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On the sums of continued fractions

by
BomrusLavy Divid (Columbus, Ohio)

- Dedicated to the memory of my teacher
Professor Vojiéoh Joarnik

Let o be ah irrational number and a = {gy; ¢;, §s, --.) its regular
continued fraction expansion. For each natural number N we shall denote
by Fy the set of all irrational numbers a, for which g; < ¥ (j =1, 2, 3,
..+). M. Hall Jr. [1] has proved that each real mumber § can be written
in the form § = a,-}a,, where o;e F, (§j = 1,2). The purpcse of this
paper is to show that each real number can be expressed as the sum of
three elements of the set ¥, or four elements of the set #,. Moreover, we
show that a lesser number of summands, in general, does not ruffice,

TororEM 1. Let § be a vreal number. Then there ewist three numbers
weF; (§ = 1,2, 3) such that f == a, -+ ay+ a5 Also there ewist real numbers
8" such that §' +# ay-+-a, for any pair (aj, a;), aje Fy (6 =1, 2).

THEOREM 2. Let § be a real number. Then there ewist four numbers
e By (§j =1,2,3,4) such that 8 = a;+a,+ a3+ a,. Also there emist real
numbers fp° such that ' # oyt ayta for any triple (o), o, ai), ¢ie F,
(1 =1,2,3)

Now, let & 2 2 be a natural number. Let 4,, 4,, ..., 4, be non-empty
sets of real numbers. We shall call their Schnirelman sum (notation
A1+ Ayd- ... § 4;) the get of all numbers of the form o+ ay-- ... + ay,
where a;e 4; (j =1,2,...,%). Theorems 1 and 2 then follow from Theo-
remg 1’ and 2’, respectively. :

THEOREM 1.

o . By By Fy = (—co, 400),

(29 F3+ Fy # {—o0, +o0).
THEOREM 2'.

(3% Fot Byl Fy 4 Fy = (— o0, + o0},

(4 ) By b Fod By 5= (—o00, 4-00).
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For integral numbers &3> 0 and for natural num‘bu'ﬁ N we denotie _

= (o . . . 4V3-3 —
by the symbol Fy (g, #ry «.-; %,r) the set of all ae .y = (o} 1 Jay - o)y Finally, since >33,
for which ¢; = m; {i =0, 1 ., k). Theorems 1’ am(l 2’ Lhen follow frowmn
Theorems 17 and 2" max (Fy(0) + Fo(0) + F,(0) & {—1}) = 3(¥V3—1)—1 < 3 —¥3,

TumorEM 17 . — -
_ S 4 : ) , _ V31 4V3 -3
V2l—3 _ vVel—3 min (F,(0) + F,(0) + F,(0) 1 {1}} = 3 >
(1”) F3(0)+F3(0)-§-F3(0) == 9 ,3~ 9 b . ) . : ’
the inclusion (4”') implies (4').

1/21 _3 13 __1/ 21 4’/ o - 9 ‘We gtart with the proof of inclusions (2’) and (4.
(2") Fe(0)+ 7, (0) = | T l [ T l/szI »—3] Proof of (2). We have obviously #,(0) = Fu(6, 1) UF(0, 2) U
- v F,(0,3) and also
TomorEM 27, .

_____ Fy(0,3) @ [(0; 3,1, 3), (0; 3, 3, 1] =[

Vo1 -3 15~—1/?ﬁ] at
(37)  Fa(0)+ Fa(0) + Fa(0) + Fa(0) = [2(/3—1), 4(/3-1)]

B H 54 = £,

_ R 43 - Fy(0,2) UF,(0,1) = [(0;2,1,3),(0;1,3,1
W F2(0)+F2(0)+F2(0)C[3 V3 1’3_1/3] [1/ —3 (‘/3_1)]_ : (0,2) UF,(0,1) = [( ) )]

We have ob#iously

P4 B4 Fy= U (Fy(g) & Fylng) + Fy (my)

= U (I0)+ Fy(0)+ Fy(0) + {mg+ng+m})

m[l/ﬁ—l V91 -37 ar
T h

From this follows that F,(0) = X, UK, and hence
Fs(0) 3 #5(0) = (K, + Ky) U(K, + K,) U(H, 4 Ky}

