A note on numbers with a large prime factor III

by

K. Ramachandra (Bombay)

§ 1. Introduction. Let us denote by $P(u, k)$ the largest prime factor of $(u + 1)(u + 2) \cdots (u + k)$ where u and k are natural numbers, $k \leq u$. From the well-known deep results of G. H. Halberstam and A. E. Ingham, it follows that, for $u \leq k^{3/2}$ and k large, $P(u, k) \geq u + 1$. In other words one at least of the numbers $u + 1, \ldots, u + k$ is a prime number. In an earlier paper [5] we considered non-trivial lower bounds for $P(u, k)$ when $k \sim u^{1/2}$ and in a later paper [6] we considered non-trivial lower bounds for $P(u, k)$, roughly in the range $k^{3/2} \leq u \leq k\log k$.

Next (for fixed k of course) let $Q(u) = \min P(u, k)$ as u runs over all numbers $\geq v$. In [6] we pointed out, that as a consequence of our results and an argument due to P. Erdős follows

Theorem A. We have

$$\liminf_{k \to \infty} \frac{Q(k^{3/2})}{k \log k} \geq 1.$$

This was an improvement of an inequality due to Erdős where in place of 1 stood $\frac{1}{2}$. In both his paper [2] and in a letter to me (dated 6. 10. 1969), Erdős has expressed the opinion that any further improvement, however slight, beyond 1, would be considerably difficult. So far, I have not succeeded in getting an improvement; but I have succeeded in proving the following theorem, whose proof is the main object of this paper (for another result see Theorem 6 and the remark below, of this paper).

Theorem B. Let $Q_1(v) = \min P(u, k)$ as u runs over all numbers $\geq v$ with the exception of numbers u in the range

$$k^{(\log k)(\log \log k)^{-1}} \leq u \leq k^{(\log k)\log \log k}.$$

Then

$$\liminf_{k \to \infty} \frac{Q_1(k^{3/2})}{k \log k} \geq 2.$$

To prove this theorem we have to use some results of H. Halberstam and K. F. Roth on k-free integers [3], to cover the range $u \leq k^{(\log k)(\log \log k)^{-1}}$.

Acta Arithmetica XIX.
To cover the range \(u \geq \beta^{(\log \beta)^{1+\frac{1}{k_0}} \log^2 \log \log \beta} \), we have to use some famous results of A. Baker [1] and in this connection I use the presentation of Baker’s theory set forth in my paper [4]. I have also to use a somewhat interesting lemma (Lemma 5 of this paper) due to me. In addition I have to use some results of [5], but this paper is self contained as far as possible.

In concluding the introduction, I record with pleasure my indebtedness to Professor Erdős for the enthusiasm shown by him in my work at its various stages. It is also a pleasure to thank Professor A. Schinzel for his interest in this work.

§ 2. The following theorem is implicitly contained in the work of Halberstam and Roth [3].

Theorem 1. Let \(u, k \) and \(l \) be natural numbers such that \(u \geq k \), \(l \geq 2 \).

Let \(n_1, \ldots, n_l \) \((1 \leq n \leq k)\) be any \(I \) integers which are divisible by the \(l \)-th power of some prime (may be different prime for different numbers \(n_i \)) greater than \(k \) and further satisfying \(u < n_1 < n_2 < \ldots < n_l \leq u + k \). Let \(U \) be the maximum of the numbers \(d(n_i) \) \((i = 1 \rightarrow I)\). Then for every fixed \(s > 0 \),

\[
I = O \left(\frac{U}{k} \log \frac{u + l}{k} \right)
\]

where the constant implied by \(O \) depends only on \(s \). (Hereafter we write \(O \) to mean this fact.)

To prove this theorem however, we need a simple lemma.

Lemma 1. Let \((1 - x)^{n_k-1} = P(x) - x^kQ(x)\), where \(l \geq 2 \) is an integer, \(P(x) \) and \(Q(x) \) are polynomials of degree at most \(l \) \((l \geq 1)\) (with integer coefficients). Then the resultant \(R_1 \) of these polynomials is an integer and

\[
d([-R_1]) = \Omega(x^{l-1}d(Q(1))
\]

Proof. Now \(P \) is a monic polynomial and \(R_1 = \prod P(\alpha) \) where \(\alpha \) runs over the zeros of \(Q(x) \). The defining relation between \(P \) and \(Q \) shows that \(P(\alpha) = (1 - \alpha)^{n_k-1} \). Write \(\beta = 1 - \alpha \) so that \(\beta \) is a zero of \(Q(1 - x) = 0 \) and \(R_1 = (Q(1))^{n_k-1} \). (Actually \(Q(1) = (-1)^k \sqrt{2l-1} \), though we do not need this.) If we write \(Q(x) = \prod P(\alpha) \), then

\[
d([-R_1]) = \prod (1 + \alpha_\alpha(2l_\alpha - 1)) \leq (2k_1)^{2l-1} \frac{\prod \alpha_\alpha(1 + \alpha_\alpha)}{\prod \alpha_\alpha}
\]

where in the exponent \(p \) runs over the prime divisors of \(Q(1) \). Using \(|Q(1)| < 2^{2l_1} \) this is easily seen to be \(\Omega(x^{l-1}d(Q(1))) \). (For, \(\sum \frac{1}{\log \alpha} \leq \frac{2\log 2}{\log x} + \frac{1}{2} \log 2 \) and we need only set \(x = k_1^{-1} \) to get the result.)

