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On the distribution of the zeros of Dirichlet’s L-functions
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1. Let

oo

Lis,z) = Y amn™ (s = o+il)

=1

be a Dirichlet’s L-function with a character ymodg.
We take an arbitrary pair (a, b), where a5 b mod g and {a, q) = (b, ¢)
=1, and let consider the function '

1 = I
Fols) = F$) = o D) ()= 7a)) 7 0 -

xmodg

For ¢ > 1 this fanction has the expression.

A{n

o= 3 A 3 A,
n=amodg ne=bmodg

where /(n) is the von Mangoldt function.

Let n{x; ¢, &) denote the number of primes < # which are congruent
to amod ¢. In the well-kmown series of papers, “Comparative Prime Number
Theory”, Knapowski and Turan developed the deep theory on the difficult
problem of whether n(%;q, @) —n{x; ¢, b) changes sign infinitely often
and how large the discrepancy is.

In their first paper of the series ({41, p. 306), they mentioned that
the singularities of F(s) play a vital part, and set out the problem of
whether there is a zero of I(s, y) in the critical strip such that the expre-
seion

tgp{@) = ule)

does not vanish, where m,(x)- denotes the multiplicity of ¢ at a zero of
L{s, y). Obviously ¢ is a singular point of F(s) if and only if u(e) # 0.
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The existence of infinitely many o's with p(g) 5% 0 has been proved
by Kétai (unpublished) and Grosswald [2] independently. Later Turdn [7]
took up this problem again and obtained the following rosuls:
Let f,,(1) = f(T) be the quantity
' o
1.
0 Tor psg 1"
i H(g)#0
Then,
(Iy For T > p(g) we have the inequality

f{ﬁb) > G;exp((logfl‘)““).

(II) Under the assumption of the gencrulized Ricmann hypothosis
we have
Iy > G,TF for - T w(g),

where ¢, are numerical constants and (g) an explicit function of g, and

morecver the estimations are independent of ¢ and 5.

: The aim of this short paper is to improve subst.;untully the inequa-
lity (I} by proving .

TurormEM 1, For T > wig) we have

(1.1) D> P (leg) O,

Here the estimation is independent of « and b,

It iy desirable to obfain & similar result which is uniform in ¢ and
holds for small I. In this ease problem becomes very difficult, and we
have proved only

THuoREM 2. For any sufficiently large T them exisle of least ome ¢,
with
%_TJIZ (IOg‘T)_Sl &; q { 171)2 (bgT)‘SI’
such that the inequality.
(1.2) f(T) = T:&/m] (10{;"[’)‘“
holds for any pair (a, b),

- 2. Proof of Theorem 1. Let N (o, T'; 7 ¢) he the number of the zeros
of dll L(s, y)modg in the rectangular region

I<igT, axio<gl,
According to the recent work of Montgomery [B7] we have
5
(2.1) N(a, 15 9) < Oy(g* 1Y%~ (log gy,
We devide the horizontal strip

Te<ig?
_into thinner strips '

T/2+jU~<\t<T/2+U+1)U; j=0,1,2,..., [.T/2U]'
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where U satigfies
(2.2) . o PR

and is to be determined explicitly later. Then we have [T/2U] rectangular
regions

Aifa): TRHJUSISTRF({+DU, a<a<l,
Now it i8easy to soe that, if we have the inequality
(23) (T/2U] > N(a, T'; q),

then at least one of A;(a)’s is free from the zeros of all L(s, y}modg. Let
Ay {a) be one of such regions.

From now on we proceed on the line of Turdn [7].

Now if we take T = y(q), then by the condition (2.2) we have

U 3¢, 0 v g, o) >0
M100l0g 7’ L% M 20010g 7’ ¥ ’

and so there is a prime number P such that

U U
= e P,
(2.4) P=amods o0t < < {ioloat
Let
§ = logP anﬂ = 1
=08 ~ 100P%0g P

_ and let consider the integral

1 2
J = e | P(s+iV)e" Tods,
27 &

~where ¥V is equal to T/2+{j,+ $)U, so that 1+4iV is the middle point

of the right edge of the rectangle Aj(e).
Ag in [7] we have easily

(2.5) 2Vand = P~ "logP + o(1).

