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Now choosing ¢; and e, as in the following table we see that this iy
impossible therefore providing us with the final contradiction that proves

the theoreni.

R. . Bambah and A, C. Woods

6 Cy ty b1 19(y)
&7 88 74 014 29
88 39 73 011 24
89 9 703 0146 242
9 91 694 017 242
91 92 683 02 243
e 93 671 023 245
93 94 66 027 242
94 95 65 032 24
95 96 64 038 23
96 97 63 045 29
97 98 62 054 2
98 99 61 067 16
89 1 6 086 a1
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Euclid’s algorithm in algebraic function fields, 1l
by

J. V. Armvirace (London)

In memorvy of Havold Davenpor

1. Introduction. The theorem that there are only a2 finite mumber
of Euclidean algebraic number fields with one fundamental nnit is a core-
llary of Davenport’s work on the inhomogeneous minima of certain
quadratic, cubic and quartic forms ([61, [T, [8]).

In [1], I imitated his arguments and obtained analogues of his
theorems for the cage of function fields of transcendence degree 1 over
finite constant fields. Subsequently, I reforrnulated the guestion of the
existence of a Fuclidean algorithm, in function fields over arbitrary
congtant fields, in terms of the Riemann—Roch Theorem, [2]. The
reformulation led to the melution of the problem {with no restriction on
the units) for fields of genus 0 over arbitrary comstant fields and later,
[3](1}, for fields of genus > 0 over infinite constant fields. In this paper,
I show that there are only a finite number {in a sense which iz made
precise in § 3) of function fields, of given genus, over finite constant fields
in which Euclid’s algorithm holds.

The statement of the main theorem is given in § 3, after the notation
has heen established in §2. Tt is both appropriate and convenient to
express part of the argument in the langnage of the geometry of numbers
and the necessary vocabulary is set out in § 4, together with an outline
of the proof. The preliminary lemmas are proved in §5 and the proof
of the theorem itz complefed in § 6.

The resulity proved below are expressed in terms of the Buclidean
algorithm problem, though they can be extended to the case of the
inhomogeneous minima of certain forms. The methods ave the same as
those used here. One replaces a 5[#]-basis of the ring I defined in §2
by a set of linear forms with coefficients in the field L{s} defined in (17).

{1} There i8 & mis-print in the displayed formula on p. 5 of the Appendix., Tho
first part should read vy (V— ") > oy (1),

22 — Actad Arithmetica XVIII
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The determinant of these forms provides the ‘genus’ condition (6) and
one mses the version of the Riemann—Roch Theorem given in [4].

The problem discussed here involves non-convex regions and, to
that extent at leagt, has some gimilarity with an interpretation of the
Riemann Hypothesis for curves in terms of the product of linear forms(#).
Davenport’s work on the product of three linear forms led to wmajor
developments in the clagsical geometry of numbers and it may be that
rieh rewards would attend similar progress in this field.

Finally, it may be possible to use the ideas of this paper to throw
some light on the number field case. Indeed, sueh a hope partly ingpired
this most recent work. So far, I have not sueceeded, but I hope to be
able to retmrn to the question in the future.

2. Recollection of notation and earlier results. Let L be a finite field
and let K Dbe a finite algebraic extension, of degree n and genus g, of the
transcendental field k(x). Let p be the place of k(x) corresponding to
o' (the infinite place) and denote by 8§ the set {PB, ..., P,} of places
of K which lie above p. We suppose, without loss of generality, that
deg®P; < ... < deg¥y,.

Let I denote the ring of S-integers of K. Thus I may be regarded
as the integral clogure of kiz] in X, or ag the infersection of the local
rings of the places at finite distance.

If b is & divisor of K baged on S,

(1) b = P . pn®

where »; denotes the order function at 9B;, then, following Chevalley [3],
we define

(@) L(b, 8) = {feK] v(f) 2 vi(b), Py 8.
It was shown in [2] that I is Euclidean if and only if

(8) K =) L®,H+1I
where the union is taken over all divisors b based on § guch that

. _ 3
(4) degh = > »,(b)clegP,; = 1.

i=1

Moreover, for anj’ divigor a based on §, we have
(5} dimg K/(L(b, §)+1I) = 8(a™)
where d(a™) is the dimension of the space of differentials == 0 (moda ™).

(*) Bee my lecture, to he reproduced in the Proceedings of the Bordeaux Numbor
Theory Conference, 1960 and published in an Appendix to Bull. Soc. Math. de Trance.
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3. Statement of the main theorem.
THREOREM. There exists a constant ¢ = ¢(K, 8), depending only on g

and degPy, ..., degPy,, such that if g = Card (k) > ¢, then I is Buslidean
if and only if
(6) g+d =1.

It follows that, for a given g and a fixed ratiopal funection field & (=),
there are only a finite number of extensions K /k(#) whose rings of integers
are Euclidean.

