196 L, E. Dickson,

ninth powers. Hence by Lemma 30, all in K are represented by [6, 54].
Thus all in (E, E +2-2%) are represented by [7, 54]. The values of
Gy, ..., Gy are 38,13, 7, 5, 4, 3, 2, 2. Thus the R; are 0, 1, 1, 0, 1, 0,
0 and the Q: are 19, 6, 3, 2,2, 1, 1, 1, Hence by Lemma 6 with m==10,
all in (E, L, = E 4 10%) are represented by [14, 89]. Here F, = [36, 256],
We may take k=86 (since ky= 56 and 3k—2=256), z=, 0000105,
We get—log b, <(3.363842 7%, log Cy <, 4890613 1%, log Ci[c < 3.4347593 1%,
— J—. 0241104, Log P ==15.82892n%, Log N = 1582907, The final
factor in (10) is . 1107101, Hence ¢ T = 136. Take T=22, £ = 114.
Then [T -+ 14, t -} 89] = [36, 203] <F, .

In Lemma 8, f=g=1, d=2, and all in (2"qg, 2"9-|~2") are re-
presented by [3, 141]. By Lemma 6 with m=7 E=2"q, all (2"¢,
2" g 7% are represented by [8, 173] and hence by Fy.

This proves Theorem 2. The proof of Theorem 4 is omitted.

16, For a=n, n=11, we get Log N=. 5335973 n’,

17. Case a=4, We take V'=y =0 since (25) and (28) are then
positive, Take m=n--3. We omit the final term in Lemma 27, In
(29), we decrease each R; to 0 and get £'=4Z-+YG; 437,

When n=11, we get Z=151, X<(93, E'<(734. The limits (32}
are . 35840 and . 59546. But 4 (11) lies between them.

When =12, Z=171, X ==110, £'=831. The limits (32) are
. 20288 and . 76349, But d (12) and d (13) lie between them.

When n=14, Z=213, .:-‘101'= 130, %Ri= 25, and (29) gives £ = 994,

The limits (32) are . 060669 and .921025. For 15=n:=28, d(n) lies
between them. The same holds for #==29 and the new limits.

Let n=14. For E=5"4-5"6"-4 7" all integers in K=(E, E 4 2")
are sums of 107947 14-th powers.®) Hence by Lemma 30, all in K
are represented by [19, 271], Hence all in (£, E-- @ 2"} are represen-
ted by [22, 271]. Then by Lemma 6, all in (E, E-~17") are represen-
ted by [64,370]. Since v==1/n to the sixth decimal place, we may use
Z==213 as above, Take T=0. Then [T-64, 370--{] = [64, 583]
= [64, 4151], viz,, (23) for Y=y=2, By using an interval longer than
2" and the paper cited, we reach (72) and hence retain Y==0.

(Received 5 August, 1936,

%) Dickson, Monalshefte Math, Phys., vol. 43 (1936), p. 393, tablette A =0,
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On Waring’s problem for fourth and higher
powers.

By

T. Estermann (London).

1. Introduction,

Let k£ be a positive integer. Then G (k) denotes the least number
§ such that every sufficiently large integer is a sum of s &2-th powers
(of positive integers). This notation was introduced by Hardy and Litt-
lewood!) and is now generally accepted. In my paper “Proof that eve-
ry large integer is a sum of seventeen biquadrates”?), hereafter quo-
ted as I, I proved (simultaneously with Davenport and Heilbronn %) that
G (4) =17, and conjectured that the same method could be applied to
the case £ >4 with the following result:

Let
6 moz[l’e~2llog2+logw~z)——1ogk]
log k — log (£ — 1)
and
(2) §=2my -7 [2t1 (k—2) (1 — k—1)m+] |

where [x] denotes the integral part of x. Then
(3) Gk)=<s.

The object of the present paper is to prove this conjecture,
When k=4, it follows from (1) and (2) that s=17, so that (3) is

) Some problems of partitio numerorum I, Géttinger Nachrichten (1920), 33—54,
?) Proc, London Math, Soc, (2), 41 (1936), 126—142.
) Ibid. 143150,
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true in this case, but it is no easier to prove (3} for 2°>4 than on the
wider assumption

(4) k=4,

which will be made throughout this paper.

2. Notation,

In what follows, %4 m, and r are integers; /, 7, ¢, and v are po-
sitive integers; £, x, y, ©, and & are real numbers; u is a number greater
than 1,

8 is a sufficiently small positive number, depending only on &
The precise meaning of “sufficiently small* will become clear from the
context, ) ‘

e is, as usual, a positive number which may be taken as small as
we please.

