On the probability that \(n \) and \(f(n) \) are relatively prime II

by

R. R. Hall (York)

Let \(f(n) \) be an additive function and set

\[
T(x) = \sum_{\substack{n \leq x \\ (n, f(n)) = 1}} 1.
\]

Our ultimate object is to find the weakest conditions on \(f \) which ensure that

\[
T(x) \sim \frac{6}{\pi^2} x.
\]

In the preceding paper [1] we showed that in the particular case

(1)

\[
f(n) = \sum_{p \mid n} p,
\]

we have

\[
T(x) = \frac{6}{\pi^2} x + O\left(\frac{x}{(\log x)^{16}(\log \log x)^{10}} \right)
\]

where we use the familiar notation \(\log \) for iterated logarithms. Our immediate object is to extend this result, and we are able to replace the \(p \) in (1) by a class of functions of \(p \) which include the polynomials as a special case.

The integer valued function \(g(n) \) will be called a pseudo-polynomial if

\[
g(n + k) = g(n) \mod k
\]

for all \(n \) and \(k \). Every polynomial with integer coefficients is a pseudo-polynomial, but not all pseudo-polynomials are polynomials, and I am grateful to Dr. Woodall at Nottingham University for constructing an example, which will be described later. We have

Theorem 1. Let \(g(n) \) be a pseudo-polynomial. For each prime \(p \) define

\[
B(p) = \max_{0 < b < p - 1} \sum_{\substack{n = 1 \\ g(n) = b \mod p}}^p 1
\]

and suppose that \(g \) satisfies the following conditions:
(i) For each square-free \(q \) there exists an \(a \), prime to \(q \), for which
\[
g(a) \equiv 0 \mod q.
\]

(ii) The series
\[
\sum_{p} \frac{1}{p} \left(\frac{B(p)}{p} \right)^{1/2}
\]
is convergent; and

(iii) \(\log(1 + |g(n)|) = O(n^{4/\log 3} m) \).

Suppose that
\[
f(n) = \sum_{p \leq n} g(p).
\]

Then there exists an absolute constant \(C \), independent of \(g \) such that
\[
T(n) = \sum_{p \leq n} \frac{1}{p} = \frac{6}{\pi^2} n + O\left(n \sum_{p \leq n} \frac{1}{p^{1/2}} + \frac{n}{\sqrt{\log n}} \right).
\]

Two questions naturally present themselves:

(a) Does every polynomial satisfy these conditions?

(b) Is there a pseudo-polynomial, which satisfies the conditions and is not a polynomial?

The answer to (a) is no, even if we restrict ourselves to polynomials whose coefficients have highest common factor 1. For example, \(g(n) = n^2 + 3n + 2 \) does not satisfy condition (i) for \(g = 6 \). However, with a slight modification we are more successful:

Theorem 2. Let \(g^*(n) \) be any polynomial with integer coefficients. Then there exists a constant \(m = m(g^*) \) depending on \(g^* \), such that the new polynomial defined by
\[
g(n) = g^*(n) + m(g^*)
\]
satisfies the conditions of Theorem 1.

I am unable to provide the answer to question (b). However, it will be shown that the Woodall pseudo-polynomial can be constructed to satisfy the first two conditions.

I am grateful to Professor Erdős for finding the proof of Lemma 2 during his visit to Nottingham in 1969.

Proofs of the Theorems. We give proof of Theorem 2 first, as it is shorter.

Suppose that \(g^* \) is of degree \(d \); thus for any choice of \(m \),
\[
g(n) = O(n^d)
\]
and for every \(p \),
\[
B(p) \leq d.
\]

Thus conditions (ii) and (iii) are satisfied, and in fact are very weak for polynomials.

The number of solutions of
\[
g(n) = g^*(n) + m = 0 \mod q
\]
is at most \(\sigma(q) \), whatever the choice of \(m \), since \(q \) is square-free. Since
\[
n = \frac{\log q}{\log \log q}
\]
\[r(q) \leq \frac{\log q}{\log \log q}
\]
it follows that for each \(d \) there exists a constant \(Q = Q(d) \) such that for \(q > Q \),
\[
\sigma(q) < q^{\sigma(q)}
\]
and hence that every polynomial of degree \(d \) satisfies condition (i) except perhaps for some values of \(q \) less than \(Q(d) \).

