iom

LA e e e SRR ARt e B

XXTI(1978)

On the uniform e-distribution of residues
within the periods of rational fractions
with applications to normal numbers

by
RB. G. Sroxemam® (New York, N.Y)

1. Introduction. Let Z/m <1 be some rational fraction in lowest
terms represented in any base g sueh that (¢, m) = 1 and consider the
distribution on the unit interval [0, 1] of what we shall call the “norma-
lized” power residues r;/m determined by the fractional parts {Zg*/m}
=7m for i =01,...,w(m)—1 where w(m) = ord,,g is the number
of #;/m in a eomplete period. It iy clear that we have in some senge a dig-
crete distribution on [0,1] of a denumerable set of normalized power
residues 7;/m. To date, our work in [6 — 9] has proved that there
exists broad classes of rational fractions Z/m called Type A, B, and O
[6, p- 229] as characterized by the prime decomposition of m which have,
over compleie periods, what we have termed, a uniform “s-distribution
(6, p. 223] of the r;/m on [0, 1]. The concept of a uniform s-digtribution
is the discrete analog of a uniform distribution defined by H. Weyl
[4, p. 22] in 1916. The uniform s-distribution of the set of 7;fm on [0, 1]
means essentially that within arbitrary sub-intervals taken anywhere
in the unit interval [0, 1], we have ahout the same number of distinct
points after the complete periodic set of @ (m) points has been placed on
[0, 1]. However, the concept in general is not, necessarily, restricted to
a periodic sef,

In this paper, we will prove that sety of digits slightly greamer than,
the square root of the period length taken amywhere within the period.
of Type A and some of Type B will have a uniform e-digtribution. Ry
means of this result, wo can relax considerably the requirements in the
construction of transcendental non-Liouville normal numbers which we
pregented in [7, p. 242, Th. 1]. For example, in contrast to [7, p. 241,

* This research was supporbed by the Seientific Rescareh Cowneil while the
author was a University Research Pellow st Nottingham University, England, under
Bpecia  Research Grant B/RG/1409.
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we call now prove that

(LL)],

(1.0 o)

Z 1/p"g™"

n=l

is a transcendental non-Liouville normal number constructed from any
given odd prime and one of its primitive rooty mod p2

The results here enable us to construct a normal number from only
one period or a constant number of periods of Z,/m, Z,/m?, ... or even
portions of periods placed in juxtaposition slightly greater than a period
length. This is in marked confrast to our former meed [7, p. 242] for
a divergent repetition sequence @, of the periods of the Z,/m" We can
also malke & further improvement on the Brouwer guestion discussed
in [6, p. 234 —235] related to = and also the same question as defined for
rationals. Finally, we offer some refinements on the transcendence condi-
tions as stated in [7, p. 247, Th. 2].

The proofs are based on the estimation of trigonometric sumsg and
a special form of W. LeVeque's bound [4, p. 23, {2)] on the Weyl discrep-
ancy of a finite sequence of fractional parts on [0,1]. In what follows
and according to context, e(z) = ¢*™, [2] is the greatest integer less
than z, and {x}, the fractional part.

2. Distribution within the period. In [4, p. 23], we find the quantity
B(n) depending on gome given sequence @y, ,, ..., ¥, given by

(2.0) Bin) =_2(e/7:2 J1/n e(Mmk| /Mz)m
. Fo==1

=3

which LeVeque in 1965 shows by means of characteristic functions in
probability theory to be an upper bound on the Weyl discrepancy

(21) D, = sup [[N(B)— N (a))/n—(8—

o) < B(n)
0sa <)
where N(a) denotes the number of a;, —[#,] < ae[0,1] for all k< n, In
[6, p. 223], we defined a uniform e-distribution for a discrete sequence
of fractional parts {z,} for & < # in terms of D, in (2.1).

Let 2, = {Z¢"*/m} where (g,m) =1 for & = 1,2, .

voy w{m), then
{2.0) becomes [let us set k =z and n = & in (2.0)]

(2.2) B —2(6/w2 Zilmz MZqM/m\ fage)'™,

o=l

icm

I we break into residue classes M =
and 7 =0,1,..., we obfain

tmr With r =1,2, ..., m—1, m

m~—-1

@3) B =2(6/x Y S, r, Zm)2E(2, vfm) ma+Ljma) "

Fel

where
' B
(2.4) 18 (h, 7, Bm)|t = -|1 /b > 6(rZg* m) |“
=1
and (s, w) 24 1/(t+w)® iz the Hurwitz-zeta funetion. Now one can

ghow the bou;uds [B, p. 2327 for s = 2
(2.5) o L2y rim))mE < Lt 1 fmr

where r/m <1 for r =1,2,...,m—1 since

2.6) £(2, rim)jm® = 21/@m+ =Lt m‘“:_

=0

Introducing (2.5) into (2.3), we have now

Levvs L If Zjm <1 is eny rational fraction in lowest terms such
that (g, m) =1, then a bound on the discrepemcy Dy for the distribution of
the fractional parts {Z¢°"'jm} for @ = 1,2, ..., k on [0,1] és given by

*
m—1

(2.7) Dy B <3 (8/5 3 1Sy, & m)[2(Lirs-+1foor) 41 jm)

L

1/3

Therefore, knowing a suitable estimate for S(k,r, Z/m), we may
(or may not ag the case may be!l) obtain a uniform s-disgtribution of frac-
tional parts {Zg®*jm} forx=1,2, ..., h < w({m) on [0, 1]. Since a uniform
s-distribution is & necessary and sufficient condition for (f, e}-normality
[6, p. 2247, (2.7) can algo be used to establigh such theorems. This next
lemmma permits s to estimaie partial surna like §(h, 7, Z/m) in terms
of sums over a full perviod [see Hua, 3, pp. 9—10].

