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1. Introduction. Let % = GF(g) be the finite field of order ¢ = p>.
For fixed polynomials f(z), ¢(») in k[z], the author proved in [1} an
estimate, in terms of the Galois group of f(x)—14g(x), { an indeterminate,
over k(f), for the number of polynomials of the form f(z)— ag(®) (a ek}

~ whieh factorise into irreducible polynomials in %[x] of prescribed degree.

Tn a similar way, if (fi, §1); -+ (foy §s) are s fixed polypomial pairs in
k[z], an estimate, in terms of the Galois group of {fi—tg.) -.. (Fs—19,);
for the number of « in % for which f;— ag; has prescribed factorisation
simultaneously for each ¢ = 1,..., s can be stated (Section 2). This paper -
containg some of the consequences of this result.

In particular, if s = 2, say, it is shown that the elements a in % for
which f,—og, has certain prescribed factorisation need not be uniformly
distributed among the elements « in &k for which f,— ag, also has prescribed
factorisation even when fi/g, and f/g, are not functionally related in
any way.

2. Notation and general results. If E is a Galois extension of & field
B, then G(F,#) will denote the Galcis group of ¥ over F.

Let @ (x)(=Q(x, %) bea geparable polynomial over k(t) (¢ an indeter-
minate) of degree n with splitting field X and Galois group ¢ = G (K, k(2)).
Let ¥ ( = GF(¢) for some d) be the algebraic closure of ¥ in K. For
any subset # of G, H* will denote the subset of elements in H whose
tixed field in K confains no element of &' not already in k. The first lemma
follows from Lemma 1 of [1].

Levwma 1. If H is a subgroup of &, then
B = (p(d)/d)IH],

where @ is Fuler's function.

Now regard @ as a group of permutations of the roots of @ (#) =0,
i.e. as a subgroup of §,, the symmetric group on » letters. For any cycle
pattern A of 8,, put @ = {o<G having eyele pattern 1}. Also, for any
unramified first degree prime t— « in k(f), let A (a) be the Artin gymbol
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for t—a, a unigue conjugacy clags in G. Then the proof of Theorem 1

in Section 4 of [1] yields Lemma 2 below. In fact, there we assuined that
Q@) = f(@)—tg(2) with f, ¢ in %k[#], but no wse of this fact was made
in proving the assertion of the theorem, except that the number of firgt
degree ramified primes in K was < (n!)%
Lievnca 2. If K contains at most T (= 1(n)) first degree ramified primes,
then the number of o in k such that A(a) has eycle patiorn A 48
i}
6]
where the implied constant depends only on w and 1.
Notes. (i) I is bounded by a constant depending only on # and
the degree of @ in 1
(ii) Recall that Lemma 2 is estabhbhed by & method which, in part,
follows a section of the proof of the Cebotarev Density Theorem in the
algebraic number field case. As sbafed, it is sufficient for our purposes,
but M. Fried has informed the author (written communication) that by
following the complete proof of the Cebotarev theorem, we can improve

Q"‘O(qm)r

the asgertion of Lemma 2 to yield an estimate for the number of « in %

with the same A (a).

From now on we shall let »{z) = f{w)/g(x} (more generally, #;(x)
= f, () fg; (@) for any subscript 4) be EL rational Tunetion in %(2) with f, ¢
relatively prime, non-zero polynomials, not both constant, such that

r(2) # #(a?) for any other rational function # in A(#). (Thus all exten--

sions considered are separable.) The degree of r(z){= deg#) iz max(degf,

degg).
NOW specialise the earlier diseussion to the case in which Q (=, )

n (fi(m)——tjl(m)) where the #, = f,/g,;, ¢ = 1

=1
tions with the above conventions. Then n o= 2 degr,.
i=1 ‘
hag a cycle pattern which may be written as a produet A, ...
A; permutes the roots of f(#)-—1tg,(2) =0, 4 =1, ..., ¢
For any polynomial i (x) of degree m in k[x], we shall say that )
hag cycle pattern A =14, ..., m* if, in the prime factorisation of 7(w)
in k(«), there are precisely o, itreducible polynomials of degree d, 4 =1, ...
..y . Ag in [1], we shall identify corresponding cycle patterns of poly-
nontialg and &utomorp]_:xism& The connection between the two is apparent
from the following extension of Lemumna 5 of [1]: The proof is- exactly
similar and is omitted. ‘
Lmwrd 3. Suppose that f, (%) — ag, (@) (aek) i3 sguare-free, i = 1, ..., s.
Then 4t has cycle patlern Ay, for each + = 1, ..., s, if and only if A (o) = GF,
where A = A, ... A,. : : o