Next we state two lemmas contained in their paper (our statement differs only slightly from theirs).

Lemma 2. Let \(\eta = 4^{-\left(1+\frac{1}{k_0}\right)} \) where \(\epsilon > 0 \) is fixed, \(p, p_0 \) primes, \(p > k \), \(p_0 > k \) and \(k = k_0(\epsilon) \).

Suppose that

\[
P, \eta \Rightarrow \lfloor \eta^{1-p_0} \rfloor \leq \frac{1}{2} p_0
\]

and

\[
\eta^{1-p_0} \leq \eta^{p_0},
\]

where \(\eta \) and \(\eta_0 \) are natural numbers. Then

\[
\Omega \left(\eta^{1-p_0} \right) = \Omega \left(\eta^{1-p_0} \right)
\]

Lemma 3. The number of pairs \((m, p)\) satisfying (2) and (3) is

\[
\Omega \left(\eta^{1-p_0} \right)
\]

Lemmas 2 and 3 follow from their argument. However in proving Lemma 3 we have to use Lemma 1 above.

The next lemma is also theirs.

Lemma 4. Let \(\epsilon > 0 \) be arbitrary small and fixed, \(k \geq k_0(\epsilon) \) and \(0 < k \leq \eta \). Then

\[
\Omega \left(\eta^{1-k} \right) = \sum_{n<p, m<n+k, x<p, x < p_0} 1 = \Omega \left(\eta^{1-p_0} \right) \eta_{1,2}^{2l-1} \frac{1}{2} (kX^{-\eta^{1-k}} + 1),
\]

where, in the sum prime denotes that we restrict \(p^\alpha n \) \((p > k)\) to some representation of each of the numbers \(n_1, \ldots, n_l \). (This convention shall be adopted unless we complete the proof of Theorem 1.) Here \(\eta \) is the number already introduced in Lemmas 2, and \(X > 1 \).

Proof. Suppose \(I \) and \(J \) are sub-intervals of \([1, 2w] \) and \([X, 2X] \) respectively and that \(|I| \leq \eta X \) and

\[
|J| \leq \frac{1}{2} (2X)^{2l-1} - 1.
\]

It follows as in their paper (if \(N(I, J) \) defined below is \(\neq 0 \) so that \(X < 2n^{1/k_0} \))

\[
N(I, J) = \sum_{n<p, m<n+k, x<p, x < p_0} 1 = \Omega \left(\eta^{1-p_0} \right) \eta_{1,2}^{2l-1} \frac{1}{2} (kX^{-\eta^{1-k}} + 1),
\]

and again that

\[
\Omega \left(\eta^{1-k} \right) = \Omega \left(\eta^{1-k} \right) \eta_{1,2}^{2l-1} \frac{1}{2} (kX^{-\eta^{1-k}} + 1).
\]

Also \(\Omega \left(\eta^{1-k} \right) = 0 \) if \(X > 2n^{1/k_0} \). This proves the lemma.
Proof of Theorem 1. Now if \(k \geq k_0(c) \)

\[
\sum_{\eta=0}^{\infty} 1 = \sum_{n=0}^{\infty} M(u, k; 2^n) = O(n^{\frac{1}{2}+\epsilon}) \left(\eta^{-1} + \sum_{n=0}^{\infty} 2^{2n+1} \right).
\]

This proves the theorem since \(\eta^{-1} = 4^{t+\epsilon} \) and the infinite sum over \(n \) is \(O(n) \). Thus the theorem is proved if \(k \geq k_0(c) \). But if \(k < k_0(c) \) the theorem is trivially true since then \(I = \Omega(1) \). This completes the proof of Theorem 1.

As in our paper [6] we define \(P(u, k) \) to be the maximum prime factor of \(u + 1 \)\(\ldots \), and the function \(Q(X, Y) = \min \{ P(u, k) \} \) taken over all \(u \) satisfying \(u \leq u \leq X \) (we assume \(Y \geq X+1 \)), and \(Q(X) = Q(X, \infty) \).

