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§ 1. Introduction. In this paper we investigate questions of
D. H. Lehmer and of Schinzel and Zassenhans coneerning algebraic
integers near the unit circle. Throughout o will denote an algebraic integer
of degree m > 1 over the rationals, with conjugates o = aj, o3, ..., .
We write n = r-- 28, where 7 iz the number of real conjugates of o and s
ig the mumber of pairs of complex conjugates of o. Asis customary, we set

ja] = max |a.
1<i<n
Tt is clear that for any algebraie integer [«] > 1. In 1857 Kronecker [4]
showed that ja] = 1 if and only if o is a root of unity. In 1933 Lehmer {5]
asked whether there is a constant ¢ >0 such that if

(1) [ max (1 jay) <1+
f=1

then « is a root of unity; more recently Schinzel and Zassenhans [8]
have asked whether thers is 2 constant ¢’ > 0 snch that if

’

(2) < 14+ —
7.

then « is a root of unity. It is obvious that an affirmative angwer to the
former question would imply an affivmative angwer to the latter, and
the results would be the best of their sort, as we see from the exarmple
a =327, Towards a solution of these problems we prove

* Work supported in part by an 1851 Overseas Scholarship.
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TeEoREM 1. Lot a be an algebraic integer of degree n > 1 over the
rationals, with conjugates ¢ = 0y, Gay ooy Gy If

»

1
{3) nmax(l, lagl) < 14 -

L 52nlogbn

$hen « is o root of unity (see the note at the end of this paper).
COROLLARY. If a is an algebraie integer of degree n > 1 and if

- 1
) jal <1 30m*log bn
then a s @ reot of unily.

The first strengthening of Kronecker’s theorem is due to Ore [6],
whose condition on {a| depends not only on n but also on the field generated
by e over the rationals. Rather weaker versions of the Oorollafrv have
been given previously, in which the condition

— [

(5) @ <1+ —

atood in place of (4). Schinzel and Zassenhaus [8] gave this with 4 = 2,
Blanksby [1] obtained 4 = 2%+ s, and Schinzel (unpublished) improved
this to 4 = 2~

Our method would enable us to replace (4) b

— ]

© S G T ee 4 )

which iz a weaker hypothegis. But the resnlt is not really stronger, for
Schinzel (unpublished) has shown that if

1

7 la] <
{7 5 l<1+88+3

then s > »/3, and so s X »n. In fact we can show that if (8) holds then a
has no real conjngates (1 ¢. % = 2s). More precisely, we have

TurorEM 2. If « is an algebraic integer of degree n > 1 with

. —_— 1 2

then # = 23,
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Kronecker used his theorem, mentioned above, to prove that if «
is @ totally real algebraic integer for which |_a"“| < 2 then « ig twice the real

part of & root of unity, a = 2cosZn —b— If we follow his argument we

find we can replace the interval [—2,2] by an ellipse containing it:
If o and all its conjugates lie in the ellipse

2

“ <1
Gy Ty S

where 2 ig the nnmber on the right hand side of (4), with # replaced by
2q, then « is twice the real part of a root of unity. In the case of a totally
real o this allows us to replace Kronecker’s condition [a] << 2 by the weaker
condition. [a] < 24 en*(logn)~%. However, in this special ease we can
obtain 2 stronger resul, as follows.

TaroREM 3. Let o be o totally real algebraic integer of degree w > 1. If

1

) 11 <24 500 (wlogn)®

a
then a is twice the real part of a root of wnity; o = 200&27;?.

In the opposite direction R. M. Robinson [7] has given examples
of totally real algebraic integers o with 2 < |a] <2+e.

In the proof of each theorem our first step is to reduce the problem
at hand to one of simultaneous Diophantine approximation. We then
treat the latter problem, using ideas found in a paper of Cassels [271.
To further illustrate the power and flexibility of this analytic method,
in §6 we use the method to prove Dirichlet’s theorem on Diophantine
approximation. Dirichlet’s theorem was used in obtaining the previous
results in which (5) was the hypothegis,

We take pleasure in thanking Professor Cassels for his suggestions
and advice. We are especially grateful to him for pointing out certain
improvements which led to a weakening of the hypothesis in the Corollary
from Ja|< 1+en °(logn)" to Ja] < 14+on*(logn)® We also thank Pro-
fessor Schinzel for malking hiz unpublished work available to us.

§ 2. Basic lemmas. The fundamental principle in our analytic
approach to Diephantine approximation is stated in the following lemmai;
it generalizes a result of Casgels [2].