, 8, are rational iunc«
Further any o<

As; where
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As remarked in the proof of Theorem 5 in [1], Lemma 3 can be ex-
tended to assert that if t— a is ramified in K and we let 4 (a) denote any
of the (not now unique) conjugacy classes of & possessing the defining
property of the Artin symbol then 7;(@) (1 <4< s) takes the value aek
for some mek if any oed(a) tixes some root of f;(z)—1tg;(x) = 0.

From Lemmas 2 and 3 (with [ = (»!)® in Lemma 2), we obfain im-
mediately the following extension of Theorem 1 of [1].

TeeoREM 1. With the above notation and conventions, m,(r(; ..., 7y, 4),
whers L = Ay ... Ay, the number of a in k for which fi{z)— ag,(x) has eycle
patiers Ay, for each © =1, _..,8, is given by :

. I }E 1/2
s?s; g) = ‘G*J Q+O(q ),

Tp Py ee

where the implied constant depends only on .

3. Uniform distribution. For given rational functions »,,...,7, and
cycle pattern 1 = 4, ... 4, we wish to compare =;(ry, ..., ., §) with the
individeal m:;_i(ri, ¢), e =1,...,8 using the estimates of Thecrem 1.
Tor wniform distribution for i, we require :

= {ﬁ%“’v g)}qHJr o{g),
i=1 :

for fixed n. However, this need not ocenr. To investigate this phenomenon-
we pubt ¢ = 2 in Theorem 1 for simphcity. Further, we shall use the sub,
seript 4 (4 =1,2) in &, &;, ete. fo denote_the gituation described in
Theorem 1 Wlth Q = fi—tg,1 =1,

Then certainly ¢ is a subgroup of the direct produet & X &,. Further,
if 9y, ry are uniformly distributed for each 2 = 2,2,, then it is clear from
Theorem 1 that, for large ¢, we must have

(38.1) & = G %Gy,

%(”1; (AR "V's:n Q)

and, conversely, the truth of (3.1) implies that »,, r, are uniformly distri-

buted for all 1. However, (3.1) is equivalent to the two statements

(3.2) G = G]_XGE
and
(3.3) Bo=ly(ky) and By by =k, e B o k@K,

using tensor product notation. In fact, by (}a-lois'theory,

_ GG, = G(K, K,) =~ G(K,, K, n K,),
so that (3.2) is equivalent to the fact that ¢, ~ &(K,, K, n K,) which,
in turn, is the same as :

(3.4) Hyn K, =k{), ie KoK @k,



. b6 Stephen D. Cohen

gince K = K,(H,). To summarise, statement (3.1} is equivalent to sha-
tements. (3.3) and (3.4).

Of course, (3.4) never holds when #,, r, are a composile pair, meaning
that there exist rational functions r, #5, 7y with degr > 1 such thatr, = »(ry)
and ry = r{r,). Moreover, (3.4) may quite easily remain false e¢ven when
1, 7 are not a composite pair. For example, if ¢ is odd, take #(s) to
be the quartic polynomial #* - an?--ba (b £ 0) and r,(z) to be the function
{(2*+ Boa?--16atx— 64b7)/642, so that fi(»)—1ig,(x) is the cubic resolvent
of 7 (z)—1. Hence, in fact, K, n K, = K,. Forthermore, it iz possible

for (3.4) to be true and yet (3.3) and-hence (3.1} to be false (see example
helow).