We can choose \(m = m(g^*) \) such that
\[
g(1) = g^*(1) + m \equiv 0 \mod p
\]
for every prime \(p < Q \), by the Chinese remainder theorem. It follows that for \(q < Q \), there is at least one \(a \), namely \(a = 1 \), such that
\[
g(a) \equiv 0 \mod q,
\]
and for \(q > Q \) the conclusion follows from (2). This completes the proof.

Proof of Theorem 1. We only give those details of the proof which differ materially from the proof contained in [1].

Lemma 1. For \(p \leq x \) and all \(\alpha \),
\[
\sum_{f(m) = a \mod p} \mu(m) \ll \alpha \left(\frac{B(p)}{p} + \frac{\log p}{\log x} \right).
\]

This is proved as in [1]; as before our next step is to replace this estimate over square-free \(m \) by a similar one for all \(m \). The following lemma replaces Lemma 3 of the previous paper, the proof being due to Professor Erdős.

In the next paper of this series we prove rather more: for each fixed \(r \) we have
\[
\sum_{m \leq x} Q^r(x, m) \ll \omega
\]
and this enables us to use Hölder's inequality in place of the Cauchy–Schwarz inequality in the application. Therefore the exponent 1/2 of \(B(p)/p \) in Theorem 1 could be improved to any fixed number < 1.
Lemma 2. Let \(Q(x, m) \) denote the number of integers \(n \leq x \) whose square-free kernel, that is

\[
\prod_{p \mid n} p
\]
is equal to \(m \). Then

\[
\sum_{n \leq x} Q^2(x, m) \ll x.
\]

Proof. We have

\[
\sum_{n \leq x} Q^2(x, m) = \sum_{k=1}^{\infty} k^3 \sum_{Q(x, m) = k} 1 \leq \sum_{k=1}^{\infty} k^3 \sum_{Q(x, m) > k} 1
\]
so that it is sufficient to show that for each \(k \) the number of \(m \)'s for which \(Q(x, m) \geq k \) does not exceed \(\Delta x/k^4 \) for some constant \(\Delta \) independent of \(k \) and \(x \). For the \(m \)'s not exceeding \(x/k^4 \) we make the simple estimation

\[
\sum_{Q(x, m) \leq x/k^4} 1 \leq x/k^4.
\]

Next, let \(m > x/k^4 \) and suppose \(m \) has \(s \) distinct prime factors not exceeding \(k^4 \). If \(n \) has square-free kernel \(m \) and \(n \leq x \),

\[
m = n_1 p_1^{a_1} \cdots p_s^{a_s}, \quad a_i \geq 0
\]
and we are looking for the number of solutions of the inequality

\[
a_1 \log p_1 + a_2 \log p_2 + \ldots + a_s \log p_s \leq \log \frac{x}{m}, \quad a_i \geq 0;
\]
which does not exceed the number of solutions of

\[
(a_1 + a_2 + \ldots + a_s) \log 2 \leq 4 \log k.
\]

Let \(V_r(y) \) be the number of solutions of the inequality

\[
\beta_1 + \beta_2 + \ldots + \beta_s \leq y, \quad \beta_i \geq 0.
\]
Plainly

\[
V_r(y) = \sum_{\nu=0}^{\lfloor y \rfloor} V_{r-1}(y - \beta_1) \leq \int \nu^{r-1} V_{r-1}(t) \, dt,
\]

\(V \) being monotonic, and since \(V_1(y) \leq y + 1 \) it follows by induction that

\[
V_r(y) \leq \frac{(y + r)^r}{r!}.
\]

Thus if \(m > x/k^4 \),

\[
Q(x, m) \leq \frac{(c \log k + s)^s}{s!}, \quad c = \frac{4}{\log 2},
\]

where \(s \) is the number of prime factors of \(m \) not exceeding \(k^4 \). If \(Q(x, m) \geq k \), setting \(s = u \log k \) and noting that \(e^s \geq (s/e)^s \), we deduce that

\[
\left(\frac{\log k + u \log k}{\frac{u}{e} \log k} \right)^{u \log k} \geq k = e^{o_k}
\]
and so

\[
\left(e \left(1 + \frac{c}{u} \right) \right)^u \geq e.
\]

