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§ 1. Introduction. Let ¥ be & field of algebraic functions of one
variable having a finite field K wifh ¢ elements as its exact field of com-
stants. The group of divisor classes of degree zero of such a congruence
function field is a finite abelian group. Ifs order hy iz called the class
number of F. In this paper, we discuss the following duestion: Which
congruence function fields have class pumber one? The special case,
when F is a quadratic extension of a rational field and has a prims of
degree one, hag been studied by Mac Rae [7]. He determines all such
fields with elass number one. It turns oub that the critical case is when
K is the prime field of characteristic 2 or 3 and genus g is larger than one.
We show that, if ¢ = 2 and genus ig larger than 4, or ¢ = 3 and genus
is larger than 2, the class number is not one. This is carrjed out in § 2.
In § 3, we abtrun explicit expressions for zeta-function and class number
for g = 2,3,4 and ¢ arbitrary. From these formulae, we deduce that
also for ¢ — 3 and ¢ = 2, the class number is larger than one. For ¢ = 2
and g = 2,3, 4, we derive necessary and sufficient conditions for class
number to be one. In §4, we discuss the case of quadratic extensions
and show that, up to isomorphism, there is exactly one quadratic field
of class number one which has no prime of degree one. In § 5, we give
two examples of fields of genus 3 defined over the field of 2 elements
to illustrate that the necessary and suificient condition given In §3 can
be satisfied. At the time of writing this paper, we do not have a similar
example for genus 4(%).

It should be remarked. that for prime fields of characteristic different
from. 2, the arithmetic and analytic theory of gquadratic extensions was
developed by Artin in his disgertation [2]. An extension F'/K (X)) is called
imaginary it the infinite prime of K (X) does not decompose in F ag product

* This reseaach is partially supported by N, 8. F. Grant GP-13327.
U] I‘o]lowmg o procedure suggested by Professor John Tate, we have proved’
that there is, in fack, no such field.
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of two different primes. Artin had predicted ([2], p. 237) that there is,
essentially, only one imaginary quadratic field for which the integral
closure R of E[X] in F is a unique factorization domain. This has been
proved by Mac Rae [7] who also shows that, in addition to the one given
by Artin, there ave three fields of characteristic 2 (K not necessarily
prime field), for which R ig a unigue factorization domain and the infinite
prime of I {X) is ramified in 7. In the sense of Artin, the extenston F/K(X)
is imaginary also in the case when the infinite prime is tame in £'. In this
case, however, it follows from & relation hetween Ay and the elags nunber
of the Dedekind ring R, that the latter is even ([9], p. 32).

§ 2. If ¥ has genus zero and K is arbitrary, it follows from the Rie-
mann—Rocel Theorem that a clags of degree zero has dimension one.
It ig, therefore, the principal class, because no other clags of de-
gree zero hag integral divisors. Thus, for a congruence function field,
hp 18 one.

We ghall, now, assume gp= 1. We shall also assume that g <4,
for otherwise kp is larger than onme ([11, see also [2], p. 237). We recall
that the Riemann Hypothesis is equivalent to the inequality

(1) (N, —(g+1)] < 2¢5V7,

where N, denotes the number of primes of degree one. Let FIK Dbe

a constant extension of F /K of degree 2g,—1. The field K being perfect,

g7 = gp = g. We apply (1) to F|K and obtain
(2) Nz @07 +L—2g-g% 0",

A prime of degree d of F decomposes {[4], p. 164) in Foas product

of (d, 29—1) primes of degree a(d, 29 —1)"%. Primes of degree one of

11" therefore, lie over such primes of F of which degree divides 2¢—1.
Using (2), it follows that ¥ has, at least -

qzuwi +1—2g- g(‘lur—l}fz
2g—1

integral divisors of degree 2g--1. On the other hand, the Riemann~Roch
Theorem implies that a class of degree 2¢—1 hag dimension g. There ave,
precisely, (¢°—1) (g—1)"" integral divigors in such a elags ([4], p. 64).
Therefore, hiy is larger than one if
(3) (g—1) [g 7 +1—2¢-¢® D] > (29 —1) (¢ - 1).

Let

(4) 8(a9) = (4—1) [¢ +1—2g- "] - (29 1) (¢"—1).
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We observe
 8(4,1) =8(4—4) =0,
- 8(4, 2) = 3(50--32) > 0,
(5) _ 8(3,2) = 8(4—3¥3) < 0,
' 8(3,3) = 2(179—54¥/3) > 0,
82, 4) = 8(3 —8V2) < 0,
- 8(2, ) = 8(37—20¥2) > 0.

