290 . William A. Webb

o

powers. This requires modifications of some of the results leading to the
estimate of the singnlar series 7.
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On a theorem of Bauer and some of its applications
by

A. SCHINZEL (Warszawa)

The aim of thiz paper is to extend to polynomials in many variables
the results of papers [1] and [6]. It is convenient to first restate these
results in a concise form, '

Let K Dbe an algebraic number field, K| its degree, £ its normal
closure. We denote by P(K) the set of primes which have in K at least
one prime ideal factor of the first degree, and by Ny, the norm from K
to the rational field Q. We say that K has property (P) if for all but finitely
many primes ¢ and for every we K (ordgN mrlw), | K ]} = 1 implies ge P(K).
A field K is ealled Bauerian if for every (2, P(Q) < P(K) implies that £
contains one of the conjugates of K (P(£2) < P(K) means that P(Q2)\P (K}
is finite). :

Several types of Bauerian fields have been described in [6], it happens
so that all those fields have property (P)- For some of them (eubic and
quartic fields, solvable fields K with (%, 1K l) =1) thizs has been
established in the course of proof of Lemma 1 ([6]) for the others (certain
solvable fields of degree p?) it follows from Lemmsa 3 and Theorem 4

‘below. For normal fields the fact is obvious and for Bauerian fields of

"
the types desecribed in [4] (fields with property (N), fields Q(VA4) with
# 7 0mod8) it is also true {see Corollary 2 and p. 230). In Theorem 5 I give
a new class of Bauerian fields (normal estensions of quadratic fields)
which need not have property (P). : .
Aypart from the description of Baverian fields, from Theorem 1 of [1]
which has been generalized in [5] and various counterexamples the results

of papers {1] and [6] can be summarized as follows.
TEEOREM A. If K is a cyelic field or a solvable field such that I| is
K
squarefree and (_:f{—}l’ [K{) =1, f(#)c Q2] and in every arithmetic pro-
gression there is am integer x such that

Vf(‘?’?) = Ngjplw), we K,
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then o .

fz) = Nole(®), where  g(x)e K[2]. _

TuroreM B. If K 4s @ Bauerian field with p?'ﬂp&i"ly (P, f(m_)eQ[m],

the multiplicity of each wero of f is velatively prime lo |K| and in every
arithmetic progression there is am inleger ® suoh that

flz) =NK1Q((”)7 we I,

then

(@) = Nyple@), where gl{a)e Klwl.

TreOREM C. If K is any field of degree p or p* (p gmﬂiman), f(ml)eQ(a,:),
the multiplicity of each zero and pole of f is velatively prime to |K|p~" and in
every arithmetic progression there is an integer x such thol

fla) = Ngpplo), w<k,

thesn

Flo) = Ngplel®), where g(w)e K{z).

The proof of all these theorems passes through the same stage which
we formulate below as
TeMMA 1. Let K and the multiplicities of the factors of f satisfy the

icm

assumptions of Theorems A, B or C. If for every integer @ and every prime ¢

there exists w e K such that
ordgf(a) = ord, Ngg(w} &
{provided the laft hand side is defined) and fy is an drreducible factor of f then
i@y = ‘INK,'Q(‘P (93)):

where aeQ, p(w)<E[z] and ¢ =ord, f in case A, B, (s, |K[)=(ord, [, |Ki)
i case C. .

We generalize Theorems A, B and C as follows,

TeeorEM L. If K i3 o cyolic ficld or e solvable field such thai 1K1 is

K . .
squarefree and (|K l {_Kl[‘) w1, fe@Qoy, ..., a,] and for any arithmetic
progressions P, ..., Py there arc inlegers ay, ..., @y, Such that for e P,
(l<<igh .

f(ml, reey .’L'k) 2] NK"Q ((U) s Q] €"I\. )
thew

Flooy, ooy @) = NK]Q(‘P(”U rany wic)): @(Bry oees Tp)e -K_[mla ooy ]

- TeeoruM 2. If K is & Bauerian field with property (P), fe Q[wy, ..., o],
the multiplicity of each irreducible factor of f is relatively prime fo |K| and
Jor any arithmetic progressions Py, ..., Py there are inleqers @, ..., @ Such
tha;t fﬂie P’i