Levws 2, If Zjm ds amy rational fraction in lowest terms, (g, m) =1,
and w(m) = ord,,q, then ‘

w(rm) w(m)

Z:‘G—-':l 1 1
o s Sl 22 S

where F{w) = Zg** jm+nw/o(m) and o (m) 2= 60 with n chosen o mawinvize

the last sum.
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- asfuming o(p) =

Proof. From Hua [3, p. 10], if we set f(#) = w(m)Zg*"jm, his
Uy — h’ and ¢ = w(m), we obtain :

(29) 18k 1, Z/m)]

wm) wfm)—1 3
< ge(zin )+haim)§' (m(«f)) ‘2 o7

Using a Vinogmdov' egtimate [11, p. b6] on the quantity before the lasgt
sum, we obtain {2.8) for o ()= 60. We may replace the f(z) as above
in Hua, sinee there is no particular restriction on the real function f(w)

for @ =1, 2, ... at this gtage of the argument. Q. B. D., .
Levua 3. If Zjm = Z[p < L where g-is a primitive root mod pt, then
Jor p =61 '
h
1\, (27 _pPlogp 1 ()
(2.10) 18 (h, 7, Zjp)| = 526( . ) St

QLes]

1) for P =
= p—1, we have by a modulus square argument, mod (p— 1),

126(1”(%))] =I ge(F(m+1))| — pi2,

The same sum in (2.11) can also be written as a well-known character
sum [11, p. 126, 11, a.]

Proof. From (2.8), setting F(z) = rZg" " jp--na/(p —
and w(p)

(2.11)

X N rZg*  wmind v1Zg"'  n(l—ind rZ)
(2.12 ge(ﬂ'(w)) ge( : o 7 )
or '
- Pl
(2.13) | Z ¢ @)| =] 3 z)etap)] = 2

where we define the character x( ) over the residue class mod p with
. . p—1
w =1Z¢"  modp and ¢(p) =p—1. Since 2 6(rZg" Yp) = —1 and

el
Pt (log (b —1) —1) < " log p, using (2.8), the result in (2.10) follows
=9—-1260=p>=61l. Q O D.
In the next lemma, we obtain the most general result fox the partial
sum in (2.7) and (2.8) by means of the residue progressions [6, p. 227]
for a rational fraction of Type A [6, p. 229].

(1} A genera.liza.tion of the estimate in (2.10) by L ' ig gi i
) . ¥ L. J. Mordell is given in
Mathematika 19 (1972), pp. 84 — 87, ) *E

icm

Tmmya 4. If Zjm <1 in lowest terms is of Type A where (g, m)=1
and F(z) = rZg° " [m+nojo(m), then

w(m}

= 37

el

(2.14) (%) 1 < DOV (m))ll2 < DY (0 (m)H
with C some positive integer omd D 45 defined in [6, Th. LL, . 2271,
Proof. Proceeding on a moduluy square argument, we have

wim) wim)

% (ng”‘l

I8¢ “"’”E Z i

fex] el

(2.15) (%Y 1) + 0 (2 — ) e (m))

and letting # and ¥ run over 1,2,...,® (m) for fixed ¢ such that ¢ =

(z—y) mod. w(m), we obbain

(2.16} 18] = jﬁ?)ﬁ(m/w (m)) 8,
wheré -

w@‘r) rZ -
@) 8= o[ 2 -19)
fort =1, 2, ..., o(m). ~

In (2.17), we have over residue progressions P, [see 6, p. 227] where

a{m)jw(D) =m/D = an integer > 1
\ "z
(2.18) Si=> D (i;.n- (¢'—1) g?«j-t—ww))

£y (@

with & = 0,1, ..., o(D)~1 and v = 0,1, ..., o(m)/o(D)—1 = m/l)'—l.
Now due to the fact that we have a residue progression P, for every fixed
%, we obtain

8=

k) (8}
., m /D —1 gince mod m, g* runs over 1,1+

(2.19) 0 (% (gt —1)g* (L +31)))

where & runs over 0,1, ..