On the other hand, shifting the line of mtegra.tlon to ¢ = —3 we
have

T = 3 ufe)Fe-oe= 4 o(1),
£ ) )
whare o runs over 1l non-trivial zeros of all Ii({s, y)modg.
Now, denoting ¢ = f-+1iy, the contribution of the zeros with
V—yl= U/t
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to the above sum does not exceed
(@)l PP < Cy(g) Y] logtn-em,
Wyl U4 nzUjd
since we have
Nla, T+1;¢)—N(a, T'; g) < Cy(g)logd,
The last sum does not exceed
e =16

log’ma""‘ﬂdw < Y= o(1),
Ul A

sinee we have (2.4).
Hence we gof

J = 2 (o) gi(o—iV)z-l-ri(v-“—W) +-o(1).
IV-yI€UM

From thiyg an_d (2.0) we have

0= V)2 (oK)

p(g)e" > Plogh*p.

P2l T8

Becanuse of the definition of V, in the range of the above summation wo
have

A< a.

Hence the above inequality gives

lu{e)| = $P*log**P.

W—v<UM
This means that we have obtained
(2.6) AT = O3 () Plog* P,

Finally we put
e
and then from (2.1), (2.3) we have to sob
U = Cy(g) T log"1,
.Which is in the range (2.2} and gives the esf}imaté (1.1) with (2.4) and (2.6).

3. Proof of Theorem 2. We now enter into the proof of the inequality
(1.2), but we shall show only important points.
From Bombieri’s theorem ([1], p. 159) we got the inequality

1 F odu

max ——— N
p(g) - logu

(a.0)=1 w(@; 4, &)~ (%/2; g, “I)—'
5o (BD=

_ < otoga-
a<Vallogz)— :
for sufficiently large .
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Hers we remark that we have

1 |
Z —— = A{l+o(1))logw
= vla)
with an absolute constant 4. _
From these two facts it is easy to see that there exists at least one g,

with

(3.1) 1V (loga) ™ < ¢ <Vo(logz)™,

_such that

max 2(e; 0, 00— o0, o) o [ 2] o0 )
max | o(x; - 3 gy @) — = ¢ |—on-}.
@1 U ) Togu lg)loge

But this means that every reduced residue-class modg containg
at least one prime in the interval (#/2, ). We now fix this ¢ and let @

be a prime number with

Q = amod'gj, /2L Q<.

Such @ can be found for any (a, g) =1, and 5o our disenssion in what
follows is independent of @ and b.)
Now ag .in [7] we have

’ _. 2 Ho—3
#(E’) EA (e~1T)"+ & (e—17) > QlogafZQ’
TiaLyT

, 1
(3.2) T = 60QlogQ, A

- § =log@.
100Q%1ogQ’ o8¢

Hence we bave

B(0)QF < 2—2 ¥ (d, T; )+ Oulogg-@F(T)

3/
(3.3) @(log@)** < ?(g)

. Thsver
for any 1/2°< o' < 1.
Here we have
28

N(a,T;9) < Cegs ™ (log g™
from a result of Tatuzawa ([6], p. 299) and (3.1), (3.2).
We now take
25

o = »——(1-1—36

loglogg )
28

logyg
and with (3.8) this gives

Q¥ (log Q)™ < f(T)
“which proves the estimate (1.2).
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4. Concluding remark. As a nalural generalization of the Lindelof
hypothesis on the Riemann {-function we may introduce the hypothesiy

(*) L{}+it, 1) < Oulgs 1%,

where ¢ is an arbitrarily small positive nwnber,
From this we can deduce

Fla, T;9) < Cylg, 8TV, a2 §4+Ve

by the method of Haldsz and Turdn [3]. This strong rogult gives

TugorEM 3. Under the asswmpition of the “generalized Lindeldf
hypothesis™ (%), the inequality

f(l’) () 5(q, E)TJ.MAOVE
holds.
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An “exact” formula for the m-th Bernoulli number
by

§. Omowra (Princeton, N.J.) and P. HARTUNG (Bloomsburg, Pa.)

& 1. Defining the Bernoulli numbers by

—1)"‘ 1B ™"
g Sne
e’ —1

n=

we prove the
THEOREM. For m 2 1,

(1) 2(2™—1)By, = [pn]+1

where {w] denoles the greatest indeger < m, and

2(2% —1) (2m)! j’j 1

(2) P = TgEm-l 2m PEN
. R—1

§ 2. As is well-known, writing £(s) for the Riemann zeta funetion,
we have, for m = 1
i'i’1 1 ofm—1 2m B,
—2:%2’” o (@gm)!
ne=1

In what follows we shall suppose m > 2 and use (3) and von Staudt’s
theorem to prove (1) and (2). Now

(3) £(2m)

am o0

() D

m = ami

o=l " T~ " am-{»l
‘Write
&%
>

Tl vi

Py
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