- ¥21-3 15—y21 421 —-9 —
Foy oy R . . —_
v o | ‘ 7 —[ 3 s 17 ] u [ T s 1/21—3] .
= . (0 ‘
nLiﬁL(IT )+ F3(0) 4 Fo(0) + {n}] _ Proof of (4"). Obviously, F,(0)} = F,(0, 1) UF,(0, 2) and also
Vo1-3 _ V21-3 —
" : : is V21—3> 1L — V3—1 3—V3
and the length of the interval [ 5 5 ] is vV > Fu(0,2) = [(052,1,2), (0;2,2,1)] :[ A ] K,
Hence, (1) follows from (1”). Similaxly, we have : .
. : — J— V3 -
Tyt By = U (Fy(0) 4 Fo()+ 03): - FL0,1) = [0;1,3,8), (031,21 = | 77151 | £ 10
Since 4'_/5i~9 S 1 —V21 ’ From this follows that F,(0) ¢ K, UK, and hence
15 17 ! o .
2 i I, L (0)
Fy(0) 4+ T 1) Vo g < 2B V21 2(0} 4 Fo(0) 4 I5(0) |
w02 (Fo(0) + Fo(0) + { 1)) =V2L—d <5 - < (Kyi Kyt ) UK, + Ky b K UKy + Kok K V(K 5 K b Ky
Voi-3 . 4V21-9 1/3 -1 4V3-3  ~
min (7, (0) 4 7y (0) £ {1}) = L > , [ ——,3-V3 ] [m”%, 3(1/%1)].
| 3 15 3

the inclugion (2”) implies (2}, In an analogous 1.Jmnher we get very easily ‘We shall prove relations (1'7), (3"} ag an applie&tion of the following

that (3") implies (3"). more general considerations.
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Let 1, be a non-degenerate compact interval witl'xientlltminta 4, by Lo,
I, = [#, b]. We shall call I, an interval of order 0. We delete Lrom I,
an open interval (¢, d), such that ¢ < ¢ < d < b. We get thus two cloged
intervals IO = [a, ¢], I¥ = [d, b], which we shall call intervals of order 1.
Generally, when we have already constructed all intervals I Uzt of order n
for some # 3= 0 we get intervals 10, Ty of order -1 by deleting
from each interval of order # an open non-empby interval, in such a way
that the resulting intervals of order » -1 ave non-degenerate. If we denote
by K, (» 3= 0) the union of all intervals of order m, then M, £r (L)

il

is a closed, non-countabhle set contained in 7, and with mneasnre lexs than the
length of I,. L(I;} eontains either a non-empty interval or is nowhere
denge in I,. .

In the following, we shall denote by u(A) the measure (length) of
an interval 4.

DeriNTrToN. We shall say that L(T,) satisfics the k-condition, if for
arbitrary 3= 0, the lengths of the inbervals I8, I and I g rin 8
satisty the following two ineqnalities:

(L) < T (T30 - (T 0),

=
P ) < I 0) + e w (157,

The following assertion, in a ditferent formulation was proved by
M. Hall Jr. [1].

ASSERTION L. Let A, B be non-degenerate compact intervals and L{A),
L(B) satisfy the 2-condition. If § < w{d)/pu(B) < 3, then

L(4) 1 L(B) = A+ B.

¥or the proot of (1) we shall need an analogne of Assertion 1 for
three “summands”;

AssERTION 2. Let A, B, ( be non-degenerate compadct iniervals and
L(4), L(B), L(0) satisfy the 3S-condition. If p(A) | u(B)+u{C)<
< 6min (p(4), uiB), ©(0)), then

L(A)+ L(B)+ L(C) = A4+ B 40,

For the proof of (3”) we shall need an analogne of Assertion 1 for
four “summands”:
. ASSERTION 3. Let 4, B, €, D be non-degenerate compact intervals and
L(4), L(B), L{C}, L(D) satisfy the 4-condition. Tf w(A)-+ u(B}+p(0)+
+u(D) < 8main(u(4), u(B), p(C), u(D)), then

LAy + LB+ L(O) L (D) = AL B+ OLD.
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Remark. The similarities of Assertions 2 and 3 with Assertion 1 will
become clearer, when we rewrite the condition § < u(A)/w(B)<< 3 from
Assertion 1 to the equivalent form u(A4)-+ u(B) < 4min(u(4), u(B)).