Leavia 1. Let fmy, @y, ..., 2y) = f(®) be o continuous real volued
Function of the real vector ®, with periods 1, and Fourier expansion

(10) f@y ~> aimye(m-m),

"L
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where the summation is extended over all points m of the indegral laitfice,
and M- @ == MLy M@y ... +MyBy. Suppose thal a(m) = a(-—~m) =0
for all m. Then for any positive integer K and any 0

= K+1 1
a > (1- g ) 100 = = 00— 5 g0,
k=1
and
¥q
k K11 T W
02) 3 (1= ) s S S atmp| —10) Y amn

where 5 18 any seb of lattice points for which m e if and only if —meS.

Proof. We first show that the expangion (10) converges absolufely
uniformly to f(x). By Fejér’'s theorem (see [11], p. 304} the expansion
(10) sumg (¢, 1) to f(e):

Flm) = lim M af

M0 4

m) e m)nmax({) 1—|m [ M),

j=1

Taking & = 0 we have

N
§“|a,(m | = hm 2 m)| [ [ax (1, 1— fmy| M) =

T j=1

Fl0) < o0,

because the a(m} are non-negative. Thus the series (10) converges
absolutely mniformly. Since its value must agree with its (¢, 1) sum,
1ts value is f(=).

Let

o k
Te{d) = 1— 2 k0.
= (0} Z( K_I_l)cos k0

k=1

By comparigon with Fejér's kernel, we see that T (6) = — § for all positive
integers K and all real 6. Az a(m) = a{—m) = 0 for all m, the left hand
gide of (11) is

K+1

= D am)Te(m-0)> 0(0) T (0)— Y am) = a(0)— 17 (0),

m=0

o (11) is proved.

" Let _ '
K

N
k=1

ko
+1) (cos 2w kb)) (cos2nky).
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From the identity coswcosy = teos{u-+v)+ dcos(u—1v) we see that

Te(0,w) = $Tg(0+y)+ T (0—p).

Thus
Te(0,p) = —4, and

Ty (8, - 0)= 3T (0)+ $T,(20) = (K—1)/4.

Now

(ffe = 3 atmyo(m-2) + > a(mo(m @)

m 5.5" miS

;(E a(m)s(mz-aﬁ))z J,-z(Z a(m)e('m-zc))( E a(_m)e(_m.-m)),

e Hes” mrd

q

s0 the left hand side of (12) is

= 3 D a(mya(m)Tx(my 8, my-0)+

g e Maes’
+2 Z 2 a(m) e () Teim, -0, m,-6)
my e Myt
> Y simpatmy—t 3 almpa(mi)—
4 He) =M my ;’: my
my ed My, ges
o v S‘ a1, a(n,)
'mlsJP'nmcf
H+1 X 2 - v
R e o - o S o)

ey
=

K;—l(‘}_—:a’

m)z) — ( E (m))( V a.(m))

mes’ e ™m

and this last expression iy the right hand side of (12).

Note that a change of a(0) in (11) alters both #ides by the sane
amount, so that as far as (11) is concerned, the hypothesis a(0) =0 ix
superfluous. If in (12) we take 5 to be the set of all lattice points then
(12) follows from (11), on replacing f(x) by ( f{x))*. However, the point m
contributes a positive quantity to the right hand side of (12) only if

a(m) > 27(0)(E+ 1)~

Thus we obtain a sharper ineqguality by restricting & somewhat.
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We now iniroduce some of the notation that arises in the proofs
of our theoremg. Let g, o', g;, 6; be real numbers for which

(13) tos <o <1 (L<j<N).
We put
(14) B =(—g)",
and set
N
(16) o = > logloe(lety)—1l.
F=1

We obtain the following lemma as an application of Lenuna 1.
Levuma 2, If (13), (14), and (16) hold, then

K
k N
16 - il
{16) E(l e 1)%5& 210gR.

k=1
If we write K = [BNlogR], where B i3 a positive real number, then

i

k
D[ ot = (g 1200 1).

k=1

Proof. We take

N

2 log |g; e (ko) —

in Lemma 1. Thus f(k6)

(17}

N oo
22 vt oo (may) + 6 (— may))

=1 in=1

= —g;, and (11) gives (16), since a(0) = 0 and

fla) =
N

7(0) = 3 Tog(1~g)™' < NlogR.
i=1

We take & to be the set of those m = (my, my, ..., my) for which
my = +£1 for some j, and m; = 0 for & = j. Then (12) gives

K k K+l N N
2(1*_“ KH)(%)“? 1 2Q?—N10g329;>(NglogR)(i:B@’aml),
=1 j=1

k=1

which s (17).