EXAMPLE. As a concrebe example, we consider a polynomial 7, which
is such that the a in % for which f;— eg, have a given cycle pattern are
not uniformly distributed among the quadratic 1é31dues in %k Wea ghall
ignore error terms throughout. Thus assume q1is odd and put r,(») = a*+
4274 27 and 7, 2{#) = #%, so that r{, r, are not a composite pair. Let alg)
(respectively, B(q)) be the number of quadratic residues « in % for which
71 (#)— ais irreducible (respectively, a is a value ot the function », (), @ <k).
Then, since Gy = §, and ¢ = 8,, the truth of (3.1) would imply that
a(g) = (1/8)q, b(g) = (5/16)q. But notice that K, == k(y), where y* =t

and  diseriminant (r,(#)—1) = —2668(t—27)2 = (166(t—27)y)*, -where
12 = —1, 30 that 187(#—27)y el .
Case (i). ¢ = 1(mod4). Here iek so that K, n K, = K,. In fact

G = G" is that subset of G, x@, given by

G* = {0y0,¢8, X85! 0y, 0, are both even or both odd}.

It follows that a{g) =0 and b(g) = (3/8)¢

Cage (ii). ¢ = —1(mod4). Here i¢k, I, or K, but i<k. Hence (3.4)
(and so (3.2)) holds but (3.3) (and so (3.1)) is false, since k' = k(i)
7 & (k,) =& In this cage,

£ .
G" = {o100¢8,%8,: one of oy, 0, is 0dd and one even},

80 that a{q) = 1q = b(g).

Finally, note that if r, (#) = — (2*+42°+27), then a similar situation
to that described for g =1(mod4} in the above example prevails for
all ¢ with ¢ odd. : ‘

4. The value set of a function. Let k¥ = &k u {oc}. For any function
r = flgek{z), it is convenient to extend s to be & function from At — k¥
by putiing '

g(0) =0, Ock
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and
o, it degf>degyg,
afb, if degf == degg = m and
7o) = m w
f=ar™+..., g = ba™...,
0, if  degf< degyg.

For any subset 4 of kT, #(r, A), the value sel of # in A is the set of non-
infinite values of »(f) for B in 4, ie. F(r, A) = {ack: Hek™ with
r(f) = a}.

In this sectiom, we extend the results of Section 5 of [1] by investi-
gating. to what extent a function is determined by £(r, k7). (In [1], we-
considered the consequences of A (¢, k) = &k = .#(z, k).) Now, of course,
it v(m) is a permudation funcion n kT, for which £, k") =k (e.g. if”
r(z) = (x4 b)/(ex+d), ad—be #0), then for any functions r;, ¥,
F(ry(ra), k) € Flry(r), kT). Conversely, we may ask: does
(4.1} Ly, B S Iy, B7)
imply that, for some functions r,rs, r, with » a permutation function,.

vy = tg(r)?

It turns out, that instead of {4.1), it is more convenient to disenss.

“the slightly weaker condition

(4.3) I B € £, K,

where for any A < k7, aes (¢, A) if and only if there exists fed with
r{#) = o« and f not a repeated root of r{(a) = «, Le. #'(f) = 0. Certainly
(4.1) implies (4.3). The reverse implication may or may not be true, al-
though in the case of v a polynomial and ¢ = p, Fried [2] has conjectured.
that, for large p,

(4.4) S (r, k)=S0, k) and

I (e, k) € F(ry, B) = Fry, k) = F(ra, k).

We first find a gufficient condition for (4.3) to hold similar to that.
of Fried ([2], p. 100} in his discussion of integral polynomials, although
the method of proof ig different. Let the situation of Section 3 (with ¢ == 2)-
prevail and let the roots of fi—1g, and f,—1fy, in K be y,,..., ¥, and
21y ey By Yespectively, where n,; = degyy, t=1,2 go that % = n,4+n,..

TanoREM 2. In the described notation, condition (4.3) holds if

Tig .
@s UWMkasq¢M¢@m
‘ i
while for each n =1,2,3,
if g > ¢ then (4.3) 1mpl’bes (4_5).