By, By, ..., C, Cy, are suitable (sufficiently large) positive num-
bers, the B’s depending at most on %, the C's at most on % and =

3. In order to prove (3), it is sufficient to show that, if 7 is large
enough, then the equation

S

(5) . Z rf=n

v=1

has at least one solution in positive integers ry, ry, ... 5. To this
end, I shall obtain an asymptotic formula for the number of those so-
lutions of (5) which satisfy the inequalities

(6) nile=n = py <tk (v=1,2),

1
M mSnlin @=2m+41,2m+42 m=1,2 .., m)
and

(8) to < Umep  (@=2my-+3, 2m,--4, 2my~4-5, 2 my-6),
where

(9) Uy = pF~ A=Y

These inequalities do not restrict ry for 2m,4 17
ly implies
(10) ry < nttk,

4 Iput (cf I 1)

=8, but (5) clear-

(11) £ = el

icm°®
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IOk

(12) f@ u)=) e,

l:
(13) g0 )= j et gy,

0
4 '3

(14) Sng=)"&"",

(=1
(15) Ag= ‘1""2’ Shabg™™,

h

where the accent stands for the two conditions 0< 2 =g and

(16) (k) =1,
the latter of which will be assumed throughout this paper, and
(e
(17) S= Z Ag.
=1
5, We have
(18) | Sng | = Byg—*

(Hardy and Littlewood?), Lemma 3), and
it easily follows from (13) that

(19) | (9 1) | = min (# By |0 |~Y) = By (w=* [ &])71E.
6, If

(20) 0 —hig-+?

and

(21) =t | Y | SqtetRE,

then

(22) | FO, ) — Sioq g (1) | = Cr g

This is a straightforward generalization of I, (2, 71).
7. If & and © are such that the conditions (16), (20), and
(23 g= |3 ] S gt

are not simultaneously satisfied by any values of %, ¢, and ¥, then

1) Some problems of partitio numerorum IV, Math. Zeitschrift, 12 (1922), 161—188,
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(24 | F(O,1) | < Cyut—2"e,

Proof. It is known that, corresponding to any V== 1, there exist
numbers %, ¢, and ¥ such that

O=hlg-+¥ (hq)=1, g=y, and |} =(g0)".
In particular, we can choose %, ¢, and ¥ so that (20) and (16} hold and

(25) g ubtitE | S| Eg-tatohes,

Then, since (23) does not hold, at least one of the following three con-

ditions is satisfied:

() wi= < g b,
(1) e g =t
(iii) g=us, |9]> gtk
Suppose, first, that (i) holds. Then, putting
U
[26] aqhml

and defining ) as the greatest integer less than 1, we have, by (12).
(20), and (11),

)

)
ok . Y Ll
f((f:)‘ ll) — § Eghrk eZm«)»r}' ==, g2rit 2 (sr Sr»—l) C’ZMM
re=2

re=1

A —1

— Z So (e 2idok __ ezmw-{-x]k) +5 e2rionk ,
v=1
so that
(27) lf(@),u)|§2 so|28 |9 { (@ 1F —oh) - |5

Now, by (26), (11}, (16), and Weyl's inequality *),

ak—1

|sw\ =~ C q ‘vg('vm—lﬁl_{ "U’I 1_,‘4_‘1_09/4———1(]_,1)’

Hence, by (i),

%) See, e. g, Landau. Vorlesungen iiber Zahlenlheorie:l (Leipzig, 1927), The-
orem 267.
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| 50]=5 C, ut—2"""4e w4,

and, by (25) and (i), | ¥ | <z~*. Hence, by (27) and the definition of .,
ot
| £(8,1) | SC, a2 e ( 250 3 (@4 1) — v 1 )
V=1

LCu? M @ r 1),
which implies (24).

Next suppose that (ii) holds. Then, by 6, (18), and (19),

which, together with (ii), proves (24).
Finally suppose that (iii) holds, Then, by 6, (18), and (19),

| £(O,u) | =B, q~VeB, | & | ~Wk4-C, gt—2""F+e

which, together with (iil), again proves (24).
8. On the other hand, if (16), (20), and (23) are satisfied, then

