we have for \(n > 1 \)

\[
G(n) = D(n, K) - D(n-1, K) + 1.
\]

Hence

\[
\left| \sum_{N_1 < n \leq N_2} G(n) \exp(-it \log n) \right| \leq \left| \sum_{N_1 < n \leq N_2} \exp(-it \log n) \right| + \left| \sum_{N_1 < n \leq N_2} (D(n, K) - D(n-1, K)) \exp(-it \log n) \right| = I_1 + I_4.
\]

We choose \(N_1, N_2 \) so large that

\[
\omega_1^{-1}(\log^2 \alpha_0) \leq N/2 < N_1 < N_2 < N.
\]

Then by

\[
\omega_1(1+t) < \log(1+t) < \log^2 \alpha_0
\]

we get

\[
I_1 < \frac{c_2 \log^2 \left(|t|+1\right)}{\log t} \frac{N}{t}
\]

(compare [5]).

From the estimate of \(I_1 \) (see [6], p. 158) and (5.3) we get

\[
I_1 < \frac{N}{t}.
\]
Hence by (5.1) it follows that

\[
\sum_{N_1 < n < N_2} G(n) \exp(-it\log n) < c_{16} \frac{s^2 \log^2(|\sigma|+1)}{c_9} \cdot \frac{N^{1-\varepsilon}}{t}.
\]

Suppose that

\[
1 < \sigma < 3/2.
\]

By partial summation and (5.6) we have

\[
\sum_{N_1 < n < N_2} G(n)n^{-it} < c_{16} \frac{s^2 \log^2(|\sigma|+1)}{c_9} \cdot \frac{N^{1-\varepsilon}}{t}.
\]

We choose

\[
\eta > \eta_1, \quad \eta > \eta_3 \log \log n
\]

and apply the inequality (5.8) for

\[
N_1 = \eta \cdot 2^i, \quad N_2 = \eta \cdot 2^{i+1}, \quad i = 0, 1, 2, \ldots
\]

Hence

\[
\sum_{n \leq \eta} G(n)n^{-it} < c_{16} \frac{s^2 \log^2(|\sigma|+1)}{c_9} \cdot \frac{\eta^{1-\varepsilon}}{t(\sigma-1)}.
\]

We choose further

\[
\varepsilon > \eta_1, \quad \log \log n
\]

Denoting by \(l \) a positive integer and following [6], p. 154, we get by (5.10) the estimate

\[
\sum_{n \leq \eta} \frac{G(n)}{n^it\sigma} \log \frac{n}{\varepsilon} < c_{17} \frac{s^2 \log^2(|\sigma|+1) (l+1)! \varepsilon^{1-\varepsilon}}{t(\sigma-1)^{1+\varepsilon}}.
\]

Hence by Lemma 8 with \(\delta = (\delta_0)^2 \) and by (5.3) we get

\[
\sum_{\delta > \delta_0} \xi^{-s} < c_{18} \left(\xi^{1-\varepsilon} \frac{s^2 \log^2(|\sigma|+1) t}{(\sigma-\delta)^{1+\varepsilon}} + \frac{s^2 \log^2(|\sigma|+1) t}{(\sigma-1)^{1+\varepsilon}} \right) < c_{18} \frac{s^2 \log^2(|\sigma|+1) t}{(\sigma-1)^{1+\varepsilon}} \cdot \frac{\varepsilon^{1-\varepsilon}}{t(\sigma-1)^{1+\varepsilon}}.
\]

Let us suppose now that our theorem is not true. Hence there exist such zeros

\[
\sigma^* = \sigma^* + \delta^*, \quad \delta^* \to \infty,
\]

that

\[
\sigma^* > 1 - \frac{\log t^*}{400 \log \omega \log (\log t^*/\log \log \log t^*)},
\]

\[
\varepsilon^* = \max \left(\frac{\varepsilon^*}{\delta_0}, \log (|\sigma|+1) \right), \quad \delta^* = \delta^* + |\delta^*|, \quad \eta^* = \eta^* + |\eta^*|, \quad |\delta^*| + |\eta^*|.
\]