Hence \(u \geq c' \), an absolute constant which could be derived from the value of \(c \). Hence \(m \) must have at least \(c' \log k \) distinct prime factors not exceeding \(k^4 \), and the number of such \(m \)'s does not exceed

\[
\sum_{p_1 < k^4} \sum_{p_2 < k^4} \ldots \sum_{p_s < k^4} \sum_{m \in \mathbb{Z}} 1 \leq \frac{x}{x} \left(\sum_{p < k^4} \frac{1}{p} \right)^s \leq x \left(\frac{e}{s} \sum_{p < k^4} \frac{1}{p} \right)^s
\]
where \(s \) is the least integer not less than \(c' \log k \). Now there exists an absolute constant \(c'' \) such that

\[
\sum_{p < k^4} \frac{1}{p} \leq \log \log k + c''
\]
and a constant \(k_0 \) such that for \(k \geq k_0 \),

\[
e(\log \log k + c'') \leq \frac{c' \log k}{e^{c''}}
\]
and for these \(k \) the sum above does not exceed \(x/k^4 \). For \(k > k_0 \) it does not exceed \(e^{-c''} x \leq B x/k^4 \) where \(c'' \) and \(B = c'' k_0^4 \) are again absolute constants. Putting these results together we find that the number of \(m \)'s for which \(Q(x, m) \geq k \) does not exceed

\[
\frac{x}{k^4} + \max \left(1, B \right) \frac{x}{k^4} \leq \frac{A x}{k^4}
\]
which completes the proof.

Lemma 3. For all \(p \leq \sqrt{x} \) and all \(a \),

\[
\sum_{\text{m|n = a mod p}} 1 \leq a \left(\sqrt{\frac{B(p)}{p}} + \sqrt{\frac{\log p}{\log x}} \right)
\]
Proof. Denoting the sum on the left by \(S \) we have,
\[
S = \sum_{\substack{m = 1 \atop m \equiv a \mod p}}^\infty |\mu(m)|Q(x, m)
\]
and so by the Cauchy–Schwarz inequality,
\[
S^2 \leq \left(\sum_{n \leq x} Q^2(x, m) \right)^{\frac{1}{2}} \left(\sum_{n \leq x} |\mu(m)|^2 \right)^{\frac{1}{2}} \leq x^{2\frac{1}{2}} \left(\frac{B(p)}{p} + \frac{\log p}{\log x} \right)
\]
by the last two lemmas. The result follows.

Lemma 4. Under the conditions on \(g \) given in the theorem, for each \(q \) we have
\[
\sum_{\substack{a \equiv q \mod 2 \atop f(a) = 0 \mod 2}} 1 = \frac{x}{q} + O\left(\frac{x \exp(C_1 q \log q)}{\log x} \right)
\]
where \(C_1 \) is an absolute constant, independent of \(q \).

Proof. We follow Lemmas 6 and 7 of [1]. Setting
\[
F_q(s, l | q) = \sum_{n=1}^{\infty} \frac{1}{n^s} \exp\{2\pi i f(nq) - f(q)l|q\},
\]
we find that
\[
\frac{1}{q} \sum_{a=1}^{q} e^{2\pi i f(a)q/q} F_q(s, l | q) = \sum_{\substack{a \equiv q \mod 2 \atop f(a) = 0 \mod 2}} n^{-s}.
\]
Since \(F_q(s, l) = \zeta(s) \), the result will follow if we can show that for those \(l < q \), \(F \) is regular and not too large in some region to the left of the line \(\Re s = 1 \). Now
\[
F_q(s, l | q) = F^*_q(s, l | q) \prod_x (\zeta(x, \chi))^{\eta(x, l | q(0))}
\]
where \(F^*_q \) is regular and bounded by \(q^l \) for \(\Re s > \frac{1}{2} \). It involves the prime factors of \(q \) itself. Here
\[
\tau_q(z, l) = \sum_{a=1}^{q} \chi(a) e^{2\pi i a l/q}.
\]
The first half of the proof is identical to the old Lemma 7. However, we then used the fact that for \((l, q) = 1 \),
\[
\sum_{a=1}^{q} \tau_q(a) e^{2\pi i l a/q} = \mu(q);
\]
in fact, all that is required is that its real part is bounded away from \(\varphi(q) \), that is, that no \(\tau_q \) has a simple pole at \(s = 1 \). Now in the present case,
\[
1 - R \frac{\tau_q(\alpha, l)}{\varphi(q)} \frac{1}{\varphi(q)} \sum_{a=1}^{q} 2 \sin^2 \frac{\pi g(a)}{q} \geq 1 \quad ((l, q) = 1)
\]
under the condition of the theorem that \(g(a) \neq 0 \mod q \) for some \(a \) prime to \(q \). The rest of the proof follows as before.