Instead of Assertions 2 and 3 we ghall formulate and prove more
general Assertions 2 and 3'. ‘ .

AssuRTION 2'. Let A = [d), Agl, B = [B, Bgr], € = [CL, Cr] bé
non-degenerate compact intervals. Let L(A)}, L(B), L(C) satisfy the 3-con-
dition. Then

[Ar-+B.+Cp, AL+ B+ Cr+3min(u(d), z(B), u(0)
a L{A)+ L{B)+ L(0),

[Ag+Br+Cr—3min(u(4), u(B), u(0)), Ap+Bp-+ O :
& L(A) 4+ L{B}1 I(0).

ASSERTION 3'. Let A =[Az, Ag], B = [By, Bgl, € = [0y, gl
D = [Dy,, Dg] be non-degenerate compact intervals. Let L(A), L(B), L(0),
L{D) satisfy the 4-condition. Then

[AL+BL‘5" Cr+Dy, Ap+-Br+ OL+DL+4’1nin(;u(A)7 wiB), p(C), M(D))]
o L(4)+ L(B)+ L(C)+ L(D),

[Ap+ Brt Cpt Dy —dmin (u(4), u(B), u(C), u(D)), Ap+ By~ Cr+ Dy
< L(4)+L(B)+ L(C) +L(D).

The proofs of Assertions 2 and 3’ will make use of Lemmas 1 and. 2
below. Before proceeding, some new definitions are needed.

DErmirIoN. Let 4; = [#;, #;+ 6] (f = 1,2,...,n) be n (%= 2) non-
degenerate compact intervals. The interval

n 7
(Ay, Adgy ooy Ady) = [Za:j, Zw,-—i—w, min a,j]
- =1 =1 .

Ijsn

will be called their lower associate, the interval

(Ay, Ay -y A) = | X @+ a) = min a;, 3 (2+ a)]
=1 F=1

l<ign

7

will be called their upper associate. .
LemmA L. Leta; (f =1, 2, 3) be real numbers. Léta; (§ =1,2,3), 8,, ¢,
bs positive numbers, such thatl a, 2z a, = a,, a; > b+ o0y,

(b) ay < by 430,
(6) L ty 5 3by ¢y,
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Let us pul
Ay = [, 25401 (G =1,2,3),
Ay = [z, 2+,
Ay = [+ 0, 20y
Then

+

(1) Ay ) Uy, Loy s} @ U (g, Ay 49) Y (Ayy, A, 44)-

Proof. Because the situation iz completely invariant with respect
to the numbers @; (j =1, 2, 8), we may restrict ourselves to the case
@y = ity = @, = 0. Moreover, it suffices to prove the inclusion (7) only
for (4,,.d., 4;) due te the symmetry between the letters b, ¢ and the
lower and upper associates.

By the very definition and by the assumptions of the lemma we have

(A19A25 ) [0 3“3]: ' (4111 -A:H-A ) [O dnun(“a: )]

Hence, it b, = a,, we are done, Let in the following by < a4, i.e. (A Ay, Aa, E,)
= [0, 3b,]. We have

(f—‘llz: 43;_'473_) = [0y — 6y, 4 — 6 +3min(e,, %)]
and using (6):
[0, a;—c --3min(e;, @y)] < (Ayq, dgy A3} U (Aye, Ay, As).

Hence, if ¢, 2 a3, we are done. Let in the following also ¢, < 44, i.e.

(8) ) [0, a4, +2¢,] = (fl;u) Aoy Ag) Uldyy, dyy Ay).

