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A problem involving simultaneous binary compositions*
by '
Nins BpEARM (Mdnhabtali, Kans.)
1. Introduction. Throughout the following, I, A, and % will denote

fized positive integers with h, & z 2. Let S(m,n) = S, 1,5 {M, n) TEPrEsent
the nuwmnber of ordered sets oi positive integers z,, &,, ¥,, ¥, satisfying

{L.1) Yy =M, Ly Yy =R,
such that '
{1.2) (@, ®,) 18 l-free, g, i8 k-free, and y, is A-free.

(In cage 1 == 1, the first restriction in (1.2)is simply that z; and z; are
relatively prime.) It ig the purpose of this paper to find an agymptotic
representation for §. In particular we show that ‘

bih
(1.3) S{m, n) = catm, n)mn+ 0(m R

for any e > 0, where ¢ denotes the positive constant (dependent only on

Y ‘i ]_I ( o+ F,I} ﬂm_nl”).)

(¢ is the Riemann zeta function), and where

bk, and k)

(L) alm,n) = a4 lm,n) =
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is a positive function which is both hounded and bhounded away from
zero. In. (1.4) and in what follows we et « reprosent the smaller of ¢ and %,
and o the smaller of 7 and A.

The problem treated in this paper is analogous fo one considered by
Cohen [1], who praved an asymptotic formula for the number of ordered
sety of positive integers my, Lay Y, ¥2 satisgtying (1.1) such that

(81, @) o0 {3y, 9,) are lfroe,

In our proof we adapt Cohen’s moditications of & method used by Ester-
mann [2] in giving an elementary solution to a problem of Bvelyn and
Linfoot: Find an asymptotic representation for the number of positive
integral solutions of .m~[— i == n guch that & and ¥ arve 7c frow, ‘%paoi;l‘iou;llv

we make appropriate divigions of the intervals [1, |/m,j and | 1,1/% I
and decompose the summation for § into four parts corresponding to
combinations of these subintervals. It is noteworthy that our remainder

term is not improved by additionally dividing the interval |1, ]}M"],
and congidering the corresponding eight-term decomposition of the summa-
tion for 8. Indeed, I does not contribute to the remainder term, even in
the special case I = 1. This is unlike the formula obtained by Cohen, in
which the case { = 1 yields a more complex O-term dependent upon the
relationghip between % and m?

2. Preliminaries. In this section we collect several known lemmas,
and make some obgervations concerning functions peculiar to our problem.
The following notation i observed: The letier p will be roserved for primes,
w i3 the Mébius funetion, Jy is the Jordan totient function of order %, = is
the divisor function, and g, is the characteristic function of the set of
k-free integers; vacuous products and swms are given the values 1 and 0,
regpectively. For a discussion of the O-notation the reader is referrad
to [3], § 1.6,

Lmmma 2.1 (cf. [3], Theoram 303)

2_, wld) == gy(n).

a*n
Lmvnva 2,2 (ef, [3 ), Theorem. 310). For any fived ¢ > 0,
From the familiar evaluoation

z(n) = 0.

we have
Lmyma 2.3,
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TuMma 2.4, For any positive integer v,

LeMMA 2.5 (of. [4]). For positive integers a and b let N, ,(n) denole
the nuwmber of positive integral solutions of ax--by = u. If (@, b)|n then

. w(m, b)
Fyai) =280 oqy
uniformly in a, b, and w
Lomma 2.6, For a posgitive integral vwrmble r we define

d
Pty 1) = Z'gjz(:;) '

dir
a¥m

where u denotes the smaller of | and k. Then g, (m, ) == O(") for any & > 0.
Levma 2.7, For all positive inlegers v '
-1 _ Iy
St = o0,
&
o a¥m
3. Proof of the theorem. For convenience we will often indicate the

conditiony of swmmation by referring to numbered formulas With this
convention, then, we wish to examine -

S{m,n) = ZQ! mu mz)) 0 (V1) 8 (Ye) 5
Ly
where the summands @, s, ¥, ¥, ave positive integers satisfying (1.1).

By Lemma 2.1
Sm,n) = Xl p(d)pe);.