+D, 142D, ..., L (m/D—1)D. Therafore, we obbain
/D %
. X1 (P2 ,a) 0 (rZy (g'~1} )
(2.20) 8, = %a(m (gt ~1)g % o

The lagt sum in (2.20) is such that

wl D1, ok 0 it m/D ¥ rZg*(g'—1) |
(2.21) 2 e(ng (g—---})—s) =‘ . B e
P mjD m[D, i m[D|rZg"(g—1).
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But m/D | (g —1) iff o(m/D)]|t, hence we obtain
0, it w(m/D)Ye,

@) S Ze(ﬁ (gt_l)gk), it (m/D)t
®m "

Thus, |8, < mo(D)/D which implies

< ()

(2.23) I8F < miD)

Z ma(D)|D e (D)/D
w(m,'_(D)IE

and ginee o(m)/o(D) = m/D = mo(D)|/D = o(m), we obtain

(2.24) 18 < (@ (M)} [w (/D).

Finally, we show that Do (m /D)
=1, hence (2.24) becomes

(2.25) I8 < {o (m) fo (m D)) w (m) =

= (o (m) where (' is gome positive integer

(D]0yew (m) << D (m)

and (2.14) follows. From [6, p, 227, Th. 4], we have m = Q”Hp

2“pr where {; _mmi%g,m—i—s) hence m/D = []ph. 'l‘hemfore,
)
it followa that '

(2.26) o(m/D) = (..., Dd;pp~* or Ddy)

depending whether #, > t-—l—zi or n; <tk 2, vesp. Clearly, w(m)|Do(m/D}
gince o(m) = (w(@™, ..., dp¥ %, or 4> and we have the fact that
012" in the D — 2*[]ph, Al D gl or dpli—2"d, ",
) .
and d; | Dd, a8 well. The proof of Lemma 4 ig complete. .
Lemwia 5. If vZ[m < 1 in lowest terms is of Type A where (g, m) =1, ~
then
(2.27) D e(rZg" m) = 0
: @
y oeny 0 (M),

Proof. Using the residue progresgions [6, Th. 4, p. 227], we have
{2.28) 2, erZg= fm = M Mo+ vy}
(=) k) @)

where k = 0,1,...,0(D) =1, and r = 0,1,..., m/D — 1 Therefore, (2.27)
follows for eaJch ﬁxed k summing over each a,rlthmetlc progression 1y, +r.D

where @ = 1,2

_ in the residue progressions P,. Q. B. D.

Therefore, introducing Lemma 4 and 5 into (2. 8), we obtain Lemma 6
since

{log w(m) ~1} < log w(m) for w(m)3 60.

»

Lovma 6. If Z/m < 1 in lowest terms i3 of Lype A where (g, m) = 1,
then for o(m)z= 60

(2.29) |8 (B, 7, Zjm)] < w?i(cu(m))m log w(m).

We are now prepared to prove

THEOREM 1. The sequence of normalized residues r;(p = {Zg'[p} where
9= 6L g an odd prime and g is o primitive root mod p* has 4 uniform
s-distribution on [0,1] for ¢ = 0,1,..., h > 9% where 6> 0,4 = 434,
and & = O(log"*p p").

Proof, In (2.7) for m =p, set [S(h 7, Zjp)l = O((p"* log p)/h}
haged on the estimate in (2.10), and we obtain
173

n-—-1
B(h)<2(6/m20 (plogp/h® 3 (1/r*+1/pr)+1 7

(2.30)
Since ”
p-1
S Ljrt = w64 O(Lfp)
and "~ '
=1
Dl djpr == (log(p—1 )/p+w/p+0(1/p p—1)),
r=l

it iz clear thal we have
{2.31) B(h) = O{(p log*p) /B

Also, we want D, < & for a uniform e-digtribution {6, p. 223, (1.3)] where
here we have D; << B(h)< &; therefore, we set & = O(log**p[p*) for
k> ptt? where § > 0 and A = 4. Theorem 1 is now proved. ‘

By a similar proof, using (2.29) in (2.7), we have as well

THEOREM 2. The sequence of normalized residies ryfm = {Zg' jm} where
Zlm < 1 in lowest terms 18 a ravional fraction of Type A with (g, m)= 1 and

w{m) = ord,,g 3= 60 has @ uniform e-distribution on [0, 1] for = 10,1, ...,

> (o (m))7+° whore 6 >0, A = §4, and & = O(log“"’m (m) (e (m))) with D
contained in “077,

Based on Theorems L and 2, we may view these results as statemonts
18, p. 222, (1.1)] about the (um ibution or rolative froquencies of blocks
within the period of Z/p or Z}m measured over the set of h> ptt? or
{(m)}+0 digits. Sinee [0, p. 223] with a = Byjy and f = (B;--1)/¢
for the discrepancgamimplies 1/¢'—e< N(By, g}k < 1/g’ e we roguire
1/ —&> 080 tlna”e relative frequency N (B;, g}/h > 0. Thus, we have
baged on Theorem 1, two theorems which state the (j, e)-normality in the
sense of Begicovitch [8, p. 202, (2.1)] for the gets of A digits within the
period.
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TEEOREM 3. If Z/p <1 s in lowest lerms where p z 61 is o prime
and g is o primitive root mod p?, then for i = §4> 0 and h > P, we have

(2.39) |N(By, 9)/h—1[¢’| = O (log**p/p")

awhere § < [log,J] with J = O(p *log**p).
Also, we have based on Theorem 2,

TrROREM 4. If Z/m < 1 is in lowest terms and of Type A where w(m)
> 40 and (g, m) = 1, then for A = 46> 0 and h > (e ()

