leisurely rates. The five functions of the following table refer to partitions into distinct parts, parts \(> 1 \), unrestricted parts, odd parts and even parts respectively.

Table II

<table>
<thead>
<tr>
<th>(n)</th>
<th>(W_n^*)</th>
<th>(W_n(S_n))</th>
<th>(W_n/S_n)</th>
<th>(W_n(S_n)/\sqrt{\pi n})</th>
<th>(\sqrt{n}W_n(S_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>.566786</td>
<td>.556790</td>
<td>.542158</td>
<td>.600193</td>
<td>1.072995</td>
</tr>
<tr>
<td>101</td>
<td>.566736</td>
<td>.555423</td>
<td>.642586</td>
<td>.600202</td>
<td>1.071101</td>
</tr>
<tr>
<td>102</td>
<td>.566691</td>
<td>.555589</td>
<td>.642625</td>
<td>.609277</td>
<td>1.071101</td>
</tr>
<tr>
<td>103</td>
<td>.566654</td>
<td>.555546</td>
<td>.642560</td>
<td>.609369</td>
<td>1.072575</td>
</tr>
<tr>
<td>104</td>
<td>.566618</td>
<td>.555011</td>
<td>.642680</td>
<td>.608432</td>
<td>1.072575</td>
</tr>
<tr>
<td>Limit</td>
<td>.561450</td>
<td>.561450</td>
<td>.561450</td>
<td>.561459</td>
<td>.674612</td>
</tr>
</tbody>
</table>

The slight irregularities in these functions are not due to inaccuracy. They reflect the existence of an asymptotic, or possibly convergent, series for each entry.

Reference

Received on 17. 8. 1971 (208)

Some diophantine equations solvable by identities

by

A. Mąkowski (Warszawa)

Dedicated to the memory of my teacher Wacław Sierpiński

1. W. Sierpiński in many of his papers investigated the triangular numbers \(t_n = \frac{1}{2}n(n+1) \) and tetrahedral numbers \(T_n = \frac{1}{4}n(n+1)(n+2) \). From the identity given by A. Gérardin [1] we get immediately the following identity

\[
(27n^6)^2 - 1 = (9n^4 - 3n^2 + (9n^3 - 1)^3 = (9n^4 + 3n^2)^3 - (9n^3 + 1)^3.
\]

With \(n \) odd and positive the last identity provides infinitely many integer solutions of the equation

\[
(2x+1)^2 - 1 = (2y)^3 + (2z)^3 = (2u)^3 - (2v)^3
\]

which is equivalent to

\[
t_n = y^3 + z^3 = u^3 - v^3.
\]

Thus there exist infinitely many triangular numbers which are simultaneously representable as sums and differences of two positive cubes.

We have the identity \(3aT_{n-1} = t_{3n-1} \). Since there exist infinitely many tetrahedral numbers divisible by 3: \(T_n = 3a \) we infer that there exist infinitely many triangular numbers which are products of two tetrahedral numbers \(> 1 \).

2. The numbers \(x = 6^3p^2n^3 + 6^3p^4r^4n^4, \ y = 6^3p^2r^2n^2 - 6^3p^4r^4n^4, \ z = 6^3p^2r^2n^4 \) satisfy the equation

\[
p(x^3 + y^3 - z^3) = r(x - y).
\]

This answers a question posed by A. Oppenheim in [3].

3. L. J. Mordell [2] investigated the equation \(z^2 = ax^3 + by^3 + c \). It may be noticed that the equation

\[
z^2 = ax^{2k+1} + by^{2k+1} + c
\]
The representation of real numbers by infinite series of rationals

by

A. Oppenheim (Legon, Ghana)

Received on 19. 8. 1971

1. In a recent note Galambos [1] has obtained some remarkable theorems about the ergodic properties of the denominators in the expansion

\[x = \frac{1}{a_1} + \frac{1}{b_1} + \frac{1}{a_2} + \frac{1}{b_1 b_2} + \frac{1}{a_3} + \frac{1}{b_1 b_2 b_3} + \cdots; \]

he refers (Ref. 9 in Galambos [1]) to unpublished work of mine on this expansion. It seems appropriate now to give detailed results.

The expansion for any \(x > 0 \) (not necessarily confined to the interval \((0, 1)\)) derives from the algorithm

\[a = x_1, \quad d_i = 1 + [1/x_i], \quad a_i = 1/d_i + (a_i/b_i)x_{i+1}; \]

for \(i = 1, 2, \ldots \) Herein

\[a_i = a_i(d_1, d_2, \ldots, d_i), \quad b_i = b_i(d_1, d_2, \ldots, d_i) \]

are positive numbers (usually integers).

Several questions arise:

(i) to give conditions to ensure that the infinite series (necessarily convergent) in (1.1) has sum \(s \);

(ii) to obtain the conditions induced by the algorithm on the integers \(d_i \geq 1 \) (one such condition is

\[d_{i+1} > (a_i/b_i)d_i(d_i - 1); \]

(iii) to obtain necessary and sufficient conditions that a convergent infinite series (1.1) shall be the expansion of its sum by the algorithm.

(A simple set of sufficient conditions is given by

\[d_{i+1} - 1 \geq (a_i/b_i)d_i(d_i - 1). \]