TERY
where r, d, €, fi, fey g1, o are positive integers such that
(3.1) ki, =m, 1 fatdgy =

Now let ¢ = t(m, n) and 8 = s(m, n) denote ﬂmc’rmnﬂ of m and » to be

specifiod later, such that 1 L R Vm and 1 << 8= 1/17 We decompose the
sommation for § ax follows:

(3.2)  S(m,n) = ¥ anul@ple)+ ) wtr)pld)pe)+

&3 &
L : &g
+ Y p@pl)+ D) p)pdule) = 8y Su-- Byt S,
&1 &
[2Y] g8
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‘et us say. We consider 84 under the assumplions that ¢ = |/m and § - l/fh
and letting 7,(n) denote the number of Ith power divikors of w we Imvu

S|/Z1w~ PR

dimd L]
(j »12 tlegg oo olgyom,
ex g

4}3 (0 - eyay m - di )

1 ‘1 i
< 103 w(m--d¥yy).
, % 1o i)
i A
rlf"ul‘ n l:"m_z« "

Honce by Lemma 2.2 we obtain for any & -0,

Nij-ope 31X

8, - (,)( }J (el gy
o1 [t rl -t (‘>H

d’“;flg m gty o Mg cm dgyern

JR
YW N1 R aml
= 0 (m 2 di ﬁ\’ ,l) = (‘)(.’:'fg.,,,!é}':---i')'
-t

Similarly )

' L A _ ‘ i

Sy =0 (,ht“) and 8y = 0 (_rml...,)

. . koo ) it
for any &> 0. Sinee ’gf! EE St] e ) 14 e ]/‘m-, and. 15’2 S& a () Uf § = l/,””
we have
' m*ewy [l

(3.3) Mot g8y == 0 (lew) 40 ( i |)

k.. . .
for any e > 0, with the first O-term zevo if § = /m , and the second G-torm
zero if 5§ = ]/f,q, Wo remark that the O-congtants in (3.3) are nniferin in
all parameters (dependent only on 1, b, and k); similar obseryations mnay
be made in what follows and will be asnumed.
We now return to §, which may be rewritten as
Al
\ () e () pa{ @) N it () N g gt {0)

i
dﬁ{.{
enR

where by (3 1) it may additionally be assuthed that (@, +)m, (", r)n,
and r s |/m Thus in view of Lorma 2.5

(34) 8= &40 ('m > (f,’df,)u) 40 (n D (‘;;;,)‘) 40 (: 1_),

5.6). (5.6) 9.6)

icm

A problem involving simulloneous bingry compositions 15
where
- Y p{r)p(d) ple) (4, r) (e, r)
(3.8 8 = mn T,Eldkfﬁ»
(5.6) ‘

and where d; e, » ave pogitive integers. with
-
(3.6) d=st, e, r<vm, {2, rVm, and (¢, r)"n.

The firgt O-term in (3.4) may Dbo written as

@7 ( 2“ )’ d ) 21)

ess
réw/m (tz r)“lm {&rin

Since the last summation in (3 7) iz bounded by s, and the second by ¢,

(3.7) becomes
1
0 (mst 2 Tl) = O{m'* st
r<ym

for any e> 0 (recalling that 73 1). Apalogously the second and third
O-terms in (3.4) are O (m’nst) for any ¢ > 0 and O(mst), respectively. That
is

(3.8) 8y = & 4 0(m nst)

for any > 0. Combining (3.2) with (3.3) and (3.8) we see that

fo—

1+ 14s
(3.9) S(m, 1) = 8 + 0 (m’ nst)+0(m ”) +0 (m ")

I
for any s > 0, where t]m third and fourth O-terms are zero when ¢ = ;/'w'{

b .
and § = V', respectively.
Weo now consgider §'. By (3.5) and (3.6)

y v v pld) ( Moo ule) (e, )’
N uma Z’ Z d" Z AN ;ﬁ”

et ests
T lf'm (2% m {e.n)¥n

and viag substitutions similar to those made above,

_— WA SR By 0 pd) u{e)
(3.]0) .S‘ = P '“*'{):”‘ ‘}_“ w]‘; “_2_/ yh' - Z “&ﬁ—" Z "“*Ejr".