We now proceed to prove

Theorem 2. We have, for any positive constant \(c_1 \),

\[
\liminf_{X \to \infty} \left\{ \frac{\left(\log k \right)^2}{8 \log (1+c_1)} \right\} \left(\log \log k \right)^{1/2} \geq 1 + \left(\frac{c_1}{1+c_1} \right)^{1/2}.
\]

For proving this theorem as well as for further use, we need a general lemma. Let \(k \geq k_0 \) which may depend on finitely many constants.

Lemma 3. Let \(u < n < u + k \) (where \(u \) and \(k \) are natural numbers), \(c > 0 \) a constant, \(f_{0}^0(n) \) (l and \(u \) natural numbers) be the number of primes not exceeding \((1+c)k \) whose \(l \)-th power divides \(n \). Let \(f_{0}^0(n) \) be the number of distinct prime factors of \(n \) which do not exceed \(\exp(\log k - (\log \log k)^2) \). For our applications, \((\log \log k)^{2} \) may also be replaced by \(g(k) \log \log k \), where \(g(k) \to \infty \) and there will be a slight change in the inequality which follows, and \(f_{0}^0(n) \) the number of remaining prime factors which do not exceed \((1+c)k \log k \).

Let \(s > 0 \) be a small constant, \(k \geq k_0(c) \), \(l \geq 2 \), \(s \geq c \) \(\sum \frac{1}{s} = A \), and \(j \) natural numbers.

Then if \(n \) runs over \(K(\leq k) \) of the numbers in the interval mentioned we have

\[
\sum_{n} \left\{ \left(f_{0}^0(n) + 2 \right)^{1/2} \right\} \left(f_{0}^0(n) + 2 \right)^{1/2} \left(f_{0}^0(n) + 2 \right)^{1/2}
\]

\[
\leq (Kk)^{1/2} \left(\frac{k}{K} \right)^{1/2} \left((1 + 2e) \log \log k \right)^{1/2} \left((1 + 2e) \log \log k \right)^{1/2} \times
\]

\[
\left((1 + e + 2s)^{1/2} \right)^{1/2}.
\]

Proof. By using Hölder's inequalities (with an obvious notation),

\[
\sum_{n} \left\{ a_{n}^{1/2} b_{n}^{1/2} c_{n}^{1/2} \right\} \leq \left(\sum_{n} a_{n}^{1/2} b_{n}^{1/2} \right)^{1/2} \left(\sum_{n} c_{n}^{1/2} \right)^{1/2} \leq \left(\sum_{n} a_{n}^{1/2} b_{n}^{1/2} c_{n}^{1/2} \right)^{1/2} \leq \left(\sum_{n} a_{n}^{1/2} \right)^{1/2} \left(\sum_{n} b_{n}^{1/2} \right)^{1/2} \left(\sum_{n} c_{n}^{1/2} \right)^{1/2}
\]

where \(\frac{1}{a} + \frac{1}{b} = \frac{1}{c} \) and \(1 + \frac{1}{a} = 1 + \frac{1}{b} = 1 + \frac{1}{c} \). Applying this we see that the sum in question does not exceed

\[
\left(\frac{1}{a} \right)^{1/2} \left(\frac{1}{b} \right)^{1/2} \left(\frac{1}{c} \right)^{1/2} \left(\frac{1}{K} \right)^{1/2}
\]

\[
\times \left((1 + e + 2s)^{1/2} \right)^{1/2}
\]

Here we have used the well-known result \(\sum_{P \leq x} \frac{1}{P} = \log \log x + C + O\left(\frac{1}{\log x} \right) \),

and the final inequality proves the lemma.

We deduce a useful corollary from Lemma 5, which we state as

Theorem 4. Let \(P(u, k) \leq (1 + e) \log k \), \(c_2 \) a constant satisfying \(0 < c_2 < 1, k \geq k_0(c_2) \), and \(K = [c_2, k] \). Then there exists a natural number \(K \) depending only on \(c_2 \) and \(c_2 \), and \(K_1 = k - K + 1 \) distinct integers \(n_1, \ldots, n_{K_1} \) in \([u, u + k] \) with the properties

\[
f_{0}^0(n_i) \leq (\log \log k)^{c_2}, \quad f_{0}^{1} (n_i) \leq (\log \log k)^{c_2}
\]

and

\[
f_{0}^{(i)} (n_i) \leq [c_2^{-1} (1 + e)] \quad (i = 1, 2, \ldots, K_1).
\]

Here \(c_2 \) and \(c_1 \) are positive constants depending only on \(c_2 \) and \(c_2 \). Consequently for such \(n_i \) we have firstly (assuming \(k \geq k_0 \))

\[
d(n_i) \leq (\log \log k)^{c_2} \left(1 + \frac{\log (u + k)}{\log 2} \right)^{c_2^{-1} (1 + e)}
\]

and secondly, the maximum \(l \)-th power free factor of \(n_i \) does not exceed

\[
(\exp \exp \exp \exp ((\log \log k)^{2} + c_2 \log \log k)) \frac{1}{2} (\log \log \log \log k)^{1/2}
\]

\[
\leq k (\log \log k)^{1/2}.
\]
One may also note that if \(P_k(n) \) denotes the number of prime factors of \(n \) which exceed \(k \), then \(P_k(n_1) + \ldots + P_k(n_{K_1}) \leq (1 + c + o(1))k \).