IN (B, g)/h—1/g"t = O (log" o (m) f{e (m)})

where j < [log,J] with J =0 ((w(m J* flog*”? w(m))

Tt is clear from the above results that, for example, for increasing p,
given some particular g in Theorems 1 and 3, that we have inereasing
uniformity of the distribution (or “density”™} of the normalized residues
7,/p on the unit interval for sets of digifs within the period approximately
greater than the square root of & period which inereases as p if g is a primi-
tive root mod p2. Similarly, the relative frequencies N (B, g)/h over these
sety of digits within the period are non-zero for larger and larger blocks
B; for any combination of j digits as p increases. Furthermorve, let uy
‘emphamze that we have shown that there is a uniforth s-digtribution. in
sets of digits taken over any subportion of the period % > p¥ + in length,
1ot necessarily over the first # digits of Z /p for some given Z. This follows,
since the results were independent of Z, i.e. we have results valid over
the first % digits greater than the square root of the periods of 1/p, 2/p,

s (o —1)/p.

ERinally, all the above statements can be made for the distributions
‘within gub-portions of the periods of Z/m independent of the choice of
Z of length b > {o(m)}™* for Type A.

(2.33)

3. Normal numbers. We prove the foilowmg theorem.:

TEEOREM 5. Let b comj:alets perieds from each of the fmamom Zl/'m,
Zyfm?, ... represented in any base g such that (g, m) =1 where the Z;/m'
are in lowest terms and m is ‘any positive integer, be placed in juwtaposition.
The resulting real number x{g, m) whfieh can be writien

(3.0) . . g’ m) Z(Z w1 mn+1 /mn)/gﬂ(n,m)

N
where

8(n,

m) == b Zn: w (m*);
in

48 normal in the base g* for each integer t > 0.

B{0,m) =0, and o(y) = ordyg,

icm

Let us first prove the construction for one period, b = 1; then below

":—“:v{3.31), we will complete the proof for b > 1 periods in a general discussion
" of these kind of constructions.

Proof. Congider
(31) @ (g, my ) = 'E1E2 ... B, B,

where B, i the set of digits in one period of Z;/m’ represented in a base
g such that (g, m) = 1 and B, represents a block of v digits inte the period
of B,.,. Dofine the relative frequency of B,

32) Nt Bj = 2 N (By, B+ N (By, ) (S (y ) +7)

FEY |

in the firgt ¢ = 8(n, m)-+r digits of (3.1) where N (B;, By) or N(By,7)
denote the number of oceurrences of a block B; cobsisting of any combi-
nation of § digits taken from 0,1, ..., g—1 in one period X; ov in. the first
¥ digity of the period F,,,, respectively. Firgt, wo have rome preliminaries.
Ag described in [7, p. 2431, we must account for the possibility of anomalous
blocks, i.e. in the count of some B;, there may be some that extend

across the # —1 junctures of E;Ei_[_l, i=1,2,...,n—1 and an additional
j—1 across H,B,. Therefore, we are lead to consider as in [7, p. 243,
(2.4), (2.5)] " |
(3.3) ¥ (4, 0, B fi—I| <
where I is the right hand side of (3.2).
. Binece 8(m, m) = Oy+-0,m™* [7, p. 247, (2.31)], we have
(3.4} n(— L)< n(j—1)/(r+ 0o+ Oym™¥)
and clea,rly, Limn(j—1)/i = 0 for any fixed choice of j for glven 7, Uq,

fl—-00
0, m, and k. Henee, wo have

n(f—21)/t

{3.5) lim N (t, @, By) [t =1lm I
AR ] fi—roe
ar
(3.6) lim I == i (Pp Q) (L4 Ry
N0 P>
‘where

]

PY = (N (By, B)) S, m),  Qp == N (By, #)/8ny m),

(3.7) el e :

and. B, =r/8(n, m). .

We distinguish 2 cases, Le 7 2Z (em™)P*™. In case L where
7 < {o(m" ), we find that the el‘:ﬁecﬁ of the B, set iy negligible in the
limit, If r > (co(m““))*“"" for case 2, then such an additional Dblock par-

~ ticipatey in the normality.



~ for all § and ¢ = 2 such that (g,

[alalby T

Case L.r < (m(m”“))“”. Bince S(ﬂ; m) > o (m™), we have

(8.8) N (By, 1)/8 (n, m) < v[8 (0, m) < oo (™ feo (™)
For n sutficiently large, we have for the upper bound in (3.8)
3.9) (o om?) = (mo (™) jo(m") = S o (m™)) 0.

Therefore, for any 6 such that 0 < 8 < 4, it follows that Liman+2 f{eo (m™y)F=*
M0

= 0. Consequently, from (3.7), we have lim (¢, B,) = 0, and therefore

N—00

{3.5) becomeos
(3.10) imX¥ (¢, @, B)jt =limP, =lim ¥ (B, &) Je (™).
fso0 o0 ] .