(28) 1 f(8,u) | = By g Ve(ut 4| 0])1E,
This follows easily from 6, (18). and (19).
9. I put
29) Fo (@) =F(0, ¥ty — f (O, n¥t=),
@0) Sul®)=F 18, ) —F(O. ) (m=1)
@31 F, (8) =2 (0, u,,,“+1]":fi fnl@),
(32) Fe (®l=fo(®) F (®)1
and
(33) Fy (8) == Fy? (0) fe-2mb (@, ),
Then, by (12), "
(34) Fy(0) =" a, exrifr

where 2, is the number of solutions of the equation

s
2y
T’yk =r
7=1
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in positive integers 7y, 7y,..., 7s satisfying the inequalities (6), (7), (8), Putting
and (10). Hence (cf. 3) it is sufficient to show that, if # is large enough, i,
then a, # 0. (40) o= 2 kL (1 — h et et Z(l — ki,
10. By (12), (29), (30), (31), and (32), =0
so that

N (41] g==1-—(1-—2k) (1 — k—Y)nt1,
(35) Fy @)= b e,

r==1 we have, by (39) and (9),

b i ber of solutions of th t (B O] <n,
where 0, is the number of solutions of the equation and hence, by (36),

1

Mrt=r (42) { Fy(0)[2d0< By ot
=0 .
o .

in positive integers 7o, i\ ... fm 2 satisfying the inequalities 11. Let £ denote the set of those numbers 6 between 0 and 1

A=t =S p < e, for which the conditions (20), (16), and

’é’ Un =Fm < Um (m =1, 2, ey mo], ) (43] q ::;_ IZZl»ﬁk, |“]' | = q_1 ﬂ"1+21—k
and : are not satisfied by any values of %, ¢, and 9. Then, by (34),
Y < Hpid (m == Ml + 1| my "{" 2) 14-toln
. — —2xifjf
It easily follows (cf, I, (3 +14)) that (44) a‘""’J Fy (0) em=nd
tin
0= b, = C; k=1 ote, g+,

which implies = | F,(0)e2ing - 'f F, (B)e-2nd g,

0=b,=Byn#, J ;Z i

E higq—,
From this and (35) it follows that where
1 ty=n""" Y=g T = (g )

s SH
(36) f|Fz (6)*ab =Ebr2§35 ”kazbr=35 nk* Fy (0). {for the meaning of the accent see 4). Also, by 7,

r==1 r=1

b

|0, )| = Gyt (0 in ),
Now, by (12),
(37) [£(6, u)] <u, so that, by (33) and (42),

and, by (12), (29), and (30),

= C, fts= 2= (121 R ) e

‘ [' F:i (O] e 2ifn a0

(38] ‘fnz(ﬂ)§<l"m (171:0,1,...),
where 1, =n'?, so that (9) holds also for m=0. Hence, by (31) and (32), which implies

(45)

f F,(0) e=2wiln g () } =< B, n(s-‘--Zm.,-w6]k“1(1—21_/‘]-1-a+2ka’

(39) l FZ (O) ‘ < ”3"10+l mlzlo U . P
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Now let
(46) f=2a—1-(s —2my—6)/k.

Then, by (41) and (2),
(s—2my— 6) k=1 (1 —2'#) 4 a <8,

and so, since & is ,sufficiently” small, it follows from (45) that

(47) !fF3(0)€'Z”i0"d0 = By nb-d
"E
12. Putting
hig4-d
(48) J(h, )= f F, (8) e~ d 0,
ig—t,

we have, by (44) and (47),

a,,——Z Z J(h, q) 1 =B nt?,

gty h

(49)

On the assumption that (20) and (43) hold, we have, by 8,

(50) | f(6, n) | S B, g (n— 4 [0 ] )%,
and it easily follows from 6, (18), and (19) that

|6, ) | < B gt [,
so that, by (29),

(51) | fo(0) | = (By+ By gV (n—t4- | & | )V,
From this and (50) it follows that
(62 |00, | S By (gt 9]) jreimet,

Now, by (31), (37), (38), (9), and (40),
(53) LICIES A
T =t
and hence, by (33), (32), and (52),
(54 | F0) | < Byt { (= - ) -o-smema,

13. By (2),
§—2my— 4> 2 261 (h—2) (1 — k=Y,

@ ©
Im On Waring's problem for fourth and higher powers,

and, by (1),

(11— k=tym == 22k k(k — 2),
Hence
(55) §—2my—4>2k,

14. By (48),
o= )

Hence, by (20), (54), (55), and (46),

0
| TR, g) | =5 By 221k g—ict e .f (=t | | )—lo2mmate g

=]