Proof. In Lemma 5, choose \(j = [4\log\log\log k] \) where \(A_4 \) is a large constant and \(A = [4\log\log\log\log k] \) where \(A_4 \) is a large constant. The minimum term of the sum in Lemma 5 does not exceed

\[
\frac{1}{k} \left(\frac{1}{2} + \frac{1}{2k} \right) (1 + 2e) \log k \log \left(\frac{k}{\log k} \right) \left(1 + 2e \right) \log(k + 1) \left(1 + e + e^0 + 2e^0 + 2e^1 \right) - \frac{1}{k} \left(\frac{1}{2} + \frac{1}{2k} \right) (1 + 2e) \log k \log \left(\frac{k}{\log k} \right) \left(1 + 2e \right) \log(k + 1) \left(1 + e + e^0 + 2e^0 + 2e^1 \right).
\]

It follows that \(e^{1/2} \) times \(f^{(0)}(n) + e \) does not exceed the above expression and this gives our assertion regarding \(f^{(0)}(n) \). The other assertions follow similarly. The last statement follows from the fact that the g.c.d. of any two of the numbers \(n_m \) cannot exceed \(k \).

We are now in a position to prove Theorem 2. In view of the results of my earlier note [9], we can assume that \(n \gg \log\log k \). We start with the fundamental formula (Lemma 1 of [6])

\[
\left(\sum_{\sigma} \sum_{u < n < \frac{k}{u}} \left(\frac{w + k}{n} \right)^{1/2} \phi \left(\frac{n}{k} \right) \right) = \log \frac{k}{k} + O\left(\frac{k \log u}{\log\log k} \right)
\]

where \(j_u = \frac{\log u}{\log k} \) if \(u \) is a power of \(k \) and otherwise \(j_u = \left[\frac{\log u}{\log k} \right] \).

We set \(j_u = \log \frac{u}{k} \) where \(g \) is a constant satisfying \(\frac{1}{2} < g < 1 \).

We assume that \(P(w, k) \ll (1 + c) \log k \log k \) where \(0 < c < 1 \). The contribution from \(a \gg \sqrt{u} \) is easily seen to be

\[
\sum_{a \gg \sqrt{u}} \sum_{w < u < \frac{k}{u}} \sum_{w < p < \frac{k}{u} \log k} \log p \ll (1 - g) \frac{\log u}{\log k} \log k + o(1) \sum_{w < p < \frac{k}{u} \log k} 1.
\]

Let \(K_3 \) be the number of integers in \(\{u, u + k\} \) divisible by \(p^k \) for some \(p \) in the range \(k < p \ll (1 + c) \log k \). Then if \(I \) is the number of integers common to these and also the \(K = k - K + 1 \) integers of Theorem 3, we have \(K_3 + (k - K + 1) - I \ll k \). Hence \(K_3 + (k - K + 1) \ll k \). Consider these common integers \(I \) in number. Then by Theorem 1 (taking \(t_u \) for \(t \))

\[
I = O\left(\frac{\log(u + k) \log k}{\log(2 + k)} \left(1 + \frac{\log(u + k)}{\log(2 + k)} \right) \right)^{1/2} \frac{1}{2^{2 - \epsilon} - 1} \sum_{w < p < \frac{k}{u} \log k} \frac{\log(p)}{\log(2 + k)}.
\]

Let us confine to \(u \ll \frac{\log k}{\log(2 + k)} \) so that

\[
I = O\left(\frac{\log(u + k) \log k}{\log(2 + k)} \left(1 + \frac{\log(u + k)}{\log(2 + k)} \right) \right)^{1/2} \frac{1}{2^{2 - \epsilon} - 1} \sum_{w < p < \frac{k}{u} \log k} \frac{\log(p)}{\log(2 + k)}.
\]

If we choose \(4(\log 2) e g \ll 1 \). In fact we define \(c_3 \) by \(\frac{1}{2g} + 4(\log 2) e g \ll 1 \). Choosing \(c_3 \) thus we have

\[
I = O\left(\frac{1}{2g} \right).
\]

This gives \(K_4 \ll K + I - 1 \ll c_3 k(1 - c + o(1)) \) and thus the contribution from \(a \gg t_u \) is

\[
\ll \left(1 - g \right) c_3 + o(1)) e 4k \log u.
\]