, there ewists a constant ¢ = o(n) such that:
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Proof. The fact that (4.5) implies (4.3) follows immediately from
Lemma 3 and the subsequent remark. . '

Suppose now that (4.3) holds. Then £~ (r, k) n F(ry, b1) = A~ (v, k)
and so since |7 (r;, BT)—# 7 (r;, k)| < %, by Theorem 1, for some d = a(n),
we have '

ny Mg ny
U U, ks &) |6 (B, by
-(4:.6) i=1 §=1 - . f=1 - g (nglm,
167 [Gh
We shall show later that
o ' iy ks
wn IQIG*(KU ko) IHG* (&, By
1G] - 6]

Since ¢ < 8,, so that @7 < n!, it follows from (4.6) and (4.7) tha,
it g > ¢(n) = d?(n!)?, then the left side of (4.6) is actually 0 and so

iy fg ’ ny
{4.8) L:Jl L=_JIG*(I(, k(y, ) = HG*(K“ k()

since one is a subset of the other, vet both contain the same nunmber
of elements. Since (4.8) is equivalent to (4.5), it remains to prove (+.7).
To do this, it is clearly sufficient to show that every automorphism in
&) can be extended in the same number of ways to an automorphism
of @ ‘

Let o0ec6) and denote some fixed extension of o to @ algo by o.
Then the set of all extensions of ¢ to & is the coset oG (K, K,). Put K,
= K, (¥}, a normal extension of ¥,. Then, by Galois theory, we have

G(E, K6 (K, K}) = G(K,, K,) o2 G(¥, k),

the lagt group being cyclic of order e, say Henee there exigts ¢“¢ &, in

e—1
G(K, K;) such that oG(E,I,) = |J p'o@ (K, ) and pla) = o« for
=0 .
all ack’ = GF (1) where k| = GF(g™). Also since oe”, o(a) = af for
all aek’, where (j,dy) = 1. It follows that

e—1

49 cGE, E)n 6 = |

: =0
G+t edy)=1

o'e QK , KL

.Now sinee (j, dy) = 1, then (j+dyi, ed,) = 1 < (j+dyé, ¢,) = 1 where ¢
i3 that part of 6 relatively prime to d;. Ience, since (4, e,) = 1, the
equation (j-d,7, ;) = 1 has precisely p(e;) distinet solutions for ¢ (mod e,)
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and so precisely o (e,)efe, distinet solutions (mode). Consequently, the
right side of (4.9) comfaing the same number (namely, ¢(e,)ele;) of cosets
of (I, K') for all ¢<G7 and (4.7) follows. The proof is complete.

Note. By a simple modification of the argument deducing (4.7)

from (4.5), it can be proved that for any number I =i(n) = 0 and any §

with 0« § < 1, then there exists a constant b == b(n, I, 8) such that
if ¢ >b and
|77 (12, B) = F (15, B < g0

then (4.5) holds and therefore (4.3) is valid. This goes part of the way
to proving Conjecture 2 of [2]. The fruth of (4.4) requires to be established
to comiplete the proof. _

We shall employ Theorem 2 in investigating whether (4.2) and (4.3)
are equivalent. In this regard our description is complete only if it is
known that A(r,, ) = g (y)fe(®)—fi(¥)g:(®) is irreducible in k[w, y].
This is ecertainly false if »,,r, are a composite pair. However, il »,, 7,
are not a composite pair then, in general, we wonld expect A (v, r,) to
be irredueible in k[, ¥] (a5 in- the rational polynomial case, see [5]).
Of course, if {4.2) holds and degr, >1, then A(r,, #,) is reducible and
{4.1) holds. First we state a lemma which generalises Lemma 6 of 1],
which is recovered by putting r,(2) = 2. In its statement, ¥ is any root
of ri(x) =t and 2;, ..., 2,, (m = n,) are all the roots of 7,(z) = ¢, while,
for i =1, ..., m, :

& (K, b(y, ) = {seG(K, k(y, )} the largest subfield of ¥ fixed
' ' by o is Bly,2) n &}

Ly 4. Siotements (1) and {ii) below are cquivalent.