Fiaa, : ) = NK;Q(?-’): we K,

On a theorem of Bauer 223

then

f(wu-"rmk) =NK/Q'(¢'($”...,2?,,,)), Q’EK[’ED

ooy B

TeEOREM 3. If K is ony field of degree p or pt (p prime), feQay, ...
-o-y B3], the multiplicity of each irreducible facior of I is relatively prime
to |K|p~" and for any arithmetic progressions Py, ooy Py there are integers
Lyy'eney Wy sSUCh that w;e Py (1 C1 <K R),
A

_ Fley, oo, o) = Ngplw), we I,

then

Flay ooy @) = Ngole(n, o, )],  geK(ey, ..., 2. -

All the three theorems ecan be deduced from Lemma 1 by means
of Hilbert’s Irreducibility Theorem. The idea of using Hilbert’s theorem
in this conneetion iy due to H. Davenport.

We prove first a generalization of Lemma 1.

Levma 2. Let K and the mulliplicities of the factors of f satisfy the
assumptions of Theorem 1, 2 or 3. If jor any integers Tyyoeny By omd every
prime q there exists we K such that '

ordyf(xy, ...y 7)) = ord, N(w)
(provided the left hand side is defined) and f) is an irreducible factor of I then
Falayy ooy m)® = aNEfQ(‘F(-%: s B

where ae@), e K[xy,..., 4] and ¢ =ord, f in case 1 and 2, (e, |K|)
= (ord, f, |K|) in case 3. '

Proof. Let
(1) & f=efirfe... fir
and
(2) _ Ji = egilgd ... gip

be-the factorization of f and f, into irreducible factors in ¢} and I respec-
tively. We have

(3) Ny -5 &) = ypfaldy, ooy @,

We may assume without loss of generality that 2, really occurs in f,.
Denote the coefficient of the highest power of x, in f, by Ry, ooyt ) 0
and the diseriminant of fif, ... f, with respect to ay, by Dy, ..oy 304).
By Hilbert’s Irreducibility Theorem there exist integers @; (1<C4 < k)
such that %(ey, ..., 25 ) Dy, ..., 2y_y) # 0, fi(@), ..., @_,, z,) are irre-
ducible in @ and ¢;{w, ..., #,_;, #) are irreducible in & as polynomials
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in e (I < m, 1<1< n). Therefore by (1), in case 2 or 3 the multi-
phicity of each factor of f( Bryeeny dp_1s @) 18 relatively prime to K| or
|E}p~T, respectively. On the other hand, for every integer &; and every

prime ¢ there exists me K such that

. Ord, f (@1 -eey Wiy ) = 0T Nz ()
(provided the left hand side iy defined). By Lemma 1 we infer
(4) Fol@hy ooy #n, @) = @' Nigigo' ()],

where o eQ, ¢'el[z,] and ¢ =ord, f in case 1, and .& (e, LK]|)
= (ordy f, |K[) in case 3. Tn virtue of (2) and of the choice of w; (l;{i< %)
we have for some nonnegative integers #;, ..., 7, and some ge K

(8) ¢ (@) = 5“%(9@’1; ERRR J"i";«la wk)ﬂl-
It follows from (3), (4) and (5) thab

n
1 ’ ’ R
(6) fz{.’l'?;, Lty ‘T;c-lr mk)g = a,NJC,’Q(ﬁ)HVIEfl(J:U PR P "vf.z) v,

I=1 .
Since B,y oy Ty 7 Oy Fol@h, ooy @y, @) 8 DOB Lommnt and (6)

implies 25193; = ¢, which proves the lemma withg = [ [ @ik
Ploof of Theorcms 1, 2 and 3. Let:

v gEyy e )
Flagy ooy &) = h(wl,...,wk)’

where the polynomials ¢ and % have integer coefficients and (g, #) = 1.
Take any & integers @;,..., 2, such that h{zy, .., %) £ 0. It
: gl .o, @) =0
we have for any prime ¢
ord, f{#, ...,
If glzy, ..., 23) 0 et
ord,g(@y,y -y @) =, ovd h(wg, ..., By) = v,

mk) = 00 == Ol'quK'{Q({)}'

By the assumptions there exist integers f,, ..., %, such that

@ N b TP = Ngg(e), 0k
Hence
Nypplow) = ordgg{m, + ¢y, oo, @+ "7 ,) —
—ord h(@, 4+ g T ey, L o T
= ord g{@y, - ..y B} —0rd, h{wy, ..., @) = ord,fl®wy, ..., &)
‘Let (1) be the factorization of f into irreducible factors in @. By
Lemma 2 we have for each j<{m