But, since the intervals \(\left(\frac{u}{n}, \frac{u + k}{n} \right) \) for \(n < u^{-a} \) are disjoint,

\[
\sum_{a = 1}^{t_u - 1} \sum_{n < u^{-c}} \left(\frac{1}{u} \right) \left(\frac{u + k}{n} \right)^{1/2} + \phi \left(\frac{u}{n} \right) \right) \ll \sum_{a = 1}^{t_u - 1} (1 + c_3 + o(1)) e k \log k \ll (1 + c_3 + o(1)) e k \log k.
\]

If we secure that \(g(1 + c_3) + (1 - g) c_3 < 1 \) it follows now from (5) that with \(c_3 = \min(c, c_3) \),

\[
P(w, k) > 1 + c_3 e k \log k.
\]

Obviously \(c_3 < 1 \) and we could take \(c = c_3 = c_3 \). Now any \(c_3 < 1 - (2g - 1) \left(4(\log 2) e 2^{-1} \right) \) will do. Here the R. H. S. increases from \(- \infty \) to \(1 \) in \([0, 1] \) and so we could choose \(c_3 \) to be any constant less than \(e 8\log 2 \). Let us fix \(c_3 = \frac{1}{8\log 2} \). Then \(g \) will be determined by \(\frac{1}{2} + \frac{g}{1 + c_3} = 2 - 6e \), i.e. by \(\frac{1}{2} = \frac{2 - 6e}{g} + \frac{1}{1 + c_3} = 0 \). Now \(1 + c = 1 + c_3 \) can be chosen to be any constant less than \(1 + c_3 \) since \(c_3 \) is arbitrary. This proves Theorem 2.

\section{§ 3. Next we shall apply Baker's method (I follow my paper [4] which is slightly more convenient for my purposes) to prove

Theorem 4. We have for every \(\epsilon > 0 \),

\[
\lim_{k \to \infty} \left(Q\left(\frac{\log k}{\log(2 + k)^{1/2}} \right) \log k \right) = 2.
\]

In view of Theorem 2, we may now confine to \(u \gg \log(k) \log(\log(2 + k)) \). For simplicity we shall suppose, in Theorem 3, that \(0 < c < 1 \). We record a special case of Theorem 3.

Lemma 6. Let \(u \gg \log(k) \log(\log(2 + k)) \). Then there exist a positive constant
Lemma 7. Suppose that \(u < p_1^m m_1 < p_2^m m_2 < \ldots < p_r^m m_r \leq u+k \) where \(a_1, m_1, \ldots, m_r, u, k \) are natural numbers, \(p_1, \ldots, p_r \) are primes, each of the \(m_r \) are \(B \)-free where \(B \) is a positive integral constant independent of \(u, k, a_1 \), \(p_1^m, m_1 \) does not divide \(m_i \), \(k < p_i \leq k^2 \) and finally \(u > k^{\log_{k} u/2} \). Then \(\frac{p_1}{p_1}, \frac{m_1}{m_1}, \frac{p_2}{p_2}, \frac{m_2}{m_2}, \ldots, \frac{p_r}{p_r}, \frac{m_r}{m_r} \) are multiplicatively independent.

Proof. It suffices to confine our attention to the ratio \(\frac{m_{r+1}}{m_r} \) where \(u \) for \(p_r^r m_r \). Since \(m_r \neq m_r \), the claim is true for \(r = 2 \). Assume now that \(\prod_{i=1}^{r-1} \left(\frac{p_i^{m_i}}{p_i^{m_i-1}} \right)^{k_i} = 1 \), where \(k_i \) are integers none zero and \(b_1 \ldots b_{r-1} = 1 \). Now \(k_i \) are determined by (finitely many) linear homogeneous equations (uniquely up to a constant multiple, for uniqueness follows by assuming the truth of the lemma for \(r-1 \) in place of \(r \)) with bounded coefficients, and so bounded. We have

\[
\frac{b_1 \log \frac{u_1}{u_2} + b_2 \log \frac{u_2}{u_3} + \ldots + b_{r-1} \log \frac{u_{r-1}}{u_r}}{a_1 b_1 \log \frac{p_1}{p_2} + \ldots + b_{r-1} \log \frac{p_{r-1}}{p_r}}
\]

Here the denominator has absolute value at least \(k^{-A_1} (A_1 \text{ constant}) \), and so \(a = O\left(k^{-A_1} \right) \) which is a contradiction since \(u > k^{\log_{k} u/2} \) and \(u \geq 1 \).

Suppose we prove that, under the condition \(a < (\log k)^{\alpha} \),

\[
L > C(a) e^{-\left(\log k\right)^{\alpha+1}}
\]

for every fixed \(\epsilon > 0 \). Then since \(L < k/u \), Theorem 4 follows. We concentrate therefore on proving

Theorem 5. Let \(a_1, a_2 \) be positive multiplicatively independent rational numbers with sizes \((i.e. sizes of a \text{ rational number } a/b) \) defined to be \(|a|, |b| \) provided \(a, b \) are integers satisfying \((a, b) = 1 \). Not exceeding \(S_k \), and \(\beta_1, \beta_2, \alpha_1, \alpha_2 \) are integers whose size does not exceed \((\log S_k)^{\alpha} \) for every fixed \(\epsilon > 0 \),

\[
|\beta_1 \log a_1 - \log a_2| > A(\epsilon) e^{-\left(\log S_k\right)^{\alpha+\epsilon}}
\]

where \(A = A(\epsilon) \) is a constant depending only on \(\epsilon \) and not on \(a_1, a_2, \beta_1, \beta_2 \).