)
)

We, now, show that, as & function of g, 8(g, ¢) is inereaging, if
6) g=4, g>2; or ¢=3, g=3; or ¢=2, g=5.
We obtain from (4),

as - . .
(M Gy = =1 [ 2ng— 3¢ —ggqer=tm ] —
, —2(¢—-1)—(29—-1)¢'n q

= g(2ﬂ'—1){'2_fp(g’ g) +2s

where

8 T(gg) = (g—1) ¢* " 2lng—2(g—1)—2¢" ~2¢(¢g—1)Ing— -
—(2¢—1) ¢*Ing.
Considering it as a function of ¢, we have’

ar .
@ gy =@ 2 Ing —2(¢ - 1)Ing~2¢"Ing

>2(q—1) [@¥-VIng—2]lng i ¢33,
and .

aT |
E;_[2(°H+1)/21n2 —2- 282132 i g=2.

If any of the conditions (6) is satisfied, one sees easily from (8) ()
and (7) that 7'(q, ) and d7/dg are positive and that § iz an increaging
function. We see from (5), (4) and the observation preced_mg (3) that we
have proved the following

THEOREM 1. Let ' be a field of algebraic funciions of one variable of
genus g having a finite field with q elements as its ewact field of eonstants.
The class number of F is larger than owe if any of the following eonditions
i satisfied q=4,90>2;9=3,90=3;¢=2,9>=5.

T— Acta Arithmetica X¥.4,
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§ 3. Using the notation of [5], let ,
29
Lu) = 1+autaw' + ... + Bog W0 = n(l‘“wau)
A=

be the numerator of the zeta-function. Then,

{10) WO = a0k .. +au T et Ut

is invariant if we replace % by ¢*u~'. Using this funetional equation,
we abtain

: -1 02 =
sy = & Gyy1 = /el M S T Gy 1,

and, hence from (10),
(11) - L{w) = 1+autau’+ ... -+ auf+qa T
+ gt w0 - gt
The expression for the class number is
(12) k=LA =+ +al@ +1) + .+ galgTl) T 6,

We ghall ealeulate a,, ay, a5, 4, Which will suffice for the discussion
27

of the cases ¢ = 2,3, 4. Let 8, = 3 wj. Then {[8]),
A=1

(13) —8, = Y a(Ng—na),

dly
where N, #, denote, respectively, the number of primes of degree d of
P and K(x). Using the recursion formula ([10], p. 102) for §, in terms
of 8,...,8,_; and the elementary symmetric functions, we obtain
from (10) '

6 = — 8y,
- 88,
@, = g
(14) 8 —38,8,4 29,
: @y = — 3 .
| S—6S18, 88,8, +383 65,
@, = 54 .
Also, we have Dedekind’s formulae ([3]), '
g+1 i d=1,.
s e = iZq’y(i) it oa>1,
4 Y . "

icm
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where p{m) denotes the Mdbius funetion. From (13) and (15), we obtain
Ny =Ny—n =Ny —(g+1),
— 8, = N;-+2N,— (g2 +1),
—8; = N, +3N;,—(¢*+1),
— 8 = N+ 2N,-H 4N, —{¢*F 1}
The substitution of these values in {14} gives, after simplification
a, = N,—({¢+1),
24, = N7 —(2¢+1)N,+2¥,+2¢q,
(16) 6Ba, = N -3qN%4-(8¢q—~1) N, —6(g-+1)N,+ 6N, N,+ 6N,
240, = (4g—2) N, ~Ni+(2—40) N3+ (12 1+ 249} NV, -+ 1277 —
— (12 +244) NV, N, + 12NN, —24(¢+1) N, + 24N, N, + 24N,.
Substitution in (11) gives the numerator of the zeta-funetion for g = 2, 3, 4.
We return, now, to the study of algebraic function fields of clags nurmber
one. We remark that such a field, if its genus is different from zero, cannot -
have two primes of degree one, for, otherwige if 2, P, are two such primes,
the divisor P,P;* is principal (#) and [F: K{z)] =1, Now, we prove
THEOREM 2. Let F be a field of algebraic functions of one variable of

genus g having o finite field with ¢ elements as its exact field of consiants.
Let N, denote the number of primes of degree 4. Then

(1) q =3, ¢ = 2 = the olass number is larger than one;
(iiy ¢ =2,9 =2, Ny =0 = the dlass number is one iff N, =3;

(i) g =2,9g =2, N, =1 = the class number is ome iff N, = 2;

’

)
(iv) g = 2,9 =3 =the clazs number is one iff N, =0,N; =1;

(V) ¢ = 2,9 =4 = the class number is one 'LffN_1 =0 =N, N, =1.
Proof. (i) From (12) and (16), we obtain

— 6+ N+ N -2,
ho=10+4a,+a, = + 1; 1+ ~.
an o k=14 N3+ N,--2N, =8.