Ty oy mk)e’j = ajNK/Q(‘?-"f(xla s mk))r
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where o;¢ @y gy K2y, ..., 2] and e} =¢; in case 1 and 2, -(ej'-, K|} =
(¢;, |1K]) in cage 3. In the last case there exist integers a; and by such that

It follows i
Ti@s ey )T = a;‘szTK,"o (‘Pj(mu R wk)ajfj(mla ) irk)—bj)
and we obtain from (1)

Gﬁa NK,,Q(H% (2, . mk)) in case 1 and 2,

flag, md=¢ "

G”“J’I\K/Q(H% Byy .-

@y 50 that fla, ..., m) = Ngolo) # 0 we infer

2 Tp) ]fj(wla cevy mk)hbj) in ecage 3.

Choosmg ml,
that e H a; OF ¢ ” o in case 1 and 2 or 3 respectively, is a norm of an ele-

ment of K and the theorems follow.

It seems more difficult to generalize to polynomials In many variables
the results of [2]. In particular I do not know, whether the solubility in
rationals =, ¥ of an equation

alt, wyx+b{t, u)y? =1

for all integer values of 1, « implies the existence of rational funections
q(t, u), w{t, ) such that identically

oty u)g(t, u) - b(f, w)pr(t, u) =1.

Now we shall prove a result on fields of deglee p?% announced In the
infroduetion. We show first

Levva 3. Let the Galois group & of K be represented as permulaiion
group on the conjugates of K. The field K has property (P) if and only if
every permutaiion of G for which the lengths of cycles are relatively prime
fizes at least one element.

Proof. Necessity. Suppose that a permutation ¢ of & has the
cycles of lengths fi,...,f, and (fy,...,fx) = 1. By Cebotarev’s density
theorem there exist infinitely many primes g not dividing the diseriminant

K .
of X such that (m) is the class of o, By the well known Artin’s result
p .

(see [3], p. 126) thege plimBS factorize in K into prime ideals of degrees
Fis--osfu- Let g = qq ... gz Wwhere q, is of degree f;. Since (fy, ..., fr) = 1
there exist integers a, ..., such that

afit .- +afy =1,
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thers exists also an ideal o rvelatively prime to ¢ such that the ideal
qil - o -qika is principal equal (w), say. Then

Ol‘dQNK/Q(m) =1

and by the assumption at least one of the numbers f,, ..., f; is 1
Sufficieney. Suppose that ¢ does not divide the discriminant of K

and

(7) - {ord, Ngg(w), |E|) = 1.

., Gy be all the prime ideal factors of g in A and let
() =afr... gf%ab™,

where (ab, g) = 1. If q; iz of degree f; we have

Let a1, qa; -+

ord, Ngpp(w) = ayfi+ ... +af;
and sinee fi+ ... -+, = [K|, by (7) '
(8) (fla'--y.fl) =1.

By Artin’s theorem quoted above, any permutation ¢ of G belonging
K- .
to (?) factorizes into eyecles of the lengths fy, ..., f;. By (8) and the agyump-

tion one of these lengths is 1, thus ge P(K),

. CoROLLARY 1. Bvery field K with the Galois group of K being a P-group
has property (P).

Proof. It is clear that the lengths of cycles of the permutations in
question can only be powers of p. e

CorOITARY 2. Hwery pure field K = Q(VA) has property (P).

Proof. The Galois group of K can be represented by permutations
of residue classes modm given by o(x ) = ex+b(modm). Suppose that
for some f: ¢'(#) = a. Then

o —1 '

) ((a~1)o+b) = 0modm
and

—1
(@ " |
If the lengths of the cycles of o: fiy ooy fi are relatively prime then
' ali -1, .
(.ﬂa"”l,’}n)lb—a“‘_T' (’l; —T«l,.-., k)
implies
(d—l, m”b!

and o(x) = % is soluble.
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Corollary 1 establishes property (P) for one class of Bauerian fields
of degree p? found by P. Roquette and mentioned in [6]. For the other
class found by L. Alperin (primitive solvable fields of degree p2 p > 3)
the same holds in virtue of

THEOREM 4. Let K be a field of degree p* (p prime) and agsume that
the Gualois group ® of K represemted as a permutation group on the points.
of GF[p]* consisis of affine transformations. Then K has property (P) and
T hk<2o0rk=3,p=21iis Bouerion. For k23, p= 3 or k= 4 there
are non-Bauerian fields of this lype.