Remark. Until we prove the proof of Theorem 5, which shall be along the lines of my paper [4], we shall ignore the other notations in the paper.
of the present paper and follow the notation of [1]. It may also be mentioned that I follow my paper instead of Baker’s [1, I] since my paper is more convenient for my purposes.

Proof. In the notation of my paper $s = f = d = 1$. We can take $C_1 = S_1^d$, $C_2 = 2$ (S will be assumed to exceed an absolute constant without loss of generality; note also that all the constants C_1, C_2, \ldots, C_{11} of my paper may be replaced also by bigger constants). However we make a small change. We write $W = |\log a_1^2|$ and we see that it cancels out ultimately. We take instead of our original $C_2, C_3 = C_1^2$ and instead of the estimate (4) on page 3, we write down $|p(2)| \leq C_1^{12} C_2^{27} (S/L)^{12}$. Next we take $C_1 = 3 \log S$, and instead of the estimate $β C_1^{18} C_2^{37} (S/L)^{27}$ (on page 4 line 9 from the bottom) we write down the estimate

$$\leq β (L+1)^{3} C_1^{29} C_2^{27} (S/L)^{23} C_1^{17} C_2^{27} (C_2 S/L)^{27} W C_1^3.$$

Hence we get

$$|f^{(m)}(r)| \leq \frac{β (28 C_1 C_2) C_2^{18} (C_2 S/L)^{23} C_1^{17} C_2^{27} (C_2 S/L)^{27} W}{|r|^2},$$

where $C_1 = S_1^d$, $C_2 = 2$, $C_3 = C_1^2$ and $C_4 = 3 \log S$.

Next we have

$$\text{max}_{|r|=1} |f^{(m)}(r)| \leq (L+1)^{3} C_1^{29} C_2^{27} (S/L)^{23} C_1^{17} C_2^{27} (C_2 S/L)^{27} W C_1^3,$$

where $C_1 = C_1^2$ and $C_2 = (4 C_1 C_2) C_1^{17} C_2^{27} (C_2 S/L)^{27} W$.

On page 5, line 9 from the top, we change the estimate to

$$\leq β (L+1)^{3} C_1^{29} C_2^{27} (S/L)^{23} C_1^{17} C_2^{27} (C_2 S/L)^{27} W,$$

where $C_1 = C_1^2$ and $C_2 = (28 C_1 C_2) C_1^{17} C_2^{27} (C_2 S/L)^{27}$.

We can take for some integer $C_1 = C_1^2 S^{27}$ where $C_1 \geq C_1$, and it would follow that $|r|$ $\geq A^{-1}$ and so we have

$$|W^{-1} f(0)| \geq C_1^{17} C_2^{27} S^{-\beta} \geq β (28 C_1 C_2) C_1^{17} C_2^{27} (C_2 S/L)^{27}.$$
where \(\delta > 0 \) is an arbitrarily small constant and the constant \(C_{17} \) depends only on \(\delta_1, \beta, A, B, \delta_2, 0 \). Suppose now that

\[
(10) \quad \beta < \exp \left(-C_{17} \delta_2 \log \log \log S_1 \right).
\]

Then we have to choose \(C_{16} \) and \(C_{18} \) such that

\[
(11) \quad \delta, \beta > 200 \left(\log \log \log S_1 \right)^2 \log \log \log S_1 \quad \left(r = 1, 2, \ldots, \bar{r} - 1 \right).
\]

It is plain now that it suffices to satisfy

\[
(12) \quad \delta \geq C_{16} \left(\log \log S_1 \right)^{\delta_1 \log \log \log S_1}
\]

where \(C_{16} \) depends only on \(\delta, \beta, A, B, \delta_2, 0 \). It is plain that this inequality can be secured by first fixing \(C_{18} \) and then a large \(C_{16} \) (provided that \(2 \delta_2 < \log \log \log S_1 \)). This gives immediately that \((10) \) is false (see the last sentence of this section). It is plain that \(\delta \geq \delta_1 \) is a sufficient condition for avoiding \((2C_{17})^{\delta_1 \log \log \log S_1} \). We have

\[
(13) \quad \delta \geq C_{18} \left(\log \log \log S_1 \right)^{\delta_1 \log \log \log S_1}
\]

The condition immediately above allows us to choose \(\delta \geq C_{18} \) and makes both \(A \) and \(b \) small, gives

\[
(14) \quad \beta > C_{19} \exp \left(\log \log \log S_1 \right)^{\delta_1 \log \log \log S_1}
\]

where \(C_{19} \) depends only on \(\delta_1 \).