Putting in the estimate (5.13)

\[
\sum_{\delta > \delta_0} \xi^{-s} = \eta^* + |\delta^*| = \delta^* + |\delta^*| + |\eta^*|,
\]

where

\[
\xi = \exp \left(|t| + \frac{1}{2} \right),
\]

\[
\log t^* = 1 < 2 \leq \frac{x}{400 \log \omega \log (\log t^*/\log \log \log t^*)},
\]

\[
\log \omega \log (\log t^*/\log \log \log t^*)
\]

we can verify without difficulty that (5.7) and (5.11) are satisfied. Multiplying both sides of (5.13) by

\[
|\xi^* - \xi^*| = |\xi^* - \xi^*| = \xi^* - \xi^* = |\xi^* - \xi^*| + |\xi^* - \xi^*|,
\]

we have

\[
\sum_{\delta > \delta_0} \left(\xi^* - \xi^* \right)^{1+\varepsilon} = \xi^* - \xi^* = \xi^* - \xi^* = \xi^* - \xi^* + |\delta^*|.
\]

In virtue of (5.14), (5.16) and (5.18) it follows that

\[
\left(\frac{\sigma^* - \sigma}{\sigma - 1} \right)^{1+\varepsilon} = \left(\frac{1 - e - \sigma}{e - 1} \right) \leq \frac{1}{2} \log x.
\]

If the conditions (5.13) and \(\delta^* > \delta_0(c_2) \) are satisfied, we get by the estimate (5.20) the following inequality:

\[
\left| \sum_{\delta > \delta_0} \xi^{-s} \left(\frac{\sigma^* - \sigma}{\sigma - 1} \right)^{1+\varepsilon} \right| < e^{-x/2} \xi^{1-\varepsilon}.
\]

By virtue of Lemma 6 we get, similarly to [6], p. 156, the estimates

\[
\left| \sum_{\delta > \delta_0} \xi^{-s} \left(\frac{\sigma^* - \sigma}{\sigma - 1} \right)^{1+\varepsilon} \right| < c_{19} \xi^{1-\varepsilon},
\]

\[
\left| \sum_{\delta > \delta_0} \xi^{-s} \left(\frac{\sigma^* - \sigma}{\sigma - 1} \right)^{1+\varepsilon} \right| < c_{20} \xi^{1-\varepsilon},
\]

\[
\left| \sum_{\delta > \delta_0} \xi^{-s} \left(\frac{\sigma^* - \sigma}{\sigma - 1} \right)^{1+\varepsilon} \right| < c_{21} \xi^{1-\varepsilon}.
\]
From the above estimates and (5.21) it follows, for \(t^* > c_{34}(\epsilon), \) that

\[
V = \left| \sum_{1 < \epsilon_1 < \ldots < \epsilon_k < 1} \left(e^{it(\epsilon - \epsilon^*)} \frac{s_1 - \epsilon^*}{s_1 - \epsilon} \right)^{k+2} \right| < \frac{c_{1}^{1 - \epsilon^*}}{t^{1/3}}.
\]

We estimate the sum \(V \) from below by the use of Lemma 1. We choose
\[
\epsilon_j = \frac{s_1 - \epsilon^*}{s_1 - \epsilon} \exp\{1(\epsilon - \epsilon^*)\},
\]
and

\[
m = \log t^*.
\]

The region
\[
1 - 3(s_2 - s_1) \leq \sigma \leq 1, \quad |t - t^*| \leq 6(s_2 - s_1)
\]
is contained in the circle \(|s - s_1| \leq 8(s_2 - s_1)|. Hence denoting by \(N_1 \) the number of roots of \(\zeta_N(s) \) in this circle, and using Lemma 5 and the definition of \(\eta_1(t) \) with \(\epsilon_4 = \exp(-50g_{11}) \), we have, for \(s_0 = s_1 = s_1 + it^* \),

\[
\frac{\log t^*}{10 \log \omega_1^{-3}(\log t^{4/29})} \leq \mu.
\]

and under (5.15) and \(t^* > c_{34} \) the estimate

\[
N_1 < \frac{\log t^*}{14}.
\]

In virtue of Lemma 1 there exists an exponent \(l + 2 \) such that

\[
V > \left(\frac{1}{48s^2} \frac{\log t^*}{28 \log t^*} \right)^{l+2} > \frac{1}{t^{2.66}}.
\]

From (5.22) and (5.24) it follows that

\[
1 - \sigma^* > \frac{1}{400} \frac{\log t^*}{\log \omega_1^{-1}(\log t^{4/29})}
\]

and this contradicts (5.14). This completes the proof of Theorem 2.

References