Now, we have

(Ausy Agy Ag) =[5 g —2by, 4y ag-+ by,
(MAEA:"EQ) = [y - Gy 4 thg =30y, @y - @y - 0] -
Using (5), we get
(9) [a2+a3——2b1, Gy g+ ] = (A, Ay, Ag) U (A“,AA,'A")

From the relations (8), (9) we obtain that

gince. a, -+ aq —2b, < 20,1—2!)1 = a,-+2e, by (5}, (6).
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Lumma 2. Let a; (§ = 1,2, 3, 4) be real numbers. Let a; (j = 1,2, 3, 4),
b;y 65 (§ =1,2,3) be positive numbers such thot

i Y3
(10) gy = m_in @,
it
(11) a; > bi+¢ (f=1,2,3),
(12) a<4b4o (1=1,2,8),
(13) 0 <bytde;  (=1,2,3).
Let us denote
Az = [, @5+ a4] (j=1,2,8,4),
Ajy = [, 2+ b;] (j=1,2,3),

Ay =2 +a;—¢, m+a] (3 =1,2,3).
Then _
(14) (Azoy Aoy Aoy Ago) V(Aze, Asgy Aagy Aao)

c U {4y, A, Aﬂié}?) U4y Ay, Ay, —440))-

0=y, K, 102
F+k+iz1

Proof. For the same reasons as in the proof of Lemma 1 we shaill
restrict onrselves only to the proof of the inclusion (14) for the lower

_associate (Ayg, Aag, Age, Aso) and, without loss of generality, we shall

suppose that #, = x, = 3, = 2, = 0. Hence we have

(Ao, dagy Aggs Ayg) = [0, 4a4].

If 5, = a,, then
(A1, Asgy Agey Ago) = [0, da,]

and we are done. The cases by = a,, b, > @, can be handled similarly. Let
in the following

(15) max b; < a,,
1<

which means that

(16) (-Alla AEOJ A30) A&D) U(A107 Aﬂl} ASD} A-.to) & (-A*103 'A-Zt)r Aﬁl:l -A-!O)

= [0, 4max b;].
l<i<s . :
Now, (A Awy dsos Aae) = [B1— 615 86— 6 +4min(e,, a,}] and by (12),
this interval overlaps the interval (16). If ¢, > a,, then we are done and
also in the cases ¢, > @, OF ¢, >= a,, by an analogous argument. Hence,
we ghall suppose in the following that

(17) maxa << Oy
1iegh



' : ®
164 Boluslav, Divig Im“

It follows from the considerafions a,boﬁre, the lower associates whicl oceur
on the right-hand side of the inclusion (14), cover the interval
(18) [0, max {max4b;; max (a;-+-3¢)} ]
Legf= IEVEE
Completely analogously we could show, that the upper associates which
oceur on the right-hand side of the inclusion {(14), cover the interval
4L

{19 ay —max {max de;; max (a; -3
(19) L‘Z:j {ua’u~ j j}7jw a|.
Unfortunately, in the general ease, the union of the intervals (18) and (19)
does not cover the interval [0, 4a,]; however, fortunately, we shill have
not uged all the agsociates on the right-hand side of the inclusion (14).

‘We shall show that the interval (AJ J,AM,_AL a0 Ad{,) overlaps the

19). This statement ig equivalent to the inequality

,—\

interval

4
@ — Z +L11niui 6; = Z —Iax {}x}?}iioj; In@.ﬁ(@, =383,
i s Gl el it

'Mw

i
-

7
which is equwalent to

(20) max {max 46;; ma,x(aj—l -36,)) =lmmof + N,

_ TR P s ;'-{
The last inequality can be easily proved using the relations (10), (12)
and (13). Namely, wo have

max {ma:g 46;; 1mf|.x (a;+30;)} +4Ll]11.111a(;j
S S L= =

Z $max 46, +-$max {a; +ij) -4 mine;
[P ) 1»1&, Tezd<id

|t

5
‘:A\J 0; -1 mina, +§ max bﬁ—&mm o
priest R Y L jucia
3"1 k
e, u
) , -F3mina, - |~~mummj» ay -t ‘,\_J iy
i Lefsis i Fi

Quite analogously we could show that the interval (A, AM ) 3 Aty Agy)
overlaps the interval (18). Hence, under the asgnmptions (18) and (L7),
the following intervals will certainly be covered:

3

(21) |0, ma.x{g;&x;lbh max (o, +36,); au-+ % bj}]
4
(22) [; & — ma,x{llz;ﬁdccj, Hgl?‘ic(aj -+3b;}; %_I_gcj},jm: aj].
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Unfortunately, even the union of the intervals (21), (22) need not cover
the interval [0, 4a,]. But we still have not made use of all the intervals
on the right-hand side of the inclusion (14). Moreover, we shall show that

4
the whole interval [0, 3 a;] is covered.
=

Case A. Let
by<e {(j=1,2,3) and 6'1232;;03,

We ghow that the interval {4y, As,, Agg, Age) overlaps the interval (21).
If not, we have

(24) Gy — Cy - Gy~ Cy 2> 8y 301, @y — 0+ p— 05 > G +30,.
Adding the inequalities (24) we would get
@+ a5 > be, +5ey = ¢ +4b, + 6, --4b,,

contradicting the assutmnptions (12}, (13). Similarly we get that also the
intervals (Ays, Aepy Agay Ago)y (Aigy Aosy Ass, Ay} overlap the interval (21).

Hence, certainly the interval

{(25) ' [0, max {a; — 6, + ay +364; @y — 0y + thy-3064}+]

is eovered. Now, we show that the interval (4,,, Ag, Agay Ay) Overlaps
(2b). If 110%, we have

Gy — Oy Gy — O3+ Gy — 03 > Oy — Oy + iy -+30,

(26)

Gy — G+ Gy — O+ @y — 63 > By — Oy Q3 363,
Adding the inequalities (26) we would get
bg+ g > DO -+DCy 22 g +4by 4 €3 +-4b5,

thus contradieting {12) and (13). Now, the_ interval (A;s, s, Aaa; Ag)
is contained in (22) and hence we have shown that (25) overlaps (22), i.e

+
the whole interval [0, 3 g is covered.
j=1 ‘
Case B. Let
(27) by (§=1,2), b3>05 €26

Again ag in cage A, the interval (A9, Asay Ago, Agg) overlaps the interval -
(21). We shail distinguish three subeases.
Subcease Bl Let

(28) b, = 05

4 ~- Acta Arithmetica XXIL2
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Then the interval (d;s, de, Az 440} overlaps the interval (22), since
(by {27), (28), (12), (13) and (10})

81— 0y @0y 365 2 ay - 65126, 130, —»-353 # 0y Gy +2b, 30, —.?,Lb3

3 @y G+ 1y —3by = Va — (dg-+3Dy).

J:

4
Thus the whole interval |0, > @] is covered.
‘ =1

‘Subecase B2, Let

(29) by << 6y, Aoyt oy 3 ay.
Then the interval (AlerW:—fiso: Ag) overlaps the interval (22), since
(by (29)) :

3

e Gy Uy — O3+ g — €y == Zaj (a4+21 cj).

{ Fel

Oy — Gy 8y 362 = ay

- Thus the whole interval [0, 3 4] is covered.
J=1

'Subca.ée B3. Let
(30) ' ba < (f:”

The assumption 4c,+ ¢, < @, implies (uging (12))

462 "I““ (33 < ala .

dey 05 < gy < 4y +eg,
thus ‘
(31) _ €y < by,
hence (using (27))
(82) by < by,
thus (by (13), (31))
(33) @y < Dy -dey < by 4D,

We shall show that the interval (A;q, gy, Agy, Ayg) Overlaps the interval
(12), (13), (27))

Eaj (@ —b -Mg——by]_immbj) = al-w” By 3B,

F=l J==0,9
K g g 03 ~Bby <ty - 0y +-20, < @y 30y

Finally, we show that the interval (A, A, A, 1 Ao} overlaps the interval
(22). We have (by (33))

2@— (@g— Byt ay — by) };ja,- (o5 --38,).

i=1 j=1
Thus again the whole interval [0, Z a5} 18 covered.
Fr=l
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Case (. We have neitheér case A nor B. Then by a suitable renum-
bering or change of the role of the letters b and ¢, we can reduce the situa-
tion to one of the cases A, B. : j