Let us suppose that ¢ >0 and that 4 is the positive real number
for which

(18) g = exp(—4Y.
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Inequalities (16) and (17) enable us to show that if A and B are sufficiently
large then there are values of & for which oy < 0. Mozxe p1eclse1y we have

LEMA 3. In the motation of (13), (14), (15), and (18), if A =38 and
B =38 then

(19) mine;, <
1<k<E

— e AT e BT

where we may take ¢, = (2log2)™h, ¢y = (log2)™h, and ¢ = 1+2(og2)
Proof. Let M denote the left hand side of (19), so that op—M = 0

for 1< k<< K. We have

K

Now g, < Nlog?2 for any %, so the above Is
< (Nlog2-+M)(3 NlogR— { K M)+ 1M K
= 3 W ((log2) Nlog R— M (Klog2—log R)).
We take this with (17). The right hand side of (17) is
> (NlogR) i B(1—247H—1),

M)+ ).

— M)24-2M {0y —

Htﬁw

E
K41 ) ((O'Jc

g0 we have in all
M{Klog2—loght) <

Now for 43>8, B> 8 the right hand side is negative and Klog2—
—logR >0, so M < 0 and hence

M (Klog2—logR) == M BN (log I)(log2).

(log2-4-2—3B(1—247")) NlogE.

Thus )
M= B_1(10g2)‘1(10g2 L B— %B(l—ZA‘I)),

which iz (19).
We require the following lemma for technical reasons.
LEvMa 4. If 0 < o<1 and o< o] < o7%, then

-

(20) 1< oo o —1].

Proof. I 1< [2j< 07" then

g ® =
g == e 1

% A

= |2il#71—1], 80 (21) applies, and

—1

(21) lg—1] <

T 5« o) <1 then jz—1]

2 L z
le—1] < Jelg™ jS—l S @W—l
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The following is a result of Cassels [31; we state it here for convenience
Lenma 5 (Cassels). Let a be an algebraic integer of degres n =» 1 over
the rationals. If

(22) [a] <Lt

1

then o™ is a conjugate of a.

Recently C. J. Smyth strengthened this result;
condition (22) by the weaker hypothesis

{23) Hma,x(l, loyl) < 3 V5.

§ 3. Proof of Theorem 1. To prove that « is a root of unity it suffices
$0 show that there is a positive integer k for which

173

[t

7=1
The product is a rational integer (since it iy symmetric in the @), 50 to
prove our result it suffices to show that there is a J for which

i
(24) H\a;“'—~1| < 1.
We observe that |ai doeg not exceed the left hand side of (3 80

from (3) we have (22). Hence we may write

. n=2N, o y=q,
{(25) (I<j= N).
o =ze(f), 0 <g

he replaced the

1) = 0.

We suppose that 1 <k <

it <
{26) =15 - &S
g i g <

we choose ¢’ < 1 later. From Temma 4 we see that

n|a, 1< HQ; |lo;a{kb,)— 1|2

=1 F=1

i(})llchi < k<{ K. Let oy, be ag in (15). Then to patisly (24) i sndfices to show

N

07 10gn 05

for some %, 1< k< K. We LOW assume that
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N
{27} sz-”l < exp((AK) ™),
7=1

and we take

where 4 > 0 will be chosen below. From (26) we see that

N N -
[Ja=]]Fe > ep—247.
i=1 :

Hence to complete our proof it sutfices to show that
(28) oy < —ZA7"

for some % in the range 1<%k < K.

We have now reduced the proof of Theorem 1 to a problem of
Diophantine approximation, in which we require the |[k8;]i to be small
in the sense that (28) holds. We wish to know how large to take K 5o as
to be asgured that (28) bholds for some positive % not exceeding K. Pre-
viously Dirichlet’s theoremy was used in- this connection; we now see
that it was wasteful for the purpose. Lemma 1 has allowed us to treat
the o, directly, in Lemma 2. The inequalities (16) and (17) assert that
on average o, is small and (o,)? is large. (The right hand side of (16) depends
only on ¥, while the right hand side of {17) increases with K.) This can
be the cage only if there iy some cancellation in (16), which is to say that
ay, is sometimes negative. We have formulated a preecise result in Lemma 3.

The number 27! does not exceed the left hand side of (27), so from
{26) we see that onr g, satisfy (13) with ¢ asin (18). Thus we arein & position
0 quote Lemma 3. We see that (28) holds if

(24 4log2) A"+ (4+2log2) B < 1.