From (11) and (16), we have
NP —TN,+2N,+6
-2

Also, by the Riemann Hypothesis, the reciprocals of roots of L(u)
are 3Y%g+1 3126+ % and hence

(19) I{u) = (1 —32¢%10) (L — 3¢ Pry) x (1 — 3¢ %2q)) (1~ 326 "20)
= [1—2-3"2cos 6w+ 4] X [1 23" cos Byu + 3ut).

(18) L{uw) = 1-+(N,—4}u- w4 ... + 3Fut
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Comparing coefficients in (18) and (19), we obtain

(4—N,)3'
cosd, I copl, &= — %
NiE-TN,+2N,—6
coBf, 0088, == 91 .

Using (17), we see that, if the clags number is one, cosfy, co;@;ﬂ2
are roots of fhe quadratic polynomial :
(N, —4)312 1—4N,

R TR

fla) = or+

But,
[12 -1 —8-3Y]4 N, [2 3% —4]
12

Ji) =

which it always negative. Thus, f(#) has a root larger than one. This is
a eontradiction.
(i) As in (i), one obtaing the following class number formula

N4 N, 2N, —4
, 2 '
The condition for class number to be one is
NI+ N,+2N, = 6.
(i), (iil) are obvious from this equation.
(iv) The class number formula obtained from (12) and (16) is
— 10N, 13N} -+ ¥ 6N, N, + 6.,
p .

Thus, the class number iy one if

Ny=1 for XN, =0,

N2+.N3=2 fOI‘ N]_:l»

‘We shall, now, show that the cage N, = 1 ig not possible. As in (i),

h:

ho—

comparing coetficients in two expressions for L{w), we obtain for ¥, = 1,

Vo
2‘30? by = *é‘"i:
No—6
8 ki
(3N, —10)/2
32 '

-
Z oo, cosf, =

c050,¢086, cos b, =

icm
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Thus, cosf;, codby, coslb, are roots of the cubic polynomial

V2  N,—6 10— 3NWV2

o) = o ——-ofit—¢ 32
But,
_ L4 -3V 2N,
) = (8 61/2_)—,?524 3¥V2) N, <o,

which implies that f(z) has a root larger than one. A contradiction.
{(v) For ¢ =2, g = 4, the clags number formula is

24h = N1+ 6N 13N} 18N, — 36N, 412N, N,+ 12N+ 12NN, |-
+24N, N, +24¥,.
Tor our discussion, it will be convenient to distinguish the two cases

Ni=0,%, =1. The necessary and sulficient condition for the class
number to be one is

Ni—8N,+2N, =2 i XN =
(20)

-NZ—N +2N,L2N, =4 if N, =

Ag in (i), comparing coefficients of w, W, wt wt in two ex;pressmns
for L{%), we obtain the following polynomial -

fla) ="+ N'lig 3 %—8 22 ay — by a ay— 40, +8

22 8 16V2 64

of which cosf,, j = 1,2, 3,4 are the roots. (Here ¥36™7 J == 1,2, 3,4,
are the reciprocals of the rootg of L(u).)
Distinguishing the two cased, we obtain using (16) and (20),

3V2 N6 N —3N,+18 2 6N,

—_ d - 3 Fd 5 | L3 . N —
) = 1 -} B B2 s & T 1f‘ . =10
and :

V2  N,—8 N.—2N,+12  10—3N,—3¥.
S e 2 2 3 2 Al 3
flo) = 5 @? - 5 m‘—;— /5 o+ o1
' S it N, =1.
I:E ;Nl :1, . .
) = (10— 8V2) 4+ N, (5 — 4V3) = N, (4V2 --6) —0

64
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Therefore, in this case the class number iz not one, because the funetion
f(2) hag a root larger than 1.
If ¥, =90,
(17 —12V2)+ N, (8 — 6V2) + Ny(2V2 —3)
64 )

=

We see f(1) << 0, unless ¥, = 0 = ¥, in which case f(1) is positive. Thus,
N, =0 =N; iz 2 necessary condition for % = 1. Together with (20),
which is a necessary and sufficient condition, we see that ¥, = N, = 0,
N, = 1 i8 a necessary and sufficient condition. In this case,

Lu) =1 —3u+ 25+ u* 4 Bu® — 2447 - 164°,
We do not have an example of a function field for which this is the numera-
tor of the zeta-fnnction.