From thiz point \on, to complete Case 1, the argument is precisely [7,
p. 245, (2.18) —(2.22)] and we are led to

(3.11) ImXN{, o B /t = 111rnl\T(j’3j,L1 Yo {m™) = 1/g

f—>00
m) = 1.

Tt is interesting to note in this construction that m can be any positive
integer, no matter what its composite structure, since from some point
on. in the sequence Z, /m, Z,/m?, ... there exists an N sach that all Z,/m"
for # > N become and remain Type A. This is the condition necessary
for the (3, ¢)- noz.ma.hty which leads o (3.11).

Case 2. 7 > (w(m™ ™). We first prove a useful lemma relatod
to the basic concept of (j, e)-normality defined by Besicovitch in 1934
[8, p. 202, (2.1)].

Consider 2 sets of digits H and P (or integers!) consisting of  and

. p digits, respectively, represented in a base ¢ > 2 chosen from 0,1, ..

wery g—1 which arve (j, e)-normal, Le.

|N(B;; H)jh—1l¢g'| < &, and \¥ (By, P ) ip—1]¢| < &

where N (B;, H) and N(B;, P) designate the number of occurrences of
a block B; contained in H and P, respectively. Comsider as well the set
of digits formed by placing the sets H and P in Juxmposmon, y1eldmg
a total of A+ dlglts We have

Lmvma 7. If two sets of (j, &)-normal digits H and P are placed in
juwtaposition, then the resulting set of h+p digits with

& = (hey+-pey) [(R+p)

i8 (J, e)-normal a,ssum%g (ht+p)[(hep+pe,) 2 gy = 2 s0 that

< [og,(h +1J)/(hah+1osp)]

icm

Proof. From the given (j, ¢)-normal properties of the H and P sets,

we have ‘
(¥ (By, H)+ N (B, P))|(h+p)—1]g'] <

and we require that 1/¢’ —(he,+pey)/(h+p) > 0 to insure that

(3.12) (hey - peg) (k- D)

(¥ (B, H) -+ N (By, P)){(h+p) >
which implies

7 % [lngg(h -+-2) /(hek ‘|'.p5ml)]*
18 (h+p)/(hey+psy) = ¢, then j2= 1. Q. K. D.

Therefore, if we congider that each set of w(m') digits in N (2, @, By)
are of Type A and are, thorefore, (f, e}-normal with each e; prescribed,
and also by Theorem. 4; the set of 7> (w(m™ ™) digits - constituting
B, contained in B, ., cure (4, e)-normal as well; it follows, using Lemma 7,
that in the combined set N (i, %, B;)ff, we haNe

(313)  IN(t, &, B) /t——l/qf|<(23iw(m )] (8 (my 1) 1)

el

where according to Thoorem 4, & = O(log"*w (m™")/(w (m“"‘l))“).
Applying Ogauchy’s limit theorem to (3.13), we obtain
{m") —|—§'ar) Hoo{m®) +7) = 5.

(3.14) lm[¥N(, @, B)jt—1ld| < l:lm (aﬂm

-5

The right hand side of (3.14) can be written

{3.16) & = lim {8, -+ (&, — &)} /(L + o {(m™} r)

N—r00
where &, = O (log"®w(m™)/(w(m™)* and therefore, s—0 as #-» oo in
(3.18) since &,~+ 0 and pw-»(} independent of the behavior of w(m™}/fr
for A> 0. By Liemma 7, j ;llm [log,L/e,], thorefore, lim x(g, m, n) is

Per0Q
normal in all g such that (g, ) = 1 for all j.Q ED ‘

Let ug now prove o theorein which shows that we may Tovr & normal
number by placing in juxtaposition, one set of any portion of the periods
of Z,jm, Zyjmb, ... greater than the square root of the sucoos&iw langths
w (m").

After the proof of Theorem 6 below, wo will discuss the va,hdxty of
Theorerns § and 6 for the case of b>>1 integral periods of Z;m' for
¢ =1,2,... or portions of periods.
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THEOREM 6. Let sets of k> (w{m)|F™"% digits be chosen successively
amywhere within the periods of the fractions Z,m, Z, jm2, ... of Type A in
lowest terms represented in a base g such that (g, m) = 1 where 8; = 6> 0
for all i and any fized 6> 0, and place these sels im juataposition. The
resulting real mumber which can be written

B(g, m) = D [Zng™/m"] [y,

el

(3.16)

whare 8(h) == 3 h; and [y] denotes the greatest integer less thon vy, i normal
i=1 .

in the base ¢ for each positive integer 1.

Proof. Let H; designate any set of k> (w (mf))+%  digits where
4,28 > 0 for all i taken anywhere within the complete periods I, of
Zyjw' for i =1,2,...,n and B,, a seb of hy., > (eo (mP 1) jE+0nt1 digite
within the period B, , of Z,,,/m"*'. Let, as usual, ¥ (B;, B;) and N (B;,r)
designate the number of blocks B; contained in the I; sets and the block
B, of r digits into B, ,,, respectively.

We form the juxtaposition construction

(3.17) (g, mym) = .H.H,...E,B,

‘where .

(318) . N{t,@ B)jt = (E'N(Bj, ) -+ ¥ (B, 7)) (8 (k) +7)
and - .