[3 21 $lr dszife essaly
ey atim Win (Ar)=1 (er)=1



Writing each of the last two inper sums in (3.10) ay the difference of two Im

infinite sums, we apply Lemmag 2.3 and 2.4 fo their product to obiain

A ple) - AT AN
O F 2 T e ].”((/,) )"‘”((,q) )

d<itfz eafy
(d,r)==1 {6,1)=1

g0 that {3.10) beeomes, on simplification,

, mn X (1)
8 = T Py Vg (g ) -
(h) P (T ()

£(m)e
Va0
- AL W 1
0} (f"']' 24 ;‘\,7 fq)h Ty # l \ P I)
" " z ' rl’
Ry e
m% ¥ 1 .
- O( Z ) i“P.'u(m, 7| \ (2/” |,)’
L Jf-]-;f
Y i

By Lemmas 2.6 and 2.7

P Mmoo\ (")
RO % FEERT iy P e

Y i
ki b (2}
.»-u)(;ﬁ:i- 2 );o( o Z )
vy el
_ 1 p(r)
LR (h) Zl/ ARy P Tt 1
1Y

' e n m““%
4 O, -

Therefore, again using Lemmas 2.8 and 2.6, we have
WM - (r) .
v ma 2"'1 fel
(3'11) ‘S - f(’ﬂ)f(h) - Al hJ (7‘):] ( ) VI‘(‘(",% ’)(F‘ln(’“f T} |

W, 144 1o
1O (mn) -+ o( ”) m('m‘ W’).
‘é

-1
We make the definition

(3-12) Bunplm, n) == f{m, n)

=W D i gutm, st ).

p=]

B

Tn § 4 we will show that
(5.13) Bim, n) = calm, n),

where ¢ and ¢ are as described in the infroduction, and we indieate a proof
that g is both bounded and bounded away from zero.
Now collecting tho regults in (3.9) and (3.11)-(3.13) we sec that

m m“"'n
N (o, n} = calm, n)mn |- ()( s ) = U( + )+ O (m"nst)

for any e: 0. Our formula (1.3) follows on choosing

-1 k-l
Lo o il and & e Feh L ,

4. Evaluation of . Because ouch of the funcetions in the series repre-
sentation for f is multiplicative in #, we may apply the Huler product
formula {(cf. [3], § 17.4) tr) tho series in (3.12) to oblain

f ] i,( Jr_n)
Bim, n) = ¢ ) ”( qz’f i ’*p)g»m(p))

..... w CHRY ST (B) By (o, m) Ba(my 1) By(an, ) By(th, 0),
where '

RS i)(p" "~1) )
P (p 1) (pt 1) !

J’a WL
= ]_[( PR 1;1)1(19”-'—1")_),

=
g

=
i

pllm
270

_ITi I A
ﬁ:x('m’; ﬂ‘) = ]7 (L - ':ﬁ'ﬁt?rc~~1l(p1c 1) (ph, »w_l_))’

w’“-rm
gt

L |
ot ) - ] [ ( o ph ;“1,)"(29’*..;.'1))‘

ptham
FILETY

Rather cambersome algebraie juggling shows that the relation (3.13)
holds; we will direct our attention instoad to the boundednoess proporties

of . For convenience wo congider the four cases
Lezmin(h, k), A< B b=hy, wax(h, k)<l

2= Actn Arithmetlen XTI
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gseparately, and we use the substitutions
(4.1) v=p"h g =p" = (pF—1) (" ~1),

noting that @ > ay > 0.
Oage 1. T < min(k, k). Since % =o =1

. B, = £ ()10 H ( (@=1) (fff——l))><
(m.n)
TN (S (5
i i i
=[] (“‘ w:ymy1)x[]( + ’f:'":.q.g,)*”(“ ':":};‘j)

i
pmn) p rn ?3 m

With the note following (4.1) it is clear from the first oquality that § is
bounded above, and from the second equality that § is positive; in fact
0< e <, so that also 1< a o™

The other cages are argued similarly, yielding the same bounds for o
and # and we give tho corresponding formulas withoubt cominent.