(1) (B{IY). Af{ry,7s) has no absolutely irreducible faclors in k{w,y, ),
where vy (2) = r{(y), except precisely I factors, linear in 2. (Note that A(r,, r,)
always has at least one linear factor in k(x, ¥, 2), namely, £—z.)

(ii) Each of the sets G (K, k{y, 2)),4 = 1, ..., m, is equal to precisely
1—1 others, while the distinct ones are pairwise disjoind.

If, in addition, condition C(I) holds, i.e. A(ry, vs) is & product of I
irreducible factors of the same degree in k[x, yl, then (4.5) holds if amd,
when 1 = 1, only if either (1) or (i) holds (with the same 1) ond for all <,
1<ism

{4.10} : ku,z)n k' = k.

Proof. The proof that (i) and (i) are equivalent iz similar to the
proof of the corresponding part of Lemma 6 in [1] and is omitted. -

For the temainder of the proof agsume that C(I) holds. In this case,
ifl= i, the k(y, 2,4 =1,..., m, are all isomorphic so that (4.1¢) hdlds
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for all i =1, ..., m, if and only if it holds for one ¢ (gm). Also note
that (4.5) is equivalent to (4.8) and hence o

m
(4.11) & (K? k(y)) = J G*(K: E(y, 21;)),

: i=1

which, in particular, implies that (4.10) holds for some % (
therefore assume from now on that, for all ¢ =1,.
and @ (K, k{y, ) = " (K, k(y, 2)).

By condition C{l), deg[k(y, 2;):

< m). We may
.-y, (4.10) holds

k(y)] == mfl, 4 =1,...,m, so that
|G(K k(y, 2))| ~ZIG(I€ T(y))|/m. Without loss of genemhty, let the
distinet & (&, k(y,2)),4 =1,...,m, be given by 4 =1,...,h Then
uging the above 1emarks and Lemma. 1, we have

: n h
(4.12) " [gG*(K,k(y,z@.))] ZG (K, %y, =)

f=

Jurt

J;"

(p (/a6 (K, By, 2,)

— Gapmlpt@ia (5, k)|
= (Wfm)|6" (K, B{y)-

-«
,_.

Now condition (ii) implies that & = mfl and that equality holds throughout
- (412}, This means that (4.11) is valid. Conversely, let I = 1 and (4.11)
hold. Then, in fact, we must have & = m and equality in (4.12). Hence (ii)
is valid. The proof is complete.

We shall call {(r,,r,} (in that order) an l-emceptional pair over k if
conditions B(I), C(I) and (4.18) are satisfied. The following theorem now
follows immediztely -from Theorem 2 and Lemma 4.

TrrorEM 3. Supposethat A (r,, r,) is irveducible in klxz, y]. If g > e(n)
(as defined in Theorem 2), then (4.3) implies that (ry, ry) is o 1-axcepiional
pair over k. '

O’omea*sely,. if (v, 72} 8 an l-ewceptional pair over &, then (4.3) holds.
) Exayere 1. Here we give a non-trivial example of a 1-exceptional
pair, Put.rl(m) = g% 1y (@) = (#°—32—2)/(82+2), so that r, and r, are
not functionally related in any way. Then, if ».(y) = ry(z), we have
A(ryy 1) = (m3“3(y2+1)w“2(?/2+1))1 in k(z,y),
= (#—2)(2*+ 2 (20%/(32-+ 2) W in (2, y,e),
= (w—-—z)(m+ la— (I/3yz/2 (2-+1) ))(m+ %z—f— (I/SJz/ z+1)))
in Tc(m,i ) &, V3) = K.

Now it is e&.sy to show that k(z, 1) n & (1/3) =k and hengs if 1/3 ¢k, i.0.
il g = iﬁ(modlz then (wl, ry) i8 & 1-exceptional pair over k and (4.3)
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holds. In fact, S (r,, &) containg ail guadratic residues in %. Of course,
thiz fact could have been established in other ways.

FxAMpLE 2. Thig example nuges the criterion of Theorem 3 to con-
struet 2 simple example of a pair ry; v, with A4 (r,, #,} redueible but with
F(r, k) = F(re, k).