Lemma 5. We have that
\[
\sum_{\substack{a \equiv q \mod 2 \atop f(a) = 0 \mod 2}} \sum_{\substack{m=1 \atop m \equiv \alpha \mod p}}^\infty 1 = O\left(\frac{x \log x}{\log \log x} \right)
\]
provided
\[
\log H \geq 2A(\log x)(\log x).
\]

Proof. Either \(f(mp) = f(m) \) or \(f(mp) + f(p) \) according to whether \(p \mid m \) or not. Now \(g(p) = g(0) \mod p \) so the summation condition is that \(p \mid f(m) \) or \(f(m) + g(0) \); we allow either possibility the sum will be increased. We invert the order of summation and estimate the number of prime factors of \(f(m) \) and \(f(m) + g(0) \). The above sum does not exceed
\[
\sum_{\substack{m \equiv \alpha \mod H \atop f(m) \neq f(m) + g(0)}} \sum_{\substack{m \equiv \alpha \mod H \atop f(m) \neq f(m) + g(0)}} \pi\left(\frac{x}{m} \right) + 2 \sum_{\substack{m \equiv \alpha \mod H \atop f(m) \neq f(m) + g(0)}} \frac{\log |f(m)| + |g(0)|}{\log H}
\]
say. Now
\[
f(m) = \sum_{\substack{m \equiv \alpha \mod H \atop f(m) \neq f(m) + g(0)}} g(p) = O\left(\frac{\log m}{\log \log m} \max_{n \leq m} |g(n)| \right)
\]
and so for \(f(m) \neq 0 \) or \(-g(0) \) and \(m \leq x \),
\[
\log |f(m)| + |g(0)| = O\left(x \log x \right).
\]
It follows that
\[
S_1 \ll \frac{2}{H \log H} = O\left(\frac{x \log x}{\log \log x} \right).
\]
We split \(S_1 \) into two terms, \(S'_1 \) and \(S'_1 \) according as \(f(m) = 0 \) or \(f(m) = -g(0) \), and it is sufficient to treat \(S'_1 \) the other case being similar.
For any prime \(\omega \) we have

\[
S_1 \ll \sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} \frac{x}{w} \ll \frac{x}{\log H} \sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} \frac{1}{w}.
\]

Now

\[
\sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} \frac{1}{w} = \int_{1}^{\infty} \left(\sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} \frac{1}{y^2} \right) dy + \frac{1}{w} \sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} 1
\]

\[
\ll \int_{1}^{\infty} \left(\sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} \frac{1}{y^2} \right) dy + \int_{1}^{\infty} \left(\sqrt{\frac{E(\omega)}{\omega}} + \sqrt{\frac{\log \omega}{\log y}} \right) dy + \sqrt{\frac{E(\omega)}{\omega}} + \sqrt{\frac{\log \omega}{\log x}}
\]

if \(\omega \ll \sqrt{x} \). Since the series

\[
\sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} \frac{1}{w} \left(\frac{B(p)}{p} \right)^{1/2}
\]

is convergent, its partial sums are bounded and for any \(K \) there exists an \(\omega \ll K \) such that

\[
\left(\frac{B(\omega)}{\omega} \right)^{1/2} = O\left(\frac{1}{\log \log K} \right).
\]

Hence for all \(K \ll \sqrt{x} \) we have

\[
S_1 = O\left(\frac{x}{\log H} \left(\frac{\log x}{\log \log K} + \sqrt{\frac{\log K}{(\log \log x)^2}} \right) \right)
\]

and we select

\[
\log K = \frac{\log x}{(\log \log x)^2}.
\]

Since \(\log H \geq (2 \log \log x) / \log x \) we obtain our result.

Proof of the Theorem. Set

\[
P(x) = \prod_{p \leq x} p.
\]

Then for all \(x \),

\[
T(x) = \sum_{w \leq H} \mu(w) + \theta \sum_{w \leq H} \sum_{p \leq x} \frac{1}{p}
\]

where \(|\theta| \leq 1 \).

And therefore

\[
T(x) = \sum_{w \leq H} \mu(w) \sum_{\substack{n \equiv 0 \mod w \atop \text{gcd}(w, \text{gcd}(n, w)) = 1, x}} 1 + \theta \sum_{w \leq H} \sum_{\substack{n \equiv 0 \mod w \atop \text{gcd}(w, \text{gcd}(n, w)) = 1, x}} 1
\]

\[
= \sum_{w \leq H} \frac{\mu(w)}{w^2} + \sum_{w \leq H} \mu(w) \left\{ \sum_{\substack{n \equiv 0 \mod w \atop \text{gcd}(w, \text{gcd}(n, w)) = 1}} 1 - \frac{x}{w^2} \right\}
\]