(3.19). t =S(7b)+r =Zn‘h,-+r.

Fe=1
Ag before, accounting for émo’ma.lous_ blocks, we have
(3.20) N BYfi—T < a(j-1)ft
where Ids the right hand side of (3.18). Since
B21) (-1t = #{(—D)J(S(R)+7) < n(i—1) [ (mH)rHn 7}
=n(j—1) /(v + (m? e () +n)

whee k, 4,, and m are fixed [7, (2.20)], it follows that lim % (j —1)ft= 0.
Thus, we have ‘ s

(3.22) lim N (i, @, B;)ft = lim I

] H—oa

where I can be written uging Canchy’s limit theorem

(3.23) lim I'= (lim N (B;, Ey)/hy, +-Lim N (By, #)/h,) /(L -+1im r/h,).

icm

Now as in the proof of Theorem 5, we distinguish 2 cagses.

Oase 1. 7 < (w(m™ ), For the two lmits in (3.23), we have
for h, > (¢;<>(af.w,”)}“f+‘"n and n sufficiently large with 0 <c¢<1

(3.24) N (Byy ) [l < 7l < (o0 (mﬁ'”))*“““"/(w ()0

= A (oo (™) oo (m))HHn,
8inco 6, = & = (@ (M) > (o (m™)H, (3.24) becomes
(3.25) N (Byy 7) [l <7 [y < i+ o (m" )4 [0 ()

which. approaches zero for 0 < ¢ < 1 sinee w(m) iz unbounded for inereas-
ing m. Therefore, in (3.23), we havo loft

(3.26) lim N (4, @, By) ft== Hm N (B;, H,)[hy,.
o0 Tt

By Theorem 4, we have

(3.97)  Lim [N (@ By ft—1)¢) = lim | (B;, By) fh,—1/¢'] < lim 5,
fr00 w00

N-r0a

where j 4 [log,L/e,] and

(3.28) lim e, = lim Oflog** o (m"f{o (m))) =0

NS
for any A == $4, > § > 0. [Note: The congtant in the O is independent
of # in the expresgion envolving w(m®) in (3.28).]
Therefore, we have obtained

(3.20) Lim N (3, @, By) [t = L]g’
: Ts00 :

for Type A with g such that (g, m) = 1 and all § = 1, i.e. the construction
6(g, m) = lim 6(g, m, %) iz normal in all snch g = 2.

v ‘
Case 2. 7> (o (m™))**. If we again apply Lemma 7 to (3.18),
we obtain, using Cauchy’s limit theorem '

(8.30)  Tm |V (1, 7, By)Ji—1]g't < 100 (huutre,) i +7)

M-k 00
== 1in. (o, - (g == e)} /(L + g r] =0
Tl 0 -
whore g,-+0 and g,-»0 ay in (3.28) above for 4> 0. Finally, we have

shown that lim @ (g, m, @) == w{g, m) i normal in the base g, i.e.
Flp 50 :

(3.31) Lim N (8, @, By) ft = 1[g
[
for all § gince by Lemﬂm Ty § < [logy (hy =) [(hy &, +ts,)] which increases

without bound as n increages. Q.I.1).



Tn proving the rest of Theorem & for some fixed integral b > 1 repeti-
tions of the periods Z;/mf, it will deepen our nnderstanding of the partic-
alar class of normal numbers we have been constructing if we analyze
the behavior of the particular limits which may or may not have required
the assurption of a divergent increasing sequence a, in [7]. At the same
time, we obtain a proof. of the validity of (3.0) in the present paper which
is basically the same result as [7, p. 242, (2.0)] assuming a; = b for all 4,
By a somewhat gimpler argument for [7, p. 245, (2.15)] related to the
anomalous blocks and similar to (3.4) of this paper, wo have

(3.32) Ry=n(j—1)ft < n(j=1)}t_y0 (m") = 0 (j —1) [y w0 (m)
where d is some fixed positive integer. Clearly, even for a fixed a,_, = b,
the R, — 0 as » — oo, both in [7, (2.15)] and in the present case in (3.4),
i.e. for this limit in [7], &, cc was not necessary due tio the rapid
increase of the o{m") for n— oo,

On. the other hand, for the limits ¥(B,, /Pn < rfP, in [7] with P,
a8 defined in [7, (2.10)], we have by a simpler argument here than that
given in [7, p. 245, (2.15)],

{3.33) N (B;,1)[P, <r[P, < mw(mw ““1)/(an_1.w(fmr

= ’H’b/ (a'n 1 "l’ km)
which clearly shows that even though here in (3.33), we tried to utilize
the rapid increase of the w(m™ ') to the best advantage, it was not the

crucial quantity. |
' We had to require that @,_; - co 80 that lim (¥ (By, r)[P,, 7/P,) =0
For 00

1 o km o ("))