= Bynb g1k

and hence

> vaw1<&MZqAW<&wM

,,/.'?.<,1:;:,n" It q>"en
From this and (49) it follows that

- Yk g)

qink®

(56) S By

15. Until further notice let

(57) q :f:::: nkﬂ s
Putting
hig-t-34
(58) Ji () ='J Fy () e—2itn 4,
Ttfg—ry
where
(59) ) by =gt niR

we have, by (48),

|J(/z,q)-—Jl(h.(ll|'.T"ff..f) F"(: T+ k) wa

iy 4y

and hence, by (20), (54), (46), and (55),

€
00, ) = 1, (1, 0) | = 2By [ (goy-imsmaidd

kS

e

205
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—_ Bm ,ﬁ—(s—-zm..—-&»k]a q-—-l -_E Bm nﬁ“'("“‘”" q—l A |f02 [U) gos-—Zm“—-G ({)]__gn.s'-—mn‘,ﬁq (\‘)');2‘1[32[Il‘r“i"'"(]'“(“' 2, — )l [IL”1 _}_ ' ;}l]-—fa'—zmn—syk
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so that dh by (66) and (57
Y Y b = ) ) | Bt eod hence: by (66) mnd B7)
{ qg,lkﬁ ™ \ [fuz {6]]’-"“2"’““" [Ov ni;’k] . g0s~2m,,~—4 [ﬂ) |
From this and (36) it follows that Z5 Byy 1tk gl —Rme— Ak (-1 A | & | )te—2me—syk
©0) - Z 2,11 (4. q)| <= By, From this and (32), (33), (53), and (55) we obtain
qguk?, n

(67) IFB (0] ___Flz (()) g()‘s-—-zm,—»q w.) 1 - Bn:: n2o~—=ilk—u q -(2R-F1)iR (n-—l_l_ ] {),]]—[s—ﬂm,-sjy/k.

16. Until further notice suppose also .
‘ 17. It easily follows from (31), (30), (12), and (9) that

61) . [¥] = gt nmttR v
@ Putting g0 ) S g g £ 1) Fi2(0) = 7}:1 ¢ emitr,
we have, by (18) and (19), where ¢;, ¢y, ... are certain integers, positive or zero, and
Z::i:, by 6 and (57), = BT Hence o= (Bffa+4) [,
(64) | £ (0, n/%) — go (9)| = Bys 1. 2
Similarly | F (8, nh—0) — Si g g g (9, m) | = By, F2(0,) — Fy* (0) 1 = 2; e @iy — @it | <=2 1 |6, — 0, | r, Z o
; =
and hence, by (18), (19), and (57), =2m| 0yl | rg Fy#(0) 52 Byy | 0, — Oy | =% F2(0),
(65) | £(8, a4 | == By g1k nt/i—t, and hence, by (20), (53), and (61),
By (50), (63), and (64), [ F2(0) — Fy2 (h)q) | =5 Byg | 9| nt+2e—3ik <5 B, ppa—3ikths g—1.,
| fo—2mot (6, ni/H) — gos—2m—s (9) | = By ik {q (nh =] 9|}~k From this and (63) and (55) it follows thhat
and hence, by (51), | F\2(0) gof~2m—4 (¥) — Fy2 (Rq) gy* 2™ (3) |
(66) | fe2 (68) fo2me=s (0, nt1F) — f? (6) g~ (V)| S5 By, w3 (=t e | | et
= By { g (A [ ) e, T By ppe etk g3 (et | ) | l-2m—slk
By (29), (64), (65), and (57), o and hence, by (67),
| o (6)— g (9} == Byg 19 By g1 nth=2 = B, = it (68) | Fy (0) — F? (h/g) =14 (0) | =, Byg e 1 g 230k 1= ] = -2,
Hence, by (51) and (63), 18. Putting
2 == b /] b
| fo? (0) — g0 (9) | 5= Bog 4= g * (=t A= [ [ )74 (69) I (k, g) == f ' Fy? (z > gt (0) g g 4

from this and (63) it follows that . oy
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we have, by (58), (20), (68), and (46),

By
(10) (5, ) )| = By == =ik [ (i fo=o-amse gy

'
5}

< 2 325 plo—1/k—d q—2——1/k K ls—2me—Sifk o o == B?‘G fo i q—2~—1/k B}
n

19. I now drop the assumption (61), and put
[ee] .
(71) _/3 (/’L, (]] = F12 (_’_Z_) eq~—lm fgos——zmnmll (1‘).) e—-hlﬂnn liﬂ' )
q
—~00

Then, by (11), (69), (53), (63). (59), and (46),
(o]
l Js (h, (]] — Jz (h‘ q] l :<;: B27 n’la-—zlkf[q “).]—(S--zrnnu—-tl]/k d ,9.
&
— BB& nﬁ-—[s——zrm—«&-—k)a q—i s