\[
+ \theta \sum_{w \leq H} \sum_{\substack{n \equiv 0 \mod w \atop \text{gcd}(w, \text{gcd}(n, w)) = 1}} 1 + \theta \sum_{w \leq H} \sum_{\substack{n \equiv 0 \mod w \atop \text{gcd}(w, \text{gcd}(n, w)) = 1}} 1
\]

\[
= \frac{6}{\sqrt{x}} O\left(\frac{x}{\log \log x} \right) + O\left(\sum_{w \leq H} \exp \left\{ C_1 \sqrt{q \log q - \frac{\log \log x}{q^2}} \right\} \right)
\]

\[
+ O\left(\sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} \frac{1}{w} \left(\frac{B(p)}{p} \right)^{1/2} \right) + O\left(\sqrt{\frac{\log H}{\log x}} + \left(\frac{x \log x}{\log \log x} \right) \right).
\]

There exists an absolute constant \(C_1 \) such that every

\[
q \ll \sqrt{e} x.
\]

Thus for \(x = C \log \log x \) and \(\log H = (2 \log \log x) / \log x \) we have

\[
T(x) = \frac{6}{\sqrt{x}} O\left(\frac{x}{\log \log x} \right) + O\left(\sum_{\substack{w \leq H \leq \infty \atop f(\omega) \equiv f(\omega, \text{mod} \ \omega)}} \frac{1}{w} \left(\frac{B(p)}{p} \right)^{1/2} \right).
\]

This completes the proof.

The Woodall pseudo-polynomial. The pseudo-polynomials form a ring, of which the ring \(Z[x] \) of polynomials with integer coefficients is a sub-ring. There are several interesting questions we can ask about the algebraic structure of this ring, for example, whether it is an integral domain; all we are going to show now is that there is an infinite class of pseudo-polynomials which are not polynomials.

Choose (integer) values for \(g(0) \) and \(g(1) \) arbitrarily. We may then select \(g(2) = g(0) \mod 2 \) so that it is not the value of the linear function of \(n \) determined by \(g(0) \) and \(g(1) \).

Next, select \(g(3) = g(0) \mod 3 \) and \(= g(1) \mod 2 \) so that it is not the value of the quadratic function determined by \(g(0), g(1) \) and \(g(2) \). Proceeding indefinitely, we obtain a pseudo-polynomial which is not a polynomial. Thus \(Z[x] \) is a proper sub-ring of the pseudo-polynomials, and a coset of \(Z[x] \) (regarded additively or multiplicatively) gives an infinite class; alternatively, each pair of values of \(g(0) \) and \(g(1) \) gives a different pseudo-polynomial.
Remarks. At each stage of the construction, we have to solve a congruence
\[g(n) = t \mod N \]
where \(N \) is the lowest common multiple of the integers not exceeding \(n \). We may select at least one of the first two solutions of this congruence, so that
\[g(n) \leq \sigma^4 n \]
for some fixed \(A \). But this is not good enough for condition (iii).
Condition (i) is easily arranged by setting \(g(1) = 1 \).
Condition (ii) is more difficult. Nothing in the construction implies that the numbers \(g(0), g(1), g(2), \ldots, g(p-1) \) are well distributed mod \(p \); in fact \(B(p) \) could be \(p \). We can make \(g \) satisfy (ii) by selecting \(g(n) \) to satisfy congruences to moduli \(p > n \), but so far as I can see at the expense of dropping condition (iii). Suppose that for \(n < p \leq t(n) \) (some increasing function of \(n \)) we set
\[g(n) = t_p(n) \mod p \]
where \(t_p(n) \) is one of the most deficient residue classes mod \(p \) so far. Then for all \(p \),
\[B(p) \leq t^{-1}(p) \]
that is, the number of \(n \) for which \(g(n) \) is not corrected mod \(p \). Roughly we want
\[t^{-1}(p) \leq (\log \log p) \alpha \]
for some \(\alpha > 2 \), so that we shall satisfy conditions (i) and (ii) if for example
\[t(n) = n (\log \log n)^{\alpha} \]
This however, could make \(\log (1 + |g(n)|) \) too large. The conclusion is that there are infinitely many pseudo-polynomials satisfying the first two conditions, which are not polynomials.

I do not know of any number-theoretic function which presents itself naturally and is a pseudo-polynomial. The chances are that it would satisfy our conditions, and this is one way that the problem could be solved.

Reference

Received on 14.4.1970

\[(31) \]