In the present paper, similar to (3.33), we simply introduce the fixed

integer b > 1 in the denominator of the upper bound in (3.8). Thereiore,

the lLim ((¥(By, 7)< 7)/bS(n, m)) =0 for case 1 depends upon the
o0

diminishing ratio as # increases of the magnitude o(m™ "7 within
the period E,,, of Z, ,/m"*" and the growth of the previous period
w(m”) even if it is repeated a fixed b > 1 number of times.
In general, we have from (3.2)

n
(3.34) N, 0Bt = (b 3 N(B), B)+ N (By,r )} /(b8 (m, m) -+-7)
=1
‘which shows that in case 1 for Thecrem 5 that (3.10) and (8. 11) would
be independent of any b > 1. The same comments apply to case 2, i.e.
b>1 entering (3.13) and (3.14) in the same way as (3.34) but wit]l no
affect on the result. The proof of Theorem & iz now complete.
All of the above comments apply for Theorem 6 on portions of periods
-gince b > 1 would enter into (3.18) and (3.30) ag it does in (3.34).

icm

where § and 3 are positive constants, 8 (n, m) =

The swmmation result similar to (3.16) for the portions of the periods
construction for any b > 1 iy

(3.35) Blgy m) = ("™ — 1) [Zg"njm"] (gl — 1) 50
fam]

which for & = 1 redaces to (3.16).
In (3.0), if we set Z, == (p™~—1)/(p~1), i.e. we havo

(3.36)  Zpfp" = (L-rp--pPk o P HP" = (p"— 1) /(p —1)p"
then Zped/p™" == (B —1){(p ~~'l)p”'”"1. At the same time, lot b = p,

S (m, p) = ﬁZnJ E=

and therefore, we oblain, when g Iy o primitive root,

Na o 1)

(3.37) »(g, p} = Zl/ﬁ""”g“’n“"’ = g7 leﬂﬂblgﬁ”l
T )

Thus, we have (1.0) since we can drop the ¢% as a g-adic shift in the rep-
regentation which would not-affect the normality, and then replace
by »—1 in the sum.

4. Transcendence, Brouwer comjecture. ITn [7, p. 247, Th. 2], we
proved that these constructions lead to transcendentals of the non-
Liouville type it there exist 2 positive constants 4 and f independent
of o sueh that

(4.0) § < ty g0 (MTYHS (0, m) < B

.
where §(n,m) = > ayo(m’) and @, — co 28 # -+ oo,

Ao,
. W8 prove the following theovem which gives & sharper view of the
significance of this requirement for transcendence in (4.0}
TamorEM 7. If & and f ovist such that & < O © (M) (S {my ) < B
3‘ a0 (mb), w{m’) = ord,.qg,
and @, ~> 00 a8 -+ O, OF 4, 98 conslant, mm il

(i) aw(g, m) in [T, (53'.0)] and (3.0) 48 o tronscondenial wnon-Liouville
normal numnber ;

(ii) the @, = O(B™) where B L i8 some positive constant, or more
specifically ; inoreasing a, for o fiwed ay, fi, m, and &, must be
such that '

{4.1) tygor 2 oy i3 ({3 <L) fam )
Jor f>m—1; and,

(iii) L @, /@, == 02 1 where o @8 some constant.
fis00 .
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Proof. From (4.0), we have
(4.2) By (M) < f @y 0 () %azw(mz) + e a0 (m™)
and proceeding recursively for » = 1,2, ..., we find
Gy () < Pao(m),  ago(m?) < f(f+1)ay0m),
Hence, we obtain
(4.3) By < G w2 (B +1) )

where %=1 is fixed for a given m depending on w(m) = w{m®) = ...
= o(m*) but o (m*Y) = me (m"), ete. Clearly, (4.3} shows that a, = O(B")
Whieh, therefore, has a linear exponemtial growih where we must set
= (§+1)/m >1 so that a,— oo a§ % - co.
Also from (4.1), we may write
(4.4) o lime, o (@) e, 0 (m™) = mlinae, /e,

100 N-»00

‘hence; the transcendence condition implies that lim e, /@, = ¢ where
N—-00

¢ 1 iy some constant. We can set § = em, then such a choice would
always satisfy our transcendence condition independent of #. Also, note
that now B = (§+1)/m = (em+1)/m > 1 for m =2, thus the @, will
-increase appropriately. For the case of B =1, from (4.3), we have a, == b
(a fized positive integer) which we have now shown gives a normal number
in Theorem 5, hence; b < bfm**{(8 +1)/m/** o

(4.5) 1/m*=? < ((B +1)/m)"?

which clearly holds for % = 1 and any fixed choice of § > 1 independent
of w such that (S+1)/m >1or > m -1 for m = 2. Q. Ii. D.