Put r, = 28 », = #* and ¢ = —1(12} so that % contains no primitive
4th or 6th roots of unity. Then {z° o*) and (2% 2°) are both 2-exceptional
pairs since k(y,2) n &' =k, where ¢* = +2%

wt— ot = (@) (2%,

(413) a"—¢f = (e—y) e+ )@+ yat+y?) (@7 +yet Y,
 and
(4.14) gt — 2t = (@ 2) (B4 2) (@024 2%),

(the quadratic factors of (4.13) and (4.14) not being absclutely irreducible
in k(x, 9, =2)). In fact, '

T, k) = A (k) = F (2% k).
We remark, finally, that it would be of interest to know of any pair
(r., 7,) satisfying (4.3) that did not also satisfy (4.2) nor was l-exceptional

for any 1.

5. Remarks. For the first remark the author wishes to thank M.
Fried. We recall that after Lemma 2 we specialised from a general poly-

. &
.normial Q (&, 1) to & particular one, namely H (f;— tg;). In fact, with certain

fairly obvious modifications, we could hzwe pursued the discussion with
arbitrary polynomials F,(z, t) instead of fi(z)—1tg,{#), i =1, ..., 8 Note,
however, that if this is dope then, in general, the polynomials Fimw, a)
are not distincet for all « in %.

Next we remark that gince the publication of [1], some material,
idue to Fried and related to that of [1] and the present paper has also
appeared. In particular, [3] and [4]. Section 1 eontain a discussion of
the possible form of exceptional functions r{xz) (i.e. functions #{z) for
which (r(2), #) is 1-exceptional).

Finally, we correct two errors in [1]. For the words “ig irreducible”
in the 20th and last lines of p. 258 and the 13th line down of p. 263
substitute “hasno zero in %”. (This brings these statements into line with
assertion 29 of Theorem 2 of [4].) For the expression “(n— degg)(n—1)"
in the addendum on p. 270 read “n(n—1)/(n— degg)”.
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Fixpunktmannigfaltigkeiten symplektischer Matrizen.

von

B. Stmixre (Erlangen)

EINLEITUNG

Nach H. Cartan besitzt der Quotientenranm $* = H"/Sp(», Z), wo

- H" den. Siegel’schen Halbraum bezeichnet, die Struktur einer projektiven.

algebraischen Mannigfaltigkeit iiber dem komplexen Zahlkdrper, wenn.
man $” noch in gewisser Weise ,kompakfifiziert”. Dabei sind die Fix-
punkte von Modulsubstitutionen singulire Punkte der Mannigfaltigkeit.
Es ist daher wichtig, diese Fixpunkte zu kennen.
Modularkorrespondenzen sind gewisse mehrdeutige, Abblldungen von
" aunf sich, welche durch allgemeinere Matrizen M mit Mg M = P

(reZ,r >0) vermittelt werden. Auch fiir diese ist die Kenntnis ihrer
PFixpunkte wichtig.

Nach: ein paar Vorbereitungen in § 1 studieren wir in § 2 die Fizpunkt-
mannigfaltigheiten §,,. von Elementen MeSp(n, B} im Slegel’schen
Halbrawim H™:

(1) zeggM -MZ) =2

(M(2) S (4Z+B)-(OZ--D), wenn M = (g f;)).
Man kann M mit einer reellen Zahl multiplizieren und alzgo in der
etwas allgemeineren Form annehmen:

(2) MLJ-M =rJ;  reR, r>>0.

Unger Interesse richtet sich dabel auf zweierlei: Einerseits auf die Gesta,lt
der auftretenden M, anderseitsanf die Frage nach der Menge der Fixpunkte
zu diesem M. _

Fixpunkte besitzt ein M, dag Losung von (2) ist, genau dann, wenn
seine Eigenwerte simtlich vom absoluten Betrag [l/ﬂ sind. (Lemma 3
und 4). Die Losangsmenge J,, der Gleichung 1 zu einem festen M ist
eine komplexe Mannigfaltigkeit, deren Dimension m einfach beshimmt
werden kann (Satz 2). Nulldimensionale Fixpunktmannigfaltigkeiten