Hence, by (55),
[ Ty (B, q)—Jo (1, q) | = By nP—+0g—1

cm
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o
— ”—lj g;\‘me‘,»—A [.’(Z/ll, /l“"] F—Z:ix d_\-
— D
and, by (13),
nlik
g Lejn i) = [ etk dy — i (),
o
where
1
U (%) = J p2ivi® f f
4
Hence
[75] J g-s——'lr)z(,—4 ({].’ ]ll,v‘/a] P—Zz:x‘i}/z A= L 1A (s—2m, —4)k ,
0
where

(o]

L= j ‘\_['Sme.,A‘i (x)e2ix g x,
Zco

21, It easily follows from (12), (14), and (11) that

ch]i e S S U ) — o, ) | S Byant— 76 | 7l )= S 007 | 20,
72 —Ja (1 )} | = Byt
L, 4 SO hlkg ) 2 and from (30), (12), (14), and (11) that
By (70), , ‘ 1 s .
DMWY EAD q)}Fanﬂ—a. (77) Sulbla) = tnSho g™ =g (m 1),
g=n 3 h ‘
Put
H , by (60} and (72),
ence Yy ( ) an ( ) [JZm—l = UZln:fm (h/[])v Vzm—-l = V2m= ; U S”"I q.—" (m= 1, 2v s ’"n]
’
(13) a3 2k q)|§Bs.,nﬁ—“. and
= U, =f (g, ttma4), Vr==lty,41Sn,qq (r=2m,~+1, 2m+2, 2m,+3,
20. By (71) and (62),
~° Then, by (77) and (76 2
(74) Jy (A, Q)‘—‘Fla(—h-)ﬁq_’m (S, g g2)s—2me—4 fgs'zm“"" (¥, nt/) g2 gy, e by (77) and (76)
q J (78) [ U~V Eq (r=1,2,...2m,+4),
Now by (31),
o ) 2mta
f go—m—4 (3, k) g—2sttn g g (79) £ 1"(17) =,£1 Ur,
Yo and, by (9) and (40),

4, Acta Arithmetica, II
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2m+4
(80) [] Vr . 2—2m., n‘la~2/k (Sh, 7 q—l}zrﬂ»—{»«i s
r==1
Also, by (38) and (37),
(81) 1 UZm—-l‘ -——‘"I U2ml<um (’71——:1,2, ,,,,”10),‘

[ U | <timerr r=2mo+1, 2my 42, 2my -3, 2m,+4),

and it is trivial that

(82) | Vames | = | Van | <tm (m=1,2, ... ,‘nzu],
| Vi | Stimps (r=2mo-F1, 2mg--2, 2my -3, 2my~+4).
Now
2m,+4 2mu—r-4 mut4 2t 11
U, — i Z (w— vy i ATRAS
ra=1 f= =41 r==1 l

Zmn—{» -4

any empty product( I or il ) meaning 1, and it follows from (81}, .

re=2m,+5

(82), (9), and (40) that

| 2myt4 —1 -1 Mot
it V\<u,”_|_1 11 12, == pro—tfik " mr Y
‘rr—l-\—! r=1

§ n2a——2/le—4ka )
Hence, by (79), (80), and (78),
[83) | Flz [/7/(]] — 2—Zma nz«-—z/k ('Slz,'q q—l)Zm'.-{-‘l '

= (2my - 4) g ookt
22. Since
|8 (S g 1) 2met | = 1

it follows from (74), (75), (83), and (46) that
| Jy (k) — 272 Lnb &, S5 0 q=5 | =5 By, q nb-4%,
Hence, by (15),
t ;’Ja (h,q)—272m Lnb A, l< By, g° np—t:,

and hence

(84) Y St —zmint Y A =By,

gsnkt h qenk

©

cm
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23. I now drop the assumption (57).
(15), (18), and (55).

Ag| =By g = By g VE,

Hence, by (17),
|S= 2 Ag| =By,
PR
and hence, by (73) and (84),
(85) : La,— 2~ Lt S| =< By, nb=*,
24. Tt follows from (1) and (4) that m,=%—2. Hence, by (55)

§>4k, and hencef)

S= Byt
Also )
_ s (1 4-1jk)
P{(s—2m,—4)jk} "’

so that L>0. It therefore follows from (85) that a, 0 for any suffi-
ciently large 7, ¢. e. d.

University College, London.

(Received 30 August, 1936.)

§) Hardy and Littlewood, 1. c. (footnote 4), Theorems 12 and 15..
7y Landau, Math, Zeitschrift, 31 (1930), 338
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