§ 4. Quadratic extensions. MacRae [7] hag determined all quadratic

extensions which have & prime divisor of degree one and clags number

one. What about quadratic extengions with clags number one which have
no prime divigor of degree one ¥ We remark that a congruence function
field of genus one has necessarily a prime of degree one. Therefore, from
- our digcussion of the last two sections, it follows that a quadratic function
field /K having no prime divisor of degree one has class number one iff
g=2,9=2,N, =3 We shall discuss this case systematically, using,
without explicit reference, some results from [6] concerning the arithmetic
of eyclic extensions.
Agyume hyp = 1. Let P be a prime of degree 2. Then, P is in the cano-
nieal class, the only clags of degree 2. Using the same notation as in [4],
we have by the Riemann—Roch Theorem

P™ =dm L(P™ = 2n—1)+1 if
HPY = dim L(PY) = 2.

n >4,

Let #e L(P ) such that {1, s} is a basis of L(P™). Then {1, @, v} is
5 basis of L(P™%). Considering that I{P™% =15, we see that there exists
t in L(P7?) such that {1, », & o, ¢} is a basis of L(P~). Necessarily, ¢ is
not in K (x). Since I(P~%) = 11, the following 12 elements of L(P~%) must
be linearly dependent '

1, » o, 2% o, 2, of wt, 2% 2%, 4, O

We have [F: K(#)] == 6. Therefore, there exist polynomials D (z),
C{z) in K[z] such that deg D () = 6, deg O(#) < 3 and '

(21) C 24Ot = Diw).

icm
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Further, (=) #{] for otherwise gp = 0.
Now, selting t* = $C (%)™, we obtain from (21),

(22) £ 4 = D) 0(z) 2,
and F = K (z,t%). Using N, = 0, N, = 3, we see that no prime of degree
one or two is a zero or a pole of D{(z)C(x)™* in K(z). Thus, degD(»)

= deg € (z)* and () is rreducible of degree 3. There exists d(z) in K {»]
such that

(23) D(@) +D(z) = d(z)C(m).
Setting ¥ = "4+ D{#)*C ()", we obtain, from (22) and (23),
(24} . Y24+ ¥ = hiz)C(z)™,

where, h{z) = d(»)+ D(z)". As before, we conclude that h(z) is irredueible
polynomial of degree 3. There are two possibilities for (24), '
P A

ot Lt

: @2t 1
Y’+¥Y =—
* o +ot1
giving iscrnorphic fields. It is easily checked that for F' = K{z, Y), 45 =2,
N, =0, N, = 3 and, hence, the class number is one.

§ 5. Examples. We have shown in §3 that a function field F/K of
genus 3 has class number one iff ¢ =2 = [K|, N, = 0 and N, = 1. Using
the same notation as in § 3, the cubie polynomial of which cosfy, cosfs,
cosf, are roots, then reduces to

V8 | 2N,-8 | (13—3N,)V2
flo) =0’ —— @t =g ¥ 33 :

This gives
(16 —11Y2)+ (4 —3V2) N,
32 -
which is negative' if N, > 2. Thus, by =1 implies N, =0 or 1.
We give, now, two examples to demonstrate that each of these cases
does oceur. .
TxAMPLE 1. Let the defining equation of F = K(w, ¥) be

f =

Yttt + Y+ (2*+241) = 0

Then, #/K () is separable extension of degree 4. The pole of K (z) is
tame in F. Tn particular, it is nnramified. Further, {1, ¥, ¥* Y% is
integral basis and (2°+x--1)* is the discriminant of F/K (#). Allthese
facts are eagily verified. From the Riemaun-Hurwitz genus formula,
it follows that gy = 3. Uonsidering that {1, ¥, ¥%, ¥°} is integral bagis,
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‘one verifies withont difficulty that &, = 0 and ¥, = ¥, = 1. The numer-
ator of the zeta-funetion is ‘

L{u) = 1—3u+3u"—2u® + 6u* — 124" + 8ub.
Exavreir 2. Lt F = Kz, Yj be defined by the eqﬁa:tion
Ve + @+ P +E )Y Hat+o+1) =9.

Again, the pole of & in K (#) is tame in F and {1, ¥, ¥% ¥} is integral
basis of /K (z). The discriminant iy (2°+#°+1)* and, hence, the genus
is 3. Reduction modulo primes of A (#) of degree 1, 2 and 3 shows that
N, =0=2XN, and ¥, = 1. The numerator of the zeta-function is

L{u) = 1 —3u-+ 207 - u* + 4u’ — 1205 - 84S,

Remark. Following the procedure of § 4, one could determine ail

fields of genus 3 with class number one. However, we do not pursue this

question here.
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