Proof of Assertion 2'. The intervals on the left-hand sides of the
inclusions in Asgertion 2’ are associates (4, B, ) and (?1, B, ). If a num-
ber & belongs to one of them, then (by Lemma 1) & belongs to an infinite
sequence of nested closed associates (4%, B ¢W) (5 =1,2,...) (upper
or lower) such that A%HY c A®, B B(‘) N = 0¥ (5 =1,2,...)
and-we cannot have equality in all three cases. Also, 4™ = 4, B® = B,
C® = (¢ and each of the intervals 4% or BY or % containsg points of
L(4) or L(B) or L(C), respectively. If the sets L{4), L(B) and L(C)
do mot contain any interval, then, since 1) the imtervals 49, B®, 0®
are closed, 2) always the shorte&t one of them remains u.ndnnded at each
step (unless they have the same length), 3) the associates (4@, B®, 0¥)
ave closed, 4) (4%, B®, 00y « AW 1 BW L 0¥V (3 =1,2,3,...), the mter-
sections (.49, MBY, MC* contain just one point and we have

i i i

NAY = {a} = L(4), MNBY = {8} < L(B), 00‘“ = {y} = L(O),

atp4y =8, {8 = (49, B, 00).

If some of the sets I(4), L(B), L(C) contains an interval, e.g. L(4) say,
then we can delete from L{4) countably many open intervals such that
the resulting set I'(d4) does not contain any interval and such that, by
a suitable ordering of the steps in the construction of the set L'(4) from
the interval 4 by the scheme above, the 3-condition will be satisfied.
This ean be achieved easily e.g. so, that from each interval contained
in L{4), we delete countably many open intervals in a manner analogous
to the construction of the Cantor discontinuum (as far as the ratios of
the lengths of the corresponding intervals are eoncerned). Then we con-.
struct the set L'(A) in the following way. We shall delete from the inter-
val 4 all the intervals which have been deleted by the construction of
the set L{4) and all the intervals which were deleted from the intervals
contained in the set L(A) in such an order, that at each step we delete
from each interval to be divided & longest possible to be deleted.

In the same manner we construct the sets I'(B), L'(0). If L(B)
does not contain any interval, then, of course, L' (B) = L(B}; similarly
in the case of I/(C). From the first part of this proof then follows that
d=a +pf 4y, where o'cl ( ye L{A), feL/(B)= L(B), yeL'(0}
o L{().

Proof of Assertion 3. The proof is completely analogous to the
proof of Asserfion 27,
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Proof of (1) from Theorvem 1. We shall show that

_ Vol—3 ¥o1-—3
- B )

and F,(0) satisties the 3-condition. . '
1 1 T T
We put [, = I:--é—(l/él—3), E-(I/ZZLMS)] = [(0;3,1),(0;1,3)]. From
1, we delete the open interval {(0;2,3, 1), (0;1, ﬁ)) , Whose endpointy
belong to the set Fy (0}, but W]m'h 115611 (*ontcmnsa no point of F,(0 ). We
get two closed intervals T IO =058, 1,3}, (0:2,3,1)], I¥ ~[(0; 1,1, 3,
(0;1,3,1)], such that their union covers Fy(0). From the interval IV

we delete the open interval ((0; 3, 3, 1), ), (0;2,1, d}) from the interval AR

we delete the open interval ((0,1,1 1, 5) (0;1,2,3, )) Thus we get
four closed intervals

1Y =1(0;3,1,8),(0; 3,8, 1)],

I3 = [(0;2,1,8), (0;2,3,1)],
I = [(0;1,1,3,1),(0;1,1,1,3)],
I = [(0;1,2,3,1),(0;1,3,1, 3],

whose endpoints belong to L{0) and such that the union covers I, (0).
We show generally that anyone of the intervals It will have endpoints
of one of the following two tiypes:

(34) (0580, .-, 6,,1,3),
(35) (03“15'--3“r=31173)7

.,a,,,?T,'T),

) @y 2,3,1).

(05 5y, -
(035 @y ...