Case 2. ki< k.

Blm,n) = [~ ]ﬂ! (1_..~ v ) W]?{;l (1—%34*)
=CI;[(1+ z—wy) I[( J’?’Ea@")
M;(' )\c“l ]]( "f““l) ”(L_,_J.f.)

fp i
-fm e

) (e ()
Oase 4. max(h, k) < 1.

,S(m.fn)-wé’ B H(ﬁl—*ﬂ)*—c[—I( "*";‘_':;;;;)X”( ’,;;“my)

13 Rt ﬂﬂ"l
2htn ohin

5. Some corollanes. As an immediate covollary of (1.3} and the
results of the previous section we have the following
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-OOROCLLARY B.1. If m < n then

S{m, n) ~ea(m,n)mn a8 m-> 0o,

COOROLLARY 5.2. If h =k =2 and 1 = 1 then
| 36 | .
S(m,n) = - y(m, nymn+ G(m* ) (m < )
Jor any &> 0, where

pz
y (W, n) = (1-»- ———E———)x
[0

1
@ 1) (p+1)—p ) %

<[]+ i)

[] [

PUT)

»imn
COROLLARY 5.3. If h = k =1 = 2 then
36 213
S{m, ») = g{m, nymn -+ O (m** ) (m << a)
for any &> 0, where
1
pim (P - )
22n
COROLLARY 5.4, If m = n then
slm kh+k+h—3+8

8(m,m) = mE0(m

)
L(R)E(R)

Jor any ¢ > 0, where

. (Pk-—‘u__l) (Ph—v—l)) ( Pk-!-h—ﬂl )
- 1 — __r
oom) = [ | ( - )~ [I{ -1 1))’

»|m pWtm

and where w denotes the smallest of 1, h, and k.

References

" [11 Eekford Cohen, Stmullaneous binary composilions involving pairs of relatively

l-free integers, Proc, Roy. Acad. Amsterdam, 66 {1943), pp. 4148,
[2] T. Estermann, On the representation of a number ag the sum of two numbers not
" divisible by k-th powers, Journ. London Math. Soc. 6 (1931}, pp. 37-40.
[3] G.H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, 3rd
odition, Oxford 1954.



20 Nina Spears

[4] Tvan Niven and H. 8. Zuckerman, An Introduction to the Theory of Numbers,
New York 1960, pp. 85-96.

KANYAS STATE UNIVERSITY

Received on 17.2.1971 {144)

i

icm

ACTA ARITHMETICA
XXIT (1972}

On Goldbach’s prdblefn
by
R. 0. VaueHAN (Sheffield)

1. Introduction. Goldbach conjectured in 1742 that every even
number greatér than two is the sum of two odd primes.

In 1923 Hardy and Littlewood developed a method ([4], [5]) Whlch
enabled them to show that _

(i) if no Dirichlet L-function has a zero in the region Res > 3/4,
then every sufficiently large odd natural numbel is the sum of three odd
primes, :
and : _

(ii) if every Dirichlet L-function has all its zeros in the region Res < 1/2
and if F(N) is the number of even numbers less than N for which Gold-
bach’s conjecture is false, then

B(N) = 0,(N'#+)

for every positive e,

In 1937 Vinogradov abtained estimates ([12], [13]) (for an account
of which, see [14]) for trigonometric sums of the form '

(1.1) 2 621!1':1:1:
p<N
which, combined with Page’s work [9] on the zeros of L- func’mons, enabled
him to show unconditionaily by the Hardy-Liftlewood method that
every sufficiently large odd number is the sum of three odd primeg.
Uging these ideas, Van der Corput [1], Tchudakoff [11] and Hster-
mann [3] were able to show unconditionally that

(1.2) B(N) = 0,4(Nlog ).

In the mid 1940’s, Linnik [7], [8] and Tchudakoff [10], by finding
estimates for the number of zerog of L-functions in certain regions, were
able to dispense with Vinogradov’s method for sums of the type (1.1}
and thus obtained essentially new proofs of the Goldbach—-Vmogradov
theorem and (1.2).
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