We have still to check the inequality \((L + 1)^2 < h_7 \). This requires

\[
(15) \quad (2h_7)^{\delta_1 \log \log \log S_1} < \left(\log \log \log S_1 \right)^{\delta_1 \log \log \log S_1}
\]

i.e., something like

\[
2 + 2E \leq 1 + (\bar{E} - 1) \delta_2.
\]

We are compelled to choose \(b = B - A_1^{-1} \) and making both \(A_1 \) and \(b \) small, gives

\[
(16) \quad \beta > C_{20} \exp \left(\log \log \log S_1 \right)^{\delta_1 \log \log \log S_1}
\]

where \(C_{20} \) depends only on \(\delta_1 \).

We have still to check the inequality \((L + 1)^2 < h_7 \). This requires

\[
(17) \quad (2h_7)^{\delta_1 \log \log \log S_1} < \left(\log \log \log S_1 \right)^{\delta_1 \log \log \log S_1}
\]

i.e.,

\[
2 + 2E \leq 1 + \left((1 + 2E + \delta) (B - A_1^{-1}) + 1 \right) \delta_2.
\]

We are compelled to choose \(b = B - A_1^{-1} \).

This completes the proof of Theorem 5, since \(h_7 > (L + 1)^2 \) contradicts easily the multiplicativity of \(\frac{\omega}{\omega - 1} \).

\section{4.}

Thus we have proved Theorem 4. We now resume the notation of this paper. In view of Theorems 2 and 3 we can now confine the gap

\[
\exp \left((\log \log \log \log \log \log \log \log S_1)^{\delta_1} \right) \lesssim u \lesssim \exp \left((\log \log \log \log \log \log \log \log S_1)^{\delta_1} \right)
\]

where \(\delta > 0 \) is an arbitrarily small constant, but fixed constant. (When \(u \) does not lie in \(S \), we know that by Theorems 2 and 3, \(P(u, k) \) exceeds \((3 - \epsilon_1) \exp \left((\log \log \log \log \log \log \log \log \log S_1)^{\delta_1} \right) \), where \(\epsilon_1 > 0 \) is any constant and \(k \geq k(\epsilon_1, \omega) \).)

In this gap we prove Theorem 6 (below) which is not quite satisfactory. The proof of Theorem 6, which is quite simple, is based on the following

\[
\text{Lemma 8. Let } l_2 \geq 2 \text{ be a natural number, } X \geq 1 \text{ and } m, n \text{ natural numbers. Then}
\]

\[
S = S_{l_2}(X) = \sum_{x < \log \log \log \log \log \log \log \log \log S_1} \left(\frac{X}{x^5} \right) = O(\log \log \log \log \log \log \log \log \log \log S_1).
\]

Proof. We have easily

\[
S = \sum_{x < \log S_1} \left(\frac{X}{x^5} \right) \leq \frac{X}{\log \log \log \log \log \log \log \log \log \log S_1}
\]

and this gives Lemma 8.

We now take \(X = u \), write \(k = \min \left(\log \log \log \log \log \log \log \log \log S_1, \omega - 1 \right) \) and we get

\[
S = o \left(\frac{1}{k} \right).
\]

It follows that there exists a gap of length \([k] \), viz. \(w \leq \exp \left((\log \log \log \log \log \log \log \log \log S_1)^{\delta_1} \right) \).

This proves the gap theorem of Theorem 6 (below) which is not quite satisfactory. The proof of Theorem 6, which is quite simple, is based on the following

\[
\text{Lemma 9. Let } l_2 \geq 2 \text{ be the least integer satisfying } k \text{ and let } k = \min \left(\log \log \log \log \log \log \log \log \log S_1, \omega - 1 \right).
\]

Then there exists an \(x \) satisfying \(u < x < u + h \) such that \(\exp \left(\log \log \log \log \log \log \log \log \log S_1 \right) \).