Here, of course, the points on the left can be both left and right endpoints;
this depends on the parity of . We remarlk first of all that I, has endpoints
of the type (34} (with + = 0). When we have an interval with endpoints
of the type (34}, then atfier deleting the open inferval with endpoinis

050, ..., 0,,1,1,3), (05 @y, 00ny tyy 2, 3 J) we got two closed mi-owa.ls,
the one with endpoints (0; ¢y, ..., a,, 1, 3,1), (05615 00ny ) 1y 1,8) (of
type (34)), the other with endpoints (0;a,,..., a,,,,,,d J) (45 @y ..

vy Gpy 3, 1_—37) (of type (35)). When we have an interval with endpoints
of the type (So) then after deleting the open interval with endpoints
(05 ayy ..., 4,3, 3 1,{0;a, .0y a,2,1 d) we geb two closed inter \mlﬂ,
the one with endpoints (0;ay,..., a,,d 1, 3) (05 @050y 0y, 3,3, 1) (of
type (34)) the other with endpoints (0;a.,..., ca,,,2,1,3), (O ay, ...
ey 8 2, 3,1 , 1) (of type (34)). It is easily seen that by this process we get
from the interval [%(l/ﬂ —3), —é-(]/.ﬁ —3}] just the set I, (0).
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Case A. The division of an interval with endpoints of type (34).
We must prove the following:

(36) 103 @yy.eny By 1, 3)— (05 8y, ., 4y, 3, 1))
S U038y ey @y 1,3, 1) —(0; @y, ..., 2, 1,1, 3)|+
F31(05 Qay ey Gy 2,3, 1)—(0; al,...,d,,S,l,S)I,

(3T) (031, ey @, 1, 8)— (05 @y, ...y Gpy 3, 1)]
L 3|05 ey, ..y, 1,3, 1) (0541, ...,8,1,1,3 )E+
U0 Ay, ey Gy 2,8, 1) — (05 g, .y @y 3,1, B)]

The inequalities (36} and {37), respéctively, are easily seen to be equivalent
to the following inequalities, (36’) and {37'), respectively.

(367 \(0 sy, .,ar,i,@—(O;al,...,a,,z,E)[42’
P05 a0, e 0, 2,3, 1)~ (0504, 0.5 6, 3,1, 3)

(379 :(O;al,...,w,,l,}_,j:)—(();al,... ey 2,75, 1}!
‘ (03 Gy enny @y 1,3,1)—(0;8,, .., ,,1,1,3) |

In the following, we shall denote by #,_,/¥, 1, #,/y. the last two convergents
of the number (0; ay, ..., &) (for r = 0 we set &, = 1, #,_; = 0). As well’
known, we have

(38) 1%-‘.’]:--1—9%—1%1 =1.
We shall put .
——— V2143

{39) £ =(1;3) =—7%
s0 that (3;1) = 3§, 342 = 3£-+1; and

Yr1
40 : =
{40} v

so that 0 <1< 1.
Each of the continued fractions occurring on the left-hand sides of
{36"), 37’} can be expressed in terms of @._y, &, 1) ¥, & We have

(35“—2).’31.-{—93‘,._1

(05 agy ..oy 00, 1,1, 3) = (3'5%2)%»%%_1!
o s (€+1)wr+mr—1
; 2,3 _=——
" (0561, .00, 68,,2,3,1) CEETRE
- 0}ty vey By 3, 1y 8) = oy rt
(05 gy eeny @y 3, 1, ”—3§yr+y7413
' s w,_y
0; 1,3 = ———————,
( y Oy 7("7'; Py ) 5?['1-”5‘?/1-_1
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When we substitute these expressions into the inequalities (367}, (379,
we can easily see (using (38)) that the relations (36°), (37') are equivalent
to the following inequalities:

i SZZE mﬁ,_.sé-!—t,_ <.’ 2
(367) 91 824t
3—2& 41

(37")

252 EfL-Ft
Since 0 < t<£ 1, the expression on the left-hand side of (36") ig at most

3—2¢ 35 VA

= << 2,
281 352 7

Similarly, the expression on the left-hand side of (37'') iz at most

328 &+l _ 9V2L4L
952 E-+2 68 o

COase B. The division of an interval with endpoints of type (35).
Ag in case A, it is snfficient to show that fthe following inequalities ave
satisfied:

gz 1058 03,3 D050, 4,2,1,8) |
= S
(03 @y vy 4,y 3,1, 3)~ (0501, ..,6,,3,3,1) |
(43) (0301, 0018,y 3,3,1)—(0; 4y, ...,4,2,1,3) -<2
— - — % 2.
: (0381, iy 8,y 2,2,3)~(0; 41, ..., 4,2, 3,1)