Proof. Let ¢ be a permutation of the points of GF[p]* given by an
affiné transformation. If the lengths of cycles of & are relatively prime,
one of them is not divisible by p. Let the relevant eyele be (pq, ... )y Pih
Then

! 1 i
® o Yn) = Slatw) =17
’ Fa=l =1 i=1

thus ¢ has a fixed point.

Assume now that %<2 and X is a subgroup of & contained in the
union of stability subgroups. If the lengths of orbits of & were not coprime
then by Lemma 3 of [6] there would exist in & a permutation with the
lengths of eycles non coprime, against the assumption. Therefore the
lengths of orbits are coprime and one of them is not divisible by p. Let
the relevant orbit be (p,, ..., ;). Then for any a from 3 the formula (9)

holdg and T is contained in the stabilizer of I~ 12, p;. It follows by Theo-

rem 1 of [6] that K is a Bauerian field. =~ !

Now, let & =3, p =2 and let X have its former meaning. If the
lengths of orbits of J are coprime the former argument applies. Otherwise
all lengths are even a,nd by Theorem 3.4 of [8], a Sylow 2-subgronp §
of J has also all orbits of even Iength Since § is contained in the union
of stability subgroups it is not cyclic and does not contain any translation.
It follows that S is of order 4 or 8. The computation shows that all Zroups
of order 8 of affine transformations of GF {2]® withont tlanslatmns arc
of the form o (o, 0,y 0™, where

110 0 ‘ 1L0b e
o (@) =101 1|ar]of, o@=|o01 l]w+ (b+1)a
[0 01 a [0 01 0
If ¢~'80 contains of and o, then the existence of fixed points of these

transtormations implies that ¢ = ¢ = 0 and § has the fixed point o(0, 0, 0).
Otherwise o' §o i the group of order 4 generated by o and 0307, Where

11 d41 batc
geoy(®) = |01 0 |lxe+]| ba |.

06 1 @
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We infer again that @ = 0 and § has the fixed point ¢(0, ¢, 0). The contra-
diction obtained shows that K iz a Bauerian field.
If k>3, p=3 consider the group J = {s;;}, Where

ot 4y = aytimt{(§) Fi)oa i, va = @a o, =2 B<I<H).

{We have "41 310t = Tippigiydye) Al fixed points of o;; are given by
@y = —1j Y =0 j 0 and 4y = ~1if j =0, thus J has no fixed
point. Faking for ® the group generated by J and all the translations we
ge‘o corresponding to a stability subgroup of G & solvable ficld of degree
9" which is not Bauerian.

If & 2= 4 consider the group T == {1, ¢y, 4, crg}, where o, are the follow-
ing affine transformations of GEF[27]:

oy: Yp = Byt iy iy L, 4y = @y {2 <K k),

Ot Yy = B1H By, Yz = By, Yg = By, Yy = 0y (< i_sé k),

O3t Yy = &+ Tat @+ @ +1, Yo =85 Yy =&, ffy =& (A< H).

Each o; has fixed points but there is none in common.

Taking for @ the group generated by J and all the translations, we get
corresponding to a stability subgroup of & & solvable ficld of degree 28 which
is not Bauerian. _

Remark., The assertion of Theorem 4 concerning property () is
a special case of the following theorem due to Professor H. Wislandt
(wrltten communication}. If ¢ permutation group & of prime power degree
" has a regular normal subgroup (vegular means that it is transitive and
stabilizer of any point is frivial) then every element of & whose eyele leugihs
are coprime has o fixed poimt.

COROLLARY 3. Kuery pﬂwmive solvable field of degree p* (p prime)
has property (P) ond if T <2 or k = 3, p = 2 i is Bauerion.

Proof. If X is a primitive solvable field of degree p* then the Galois
group of K represented as permutation group on GF[p]* consists of atffine
transformations (see 7], p. 364).

Imprimitive solvable fields of degrec p* rewl neither be Bauerian
nor have property (P). It is shown by the example of & field K of degree
9 with the Galois group of K being the wreath product of 8, acting on

. three isomorphic copies of §,. It remains ungetiled whether every prim-

itive solvable field iz Bauerian.

TumorEM 5. Boery normal extension of a guadratic field is Bmmamn
There are fields of this fype withowt. property (P).