We can now use Lemma 6 to prove Theorem 6 (below). Suppose \(P(u, k) = \exp \left((\log \log \log \log \log \log \log \log \log S_1)^{\delta_1} \right) \) for some \(\epsilon > 0 \). Lemma 6 now gives at least \(K_1 \) distinct integers with \(P(u, k) = \exp \left((\log \log \log \log \log \log \log \log \log S_1)^{\delta_1} \right) \).

\[
K_1 \geq \frac{\log \log \log \log \log \log \log \log \log S_1}{\log \log \log \log \log \log \log \log \log S_1}
\]

i.e.,

\[
K_1 \geq \frac{\log \log \log \log \log \log \log \log \log S_1}{\log \log \log \log \log \log \log \log \log S_1}
\]

If we take \(l_2 \) to be the least integer \(K_1 \), which occurs, then we have

\[
K_1 \geq \exp \left((\log \log \log \log \log \log \log \log \log S_1)^{\delta_1} \right)
\]

and

\[
u \sim 1 = \exp \left((\log \log \log \log \log \log \log \log \log S_1)^{\delta_1} \right).
\]

Thus we have (by contradiction to Lemma 9)
THEOREM 6. Let \(\exp \left(\frac{\log k}{\log \log k} \right) \leq u \leq \exp \left(\frac{1}{\log k} \right) \), \(\epsilon > 0 \) arbitrarily small but fixed constant and

\[
h = \exp \left(\left(\log k \left(1 - \frac{\log \log k}{\log k} + \frac{\log k}{\log \log k} \left(\frac{1}{\log u} \right) \right) \right) \right)
\]

with a certain positive constant \(G \).

Then there exists an \(x \) satisfying \(\frac{1}{2} x \leq 2n \) such that for every integer \(n \in [x, x + h] \) we have

\[
P(n, k) > (2 - \epsilon) k \log k
\]

where \(\epsilon \) is an arbitrarily small positive constant (the constant \(G \) in \(h \) may depend on \(\epsilon \), but certainly does not depend on \(r \)).

Remark. We can make slight improvements on this theorem and we do not wish to state them here. We may also remark that in Theorem A of the introduction we can improve the R.H.S. to 2 if we can prove something like (for \(k \geq 100 \))

\[
|\log a_1 - \log a_2| + |\log a_3 - \log a_4| + |\log a_5 - \log a_6| > G \cdot \frac{\log \log k}{\log k}
\]

where \(a_1, a_2, a_3, a_4, a_5, a_6 \) are multiplicatively independent positive rational numbers with height at most \(k^{\log \log k} \), \(a \) is a positive integer not exceeding \((\log k)^2 \) and \(C \) is a positive absolute constant.

Added in proof.

A Corollary to Theorem 2. Let \(k \gg h, u_1, u_2, \ldots \) the sequence of all natural numbers whose largest prime factors exceed \(k \). Then

\[
\log k \leq \frac{7k}{(\log k)^2}
\]

\((k = 1, 2, \ldots)\)

References

Received on 14.2.1970

Quotientbasen und \((R)\)-dichte Mengen

von

TIBOR ŠALÁT (Bratislava)

In der Arbeit [1], an welche die vorliegende Arbeit anknüpft, sind die Quotientenmengen \(R(A) \) für die Mengen \(A \),

\[
A = \{1, 2, 3, \ldots\} = N
\]

so definiert: \(R(A) \) bedeutet die Menge aller rationalen Zahlen der Form \(c/d \), wo \(c, d \in A \). Diese Definition kann man in folgender natürlicher Weise allgemeinieren.

Definition 1. Wenn \(A, B \subset N \), dann bedeutet \(R(A, B) \) die Menge aller rationalen Zahlen der Form \(c/d, c \in A, d \in B \). \(R(A, B) \) nennt man die Quotientenmenge der Mengen \(A, B \).

Es gilt im allgemeinen \(R(A, B) \neq R(B, A) \). Weiter offensichtlich

\[
R(A, A) = R(A).
\]

Es sei für die weiteren Bedürfnisse bemerkt, daß für \(A \subset N \) das Symbol \(\delta_+(A) \) (\(\delta_+(A) \)) das Zahl \(\liminf_{n \to \infty} \frac{A(n)}{n} \) (\(\limsup_{n \to \infty} \frac{A(n)}{n} \)) bezeichnet, wo \(A(n) = \sum_{c \in A, c \leq n} 1 \) ist. Wenn der Grenzwert \(\lim_{n \to \infty} \frac{A(n)}{n} \) existiert, dann setzen wir \(\delta(A) = \lim_{n \to \infty} \frac{A(n)}{n} \). Die Zahlen \(\delta_+(A), \delta_-(A) \) bzw. \(\delta(A) \) nennt man die untere, obere asymptotische Dichte von \(A \) bzw. die asymptotische Dichte von \(A \).

Es bedeute im weiteren \(R^+ \) die Menge aller positiven rationalen Zahlen. Es ergibt sich die Frage, unter welchen Voraussetzungen über die Mengen \(A, B \) die Gleichheit \(R(A, B) = R^+ \) gilt.

SATZ 1. Die Mengen \(A, B \subset N \) sollen wenigstens einer der folgenden Bedingungen erfüllen:

(a) \(\delta(A) = 1, \delta(B) = 1 \);
(b) \(\delta(A) = 1, \delta(B) = 1 \).

Dann existiert zu jedem \(r \in R^+ \) eine unendliche Anzahl von Paaren \((a, b) \in A \times B \), so daß \(r = a/b \).