According to Theorem 7 above, the transcendence condition implies
a broad class of repetition sequences a,, i.e. of linear exponential order.
As a few examples, these can be integer valued polynomialg, e, = P(n)
= b4 b,y '+ ... where the b, are positive integers for which se-
quences; hm an ity =1 (¢ = 1), &, = 2", for which lim G [0y =2 (€= 2),

A=
ete. On the other hand, if we choose ¢, = o for whmh Lim. a,, ity 18

unbounded, we still obtain a normal number «(g, m), but the tl anscendence
‘condition does not hold since such a, are not of a linear exponential order.
Therefore, it is an open question as to the irrational character of such
& normal number construction using a, = 2 for the repetition sequence.
In 1925, L. E. J. Brouwer [2, p. 3] and others in the intuitionist
school of mathematical logic often stated the following as a possible
“undecidable” proposition. Oan we prove that some prescribed block,
like say, 0123456789, appears in the infinite expangion of an irrational

- -

like = in the bage 10 % In [6, p. 23b], we showed how a small advance
on this question could be attained using the resulty we have obtained.
‘We rephrased the guestion for rationals and showed that the same question
now can be answered completely for (j, e)-normal rational fractions of
Type A, i.e. we can prove that an arbifrary block like 0123456789 will
make & first appearance somewhere in set of digits of one period, and,
of course, repeat itself a number of times in this set. For example, asg
a further emphasis of these surprising results, it iz interesting that we
can prove, starting somewhere in the approximately 2.652 x10™° digits
of 1/172909, ‘we will find = exactly to at least 1230 places in

(4.6) LT = b, ... b,314159265380793 ... 314159 ...,

and it will repeat this same set about 12 times. The same can he aaid of
“e?, 1/2—, p (Eualer’s constant), ete., any combination of up to about 1230
digits will be there with the required frequency. This is the meaning of
the (j, ¢)-normal phenomenon for rationals. Of course, this kind of result
could be stated probabilistically as Borel did, ie. “any real number hos
a probability of one of being absolutely normal” [1, p. 198}, i.e. normal
in any pogitive integer base = 2. Today mogt of the results concerning
normal mombers are stated in measure-theovetic terminology hut are
non-congtructive, “almost all real numbers are absolutely normal”. Bub
it 18 quite another question te be able to prove these kind of staterments
about some specific real number like 1/1710%0 without computing out
the obviously lmpossibly large set of 10%%30 digits to see if it i3 true! In
[6, p. 285], we said that we could not say where a prescribed block wounld
make its firgt appearance in the period but now, with the regults of this
paper, we can make a definite advance on this guestion.

For convenience in stating results, we have used “O7 estimates, but
if desired, we can work more guantitatively then the use of “07 often
implies. For example, let us caloulate quite precisely the § bounds on blocks
B; that can be found with certainty within, approximately, the square
roots of period lengths. Placing (2.29) into (2.7), and letling w{m) = w(p®)
= @(L7"%) == 16179, wo obtain rather precisely an s which bounds
the discrepancy in (2.1). Setting k> (w(m)H, N(f)—N(a) = N(By, g),
a = Byfg!, and § = (B;+1)/¢’ in (2.1), we have for ¢ a primitive root
mod p* : ‘

(4.7) |V (B, g)[h—1]¢"t < &
where we ghall set D == L7 in (2.29) then place (2.29) in (2.7 ) and, chooaca

(4.8)

17w (179 log? o (L7HY) K 1\
e=2 72 BT



Fotate] . FITR CTY
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With‘ ) 171001 _y 171001y
(4.9) E = (6= ) 12t 6jnt1Te o=t
’ Pl r=1

Since the first swm in (4.9) is very close to one (to an order of 1/171%)
and the second to zero of about the same order, we seb K 221, hence

(4.10) ¢ = 2-17"{log 1617 /(16 - L7)|*
for & > (16 L1700, Henee, for j bounds to keep N (B;, g) [k > 0, we have
@11)  logylfe = (28/3)(1231.65) — (2/3)(3.0899) = 8215 —2. |

Thus, i 8 = 1/10, then we have j < 80 for any % > 17°%. So that in any
set of k> 17 digits from within the full period of 16171000 digits in
1/170 (i, e. & total of about 174 gueh sots), we know that any combina-
tion of up to about 80 digits will appear with certainty in each such set.
One might Iook at thiz result and say, it seems highly “probable” that
such a comparatively small set of 80 arbitrarily chosen digita “should”
appear within such a large set as 17°" digits, but on the other hand we
are not concerned with “probabilities” in our approach. We are concerned
with provable certainties. In this sense, ecoutinuing with the Wallis nth

product representation of w/4 given by
L

Poinid) = [ ] (1—~1/(2i+1)%) = pu/ta
E gral

which is of Type A as we agserted in [6, p. 235], we ean now refine the

statement we made in [6], i.e. that the block 0123456789 will occur in

the whole period of this representation. We can now gsay that

the block 0123456789 will oecur with certainty within the block

of digits that commences the period slightly greater than the square

root of the period, i.e. Ya(g,) (for n sufficiently large). However, even
though we have sharpened our result in [6], we cannot yet say whether
the block in guestion is in that portion which iy =/4 exactly or in the
part which will change as % increases.

Finally, the results here also have important implications for the
analytical propertios of multiplicative congruential [10] pseudo-random
number generators which have been in wide uge for a number of years.
To date, there has not been available any mathematical basis on which
to prove the agsumed “randomness” or uniformity of sequencos of residues
taken from within the periods of particular generators. Theorewms 14
that we offer here on the uniform s-distribution of sequences of normalized
residues. within the periods will furnish such a basis. We will present such
results in the near future.

The author is grateful for a number of valuable econversations with
D. A. Burgess. =
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