Using the same notation a8 in case A, we have:

(36 ~1)a, -4,
By, +y,,
P (E-1-2)m, a4
(0'(1! vvey & 3,3 1) = — .g_.,q_
30y ey By 1) (E_'i‘2)yr.”1“yr—1

Atter using (41), (44) and (38) in (42) and (43), we sec casily that the
inequalities (42), (43) are eéquivalent to the inequalities

(0; By eees szﬂi;—g) =
(44) '

26—2 3614t )

43
48 282 Fqai
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Since 0 <#< 1, the expression on the left-hand side of (42') is at most

3-2¢ E+2  36—Va1
= < 9.

2E--2 3£—1 30

Notice that the expression on the lefi-hand side of (42') is greater than 1
for each { with 0<C¢<1; hence using this procedure it is not possible
to prove that Fy(0) + Fg(0) contains any interval. Finally, the expression
on the left-hand side of (43') is at most

3—-2¢£ £+2<
C95—2 E+3 7

Proof of (3”) from Theorem 2”. We shall show that

Fo(0) = L([ﬁ”l ,'V:?-l])

2

and that F,(0) satisfies the 4-condition.
‘We put

I, = [$(V3—1),V3 1] = [(0; 2, 1), (0; 1, D).

We show that each of the intervals I{1 %! will have endpoints of the type

{45) (03 @y 000y @, 1,2), (0585500, 4,2,1).

We remark, first of all, that I, has endpoints of type (45) (with » = 0).
If we have an interval with endpoints of type (45), then after deleting
of the open interval with endpoints

(05 a1, .0y 4,1, 1, 2), (03_*'117 ey Gy 2,2, 1)

we get two cloged intervals, one with endpoints (054, ..., 4,1, Ei__lﬂ)’

(0; @y 005 4, 1, 1, 2), the other with endpoints (0;a,...; 4., 2,2, 1),
(03 ey ovny by 2,1, 2), thus both of type (45).
Analogonsly, it suffices to show that the following inequalities hold:

(46) (050'1:.---: @y 1,1,2)— (0504, ..y 8, 2,2, 1)_ <3,
(05 ayvnry By, 1,2, 1) {05 @y ony Gy 1,15 2

@) (O30 0, 1,1, 9) =058, 0, 2,2,0)|
(O3 a1y ey @y 2,2, 1)—=(0584, ..., 0,2,1,2)]
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We shall use the symbols #,, ¥,, €_1, Ypr» U in the same meaning as in
the preceding proof. Instead of & we introduce

Then we can write

— @y -Le,+a_,
. 9y o L T LTl
(037, .0y ,1,1,2) (2??_-1)?]?_{“%'—17

A LA

0;8,...,0,,2,2,1) =
(0;,...,6,,2,2,1) (n+1) 8+’
(48} %, +
s by = &y
0501000y ,1,2,1) =
(0300 -5 8y 1,2, 1) Tty
T3 = 2%ty

0500, .00, 4,2,1,2) =

20+ ¥y

After using (48) in (46) and (47), we can convince ourselves that the ine-
qualities (48), (47) are equivalent to

’ 28—y -+t

o 1 gL+t
2—y 4t

(47") Tt

n—1 Zp—T-pt

The expression on the left-hand side of (46') attains ity maximom in the
interval 0 <$<{1 at ¢ =1 and the maximum is obviously less than 3.

The expression on the left-hand side of (47') attains its maximum at
P =0:

2—n Iy V3 ‘
e e = V3 1 < B
7—1 29--1 Pl <

Notice that the expression on the léft-hand side of (47') is greater than 2
if 0<7<1: hence it is not possible to show by this procedure that
Fy(0) + F,(0) + F5(0} contains any interval,

Analogous results concerning the products of continued fractions will
be publighed Iater. ' o

Note added in proof. The results of this paper were obtained in the seminar
of Prof. Jarnik in 1968. In conneetion with shmilar questions, T. W. Cusick and
R. A. Lee have arrived recently at general statements about sums of discontini which
make it possible to give another proof of our results (see [2] and [3]).
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