But log2 < 0.7, so the above holds if we take A = 9.6 > 4+ 8log2 al
B =10.8 > 8+4log2. The left hand sides of (3) and (27) are equal,
s0 (3) implies (27), as 1--8< € and

AK < ABNlogR < 104 Nlogl2N =

To dednce the Corollary we note that (4) implies (22), so that the
left hand side of (3) is no larger than [a[*2 But 1+ < ¢ and ¢ < 14
44— for 0 8 d <1, RO

1 &
1 —_—_—
( T 30m2log 6%) <i+

for # == 2, and the Corollary follows.

i2nlog6n.

5Znlog 6n
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§ 4. Proof of Theorem 2. We lirst establish

TLoMMA 6. Let o be an algebraic integer of degree n > 1. If |a] < 13/1%
then & > n/4.

Proof. Following the unpublished work of Schinzel, we congidel”
the product

This produet is a non-zero rational integer, since it is symmetric in the a..
Now [¢3{1—2%)| << [2]2(1+[2]?) <4 for [|¢| <13/12, and #2|1—a% < 1/4
for real & satisfying —13/12 <2< 13/12. Thus

n
1< AL —ad] < 4774,
H Jay|# {1~ |

8o 2¢ >, and hence s > n/4.

~ Our hypothesis (8) makes Lemma 6 applicable, so (8) implies that.
[a] < 14 (den)™%, in view of the inequality logu < ¢~ w. Hence Lemma 5
applies. We employ the notation (25), and suppose that o, ¢y = o
are real for 1 < j< ¢, where r = 2%, 1 = 0. We congider the product

(29) [

i=1

which is an integer. If the product vanishes then o is & root of unity and.
n = 2s; hence we agsume that the product iz non-zero. Now |t — 11
<[e [ZK—l for 1<j<t, 1<k< K. For the 2N -3¢ = 2¢ remaining’
values of j we use Lemma 4 with ¢ = [a]"**. We see that

”n

N
(30) 1<[]e —1{-2/\(1&[21‘:—»1)%4”IQ@(ZT{;GD.)-—-].UE.

¥=1 Feml

We now appeal to Lemma 2, From (16) we see that there is a k -7 K for-
which . ~

N
(31) D loglge(2h6)— 1| < K 'slog R.

J=t41

Here B iz given by (14) with ¢ = ¢’, so B = (L—[a]*)"% We take.
K = 2s; from (30) and (31) we see that

(32) 0 < tlog(fe[*—1)+-4s%log[a]— $log (1 —[a]™*)

= (i—$log([a]*— 1) 2 (2s+ 1) log]a].
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Wow if (8) holds then
la|* < exp{(4s-+8) " log (s+2)).
We have & <11 8(1— A for 0 << 6§ < 4 < 1, 8o the above is
<1+3(s+2)" og(s+2)
=1+ (84+2) log(s+2)*.
But logw < u, so the above is
<14(s+2)7,

and hence

{33) 10g(| 1 —1) < —Zlog(s+2}.
From (8) and the relation log{1+ ) < 6 we also have
(34) 28 (2s+1)log[a| < %log(s--2).

¥ t > 1 then from (32), (33), and (34) we see that
0< —3(t—PH+i

Ag this is false for t = 1 we must have ¢ = 0, so n = 2s.

We note that the hypothesis in Lemma 6 is much weaker than the
one in Schinzel’s result (7), while the conclusions drawn are much. the
same. From the stronger hypothesis (7) one might obtain a sharper result;
by modifying the above proof we could ghow that if o] < 1+ (4054 n-!
then s > kn—on'?(logn)~V%

§ 5. Proof of Theorem 3. We suppose that « is a totally real algebraic
integer of degree m >1 with conjugates e, e, ..., o, and minimal
polynomial p(z). Now the polynomial ¢(x) ==& p(m—[—m Y hag roots
Bys Bt 1< j< n, where

(35) ay = B+ Bt
We congider the product
: ki
[ 717 —1),
jual

which ig a rational integer. If this produect is zero then some f; is a root
of unity, so ¢(z) is irreducible and some «; is twice the real part of a root
of unity; hence they all are. Thus it suffices to find a k 5= 0 for which

]‘[15 —1] |7 —1] < 1.

i=1
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If ja; =< 2 then §; and p;' lie on the unit circle, while if |o| > 2 then
f; and A7 are real, and we may suppose that [f;] > 1 > |8,] "". We choose
t 5o that [o] >2 for 1<j<t and |o/ <2 for t+1<j<n. We may
assume that ¢ > 0, for if £ = 0 then W =1 80 f, is a root of unity and
we are finished. ¥ ¢ = f-+47" and a = 2§ then f 11844 for
0 <X =1, 30 from owr hypothesis (9) we have