Proof. Let K be a normal extension of a quadratic field L and K
the normal closure of K. We can assume that K =¢ K. Let & be the Galois
group of K and §, N the subgroups of G corresponding to K and L, regpec-
tively. By the assumption $ is a normal subgroup of R, and since N is of
index two in @ there is only one subgroup of & conjugate to § and different
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from it; let us denote it by $’. If the field X were not Bauerian then by
’.I.‘hecuem 1 of [6] one could find a subgroup 5 of ® such that

(10) J=HUH, J+H, I
On taking
J1eINH =By e INH < H

j1ja € 3\55\5’

one obhtaing

which econtradiets (10).
Consider now a group & consisting of the following permutations
0, Of residue classes modl12:

O.p(2n) =2n+a(modl2), o, b(‘)n 1) =2n+1+ b(mode)
' (0 < n<Bb),

where (g, b) runs through all pairs of residues mod12 of the same parity.
This group is transitive and it has an abelian subgroup of index two
namely f = {¢,,: @ = b = 0mod2}. Therefore there exists an algebraic
number field 2 with & as its Galois group. The stability subgroups

D = {0, & =0mod2} and = {og5: b = 0mod?2}

are normal subgroups of 9t. Thus the subfield X of Q corresponding to §
is Bauerian. On the other hand it deces not possess property (P) sinee

Ty6 = (0,4,8}{1,7)(2,86,10) (3,9 (8,11);

the lengths of eycles are relatively prime but none of them is 1.

Finally we prove that for fields K without property (P) Theorem B
and @ fortiori Theorem 2 does not hold.

THEOREM 6. If a field I does not possess property (P) then there emisty
an trreducible polynomial f(x) such that for every integer © fz) = Ngio(w)
with we K but for no polynemial ¢(x)< K {x]

(11) J(#) = Ngyq (9‘ (37))

Proof, Let ® e the Galois group of K represented as the permutation
group on the conjugates of K and § be the subgroup of & eorresponding
to K. Let ¢« ® have the eycles of lengths f,, ..., f;, where (fi, ..., ) =1
and f; > 1 (L < i< k). To the group T generated by o there corresponds
# field £, say. ‘

Let £ = @ (#) and f be the minimal polynomial of & Assnme (11).
Then for a certain te® we have ¢(9) = 0 and for a suitable i< &

o

(3NTHT Y = [J‘tjl.
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Hence
QECL 1S 181 12

T Faese 8 TR

. Je) )
and it follows that ¢ (z} is of degreel—J— fi- By comparison of degrees

K]
we get -
Nyolw (@) = fla)i,
which contradiets (11) since f;> 1. On the other hand, since (fy, ..., fi}

=1 there exigt integers a,, ..., @, such that

““‘"1f1+ "{’-(kak =71,

i

Hence
Ny (%:(w)ai) = f(&),

which proves that for every integer @, f(#) = Ng(w) for some weX.
It follows by Theorem 3 of {4] that property (N) implies property (P).

Note added in proof. 1. Theoren 4 suggests the following question about
the family Ko of groups of affine transformations of 2%, where 2 is a ficld: If every
element of & € I'g has a fixed point, is there a fixed point for the whole®? It 2 = GF[p]
the answer is affirmative by the said theorem. If @ is not simple the answer iy ne-
gative and a counterexample is given by the ahelian group By = {oy: ae 2}, where.

o= [y e

and where f is a nontrivial solution of the equation f@--y) = F(®) +Fiy) in 2. In

the remaining case @ = ¢ the angwer is again negative and a more recondite coun-
terexample is given by

o= [E] o [ ]

®; clearly has no fixed point. The existunce of fixed points for all eloments of (U
follows from the fact kindly communidated to the writer by Professor R. A. Rankin
: 231 121
that the group <[35], [11]> is froe without parabolic elements. On the ofher hand,
J. Browkin has shown that there iz no abelian countoroxample.

. 2. It can be verified using the explicit determination of all primitive solvable
groups of degree p* by G. Bueht (Arkiv . Mat. 11 (1918)) and of degroo pt (g primo)

by D. SBuprunenko (Soluble and wilpotent linear groups, Providence, R. L. 1963) that -

all primitive solvable fields of $he above degrees are Baucrian.
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Corrigenda to [6]

p. 338 line 8 for I divides # read g divides | K.
Iine 10 for o read |K|.
p- 341 line 6 for < nip< p read < nip < p.
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