366 P. E. Blankaby and H. I. Montgomery

] ’ 1
fy <1+ 17nlogn | 300 (nlogn)? < “Tonlogn |
We put ¢ = 1—1/n and apply Lemma 4 to the terms -1 =4 a0 to
obtaln
H
so) 1< [ [ig—1 -1y
j=1
1K 24 —2{n—1) i
g((1+ T@ii}ﬂ) —1) (1— _:I) f] |06 (2%6;) — 1,2
F=tit 1

for 1 << k< K. From (16) we see that we may choose & << K 80 thatb
k1
D) logloe(2k8,)—1| < K~ (n—1)logn.
I=t+1
We take K = [nlogn]. From (36) we ge¢ that if ¢ > 1 then
0 < tlog(e®—1)+ 141 < —(2.01)E+2.
Ag this iy false for £ 1 we must have t = 0, 5o the theorem is proved.

§ 6. Dirichlet’s theorem, We now use (11) of Lemama 1 to derive

Dirichlet’s theorem. Let @ and # be given, where 0 < madforl <y N
Tale

N
F@) = [ [max(0, 1— 5 Yy

7=1
Now for 0 <4< we have

00
max (0, L—y ™ al) = n+ 3 ayo(ms),
mn?;:om
where -a,, = =%y 'm 2 (sinnwmy)? for -m 7 0. Thus f{x) satisties the

hypotheses of Lemma 1 with a(0) = ﬂ 7 and f(0) = 1. From. (11) we

see that if (K1) [T#, > 1 then there 1s a k< K for which f{ko) > 0.
That is there is a k <{ K for which -
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W< (L<i< ),

provided 0 < ;< ¥ and

~
E+1z ][5t
Je=1
Previonsly Casrels [2] used shnilar ideas to obtain a somewhat weaker
resuit.

To obtain a result of gIemter generality, let % be a cloged N-dimen-
sional convex region, symmetric abont the origin, with Jordan content V,
and such that 2% contains no non-zero point of the integral lattice. We
may construet a function f(x) which vanishes outside # (modulo the
N-dimensional unit cube), and which satisfies the econditions of Lemuna 1
with @(0) = V2272V and f(0) = V2~¥. It follows that there is a value
of k< K such that k8—me Z for some lattice point mr, provided that
K412V

\‘\e construct f(a) as follows. Let g(«) be the characteristic function
of 3#, and set

h(@) = Y g(@+m),

h(x) NZb(m)e(m-:I:).
m
Tinally, take f(w®) == [ h(t)h{x—%)dl, where the integration runs over
an N-dimensional unit cube. From our hypotheses concerning # we see
that f(ax) is continuous, a{m) = (b{m)}%, a(m) = a{—m), a(0) = V227N,
and f(0) = V2~

The above construction iy due to Siegel [9]; he also showed that
it # is an ellipsoid and if one stipulates further that the a(m) be smooth
in a certain sense, then this construction gives the f for which a(0)/f(0)
iv maximun.

Of course the results of this section can be obtained by mmple counting
argwnents; the advantage of Lemma L is that it leads to sharp results
in situations in which the elementary methods seem inappropriate. Wo
remark that Lemma 1 may be considered to lie within the sphere of
Turéin’s methoed; Turan [10] has expressed a wish for a proof of Dirichlet’s
theorem such as the one above.

Note. Tn an earlier draft of this paper we proved only the Corollary
with (4) replaced by

— 1
37 g T I —
(87) af s 4+ 4+0ntlogn
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Schinzel {Reducibility of lacunary polynomials I, Acta Avith. 16 (1969),
p. 127) has used {37) in showing that
) ofa, Q) < 20| 2|log| 2|"log | T

As (4) implies (37) only for large n, it is important that Schinzel
hag found that (+) can be derived from our Theorem 1 as follows: If
a = % pe@(a), then

log [] el = elog [ ]84,

ezl >E [8;1>1
and by Theorem 1 the right hand side is
e
2 = &* "
_ 521 (a)|log6 @ (a)]
But by a known result (see M. Marden, Geomelry of Polynomials,

Providence 1966, p. 129) the left hand side does not exceed flog|Fl|,
where F is monic and F{a) = 0. Hence

e e, §(a)) < 261Q(0)|1og6 @ (a)"log| 7.
By the second part of Schinzel’s Lemma, 1

6(e, £) < 26| 2ilogh | Q[ log| F|

()

which implies (*) for
{*#} the bound

2| >3. For |2] =2 or |2} =3 we use ingtead of

1+V5

elog or elogd

respectively, where & is the least Pisot-Vijayaraghavan number ( > 1.3).
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