No attempt is made to obtain the precise value of ¢, though it could
be done. For example, in a ‘totally real cubiec field’ (n =7 =3),¢
= (2¢-+1)}{g-+1)+1. In general, ¢ involves sums of the coefficients in
the expansion of
{7) (1— 28 Pyt (g8 ¥n)=T,

Now the ideal-class number hg of the ring I is given by
(8) hy = 7 (K, 8)Lg(1)
where r(E, §) depends on K and § (it is essentially the regulator) and
Q) (L—ote8 By | (1—u*E ™) Lo(w) = (L—u)(1—qu)Z(u).

Here, Z(u) is the zeta function of the field & (or of the associated
curve). The condition on g and the relation between (7) and (9) suggest
that one might be able to prove that hg > 1 if ¢ is large enough, but so
far T have not been able to make significant progress on those lines.

4. Geometrical language and outline of the proof. The sufficiency
part of the theorem has already been proved in {2]. So we may, and we
ghall, suppose that g > 1.

‘Write

(10) d = g.c.d. (Aeg®P,, ..., degBy), < deg )

and let @ be the integer defined by (e—1)d < 2g—1 < ad. Let a, be
a fixed divisor based on § of degree — ad and write »(q,) = ;. Thus

m = l.e.m. (degPy, ..

(11) a, degP,+ ..+ apdegP, = —ad <L —2g-4+1.
1t follows from (B) and the fact that dega;' > 2g—1, that
(12) dim, K/ (L(a,, S)+ I} = 0.

So the neighbourhood FL{a,, §) when translated along the integer lattice
I covers K.

We regard X as being embedded in the locally compact space
B = F,%...xK,, where K; denotes the completion of K at P, with
respect to the valuation
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(13) lalg, = ¢, acK.

We denote elements of £ by ¥ and we write

(14) Lo, 8) =fre [] Eeintz) > n(o}.
rgih

Evidently

(15): La, 8) = K A L(a, 8)

and we write

(186) L(a) =1 n L(a, 8).

Let & {x} denote the completion of %(#) with respeet to the valuation

an % — gl a-tewd_ g=velel) g helia].
Then there is a k{z}-linear isomorphism/(?)
(18) n: B= [] &=k} = P,.

1<i<h

The space P, is a locally compact, ultrametric space with respect to the
digtance

(19) ) | = max (jmy, ..., 2,1}, @l

In the isomorphism (18), the pace L{a, §) corresponds to & convex
body C{a) of volume V(C(a)) = ¢ ®** (ef. [4], Lemma 1, p. 333). The
notion of volume in P, ean he extended to non-convex regions and we
shall suppose that done in the sequel(*); we denote the volume of the
region B by V(R).

We can now outline the proof of the theorsm.

By (12), the condition (3) may be replaced by
{20) L, 8y e | L, 1.

der 021
It follows from the approximation theorem (see Chevalley, op. ¢it., p. 11,

Theorem 3) and the fact that & is locally compact, that (20) holds if
and only if

(21) _ Lia, 8 U L, 8H+I.

deg b1

(®} The details of the computation are given in [4], (21). The reader who is
prepared to argue by analogy with algebraic number theory may think in terms of
imhedding a number field in R™ via # real infinite primes and s complex ones.

(*) The volume is analogous to Jordan measure. Its essential properties are
congequences of general theorems on Haar measure. An elementary disoussion, with

p?oofs of all results used here and in [4], is given in the author’s London Ph. D.
dissertation, 1856, unpublished.
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TUsing the isomorphism 7, this is equivalent to
(22) G U O@+n(l),

deg 531
where C'{b) =5 (L(E, S)), ¢, = 71(13((10, S)). o
We now introduce an indexing set for the divisors a which divide a,-
Let 1= (Ly,...,5)eZ" with 4, =0,...,% > 0, and define

(23) Q= Ay eney ) = PO P,
For a given f, we define
(24) % = UL, 8)

where the nnion is taken over all divisors b based on §, with degb = 1,
and such that »,(b) = a;—1; if #; > 0 and #(B) = a; otherwise.
Clearly, {21) may be replaced by

(25) I{ay, 8) = L‘_) #,4-1.

Starting from the hypothesis g+ d > 1, we shall construct a family,
%, of cosets of linear spaces in f(a,, §), which have no point in common
with any of the cosets L(b, 8)+ &, a,|b and &eL{a,)-

Now, if a covering of the kind (25) exists, it must be equivalent. to
a finite subcovering, since fi(a,, ) is compact and the sets L(p, 8) are
open. Hence, there exists s¢Z* and a corresponding q,, defined as in (23),
such that
(26) L{ag, 8)+ L{a) € U LB, 8)-+ Llay),
where the union is taken over all divigors b with degh>1 and a.b. In
particular we must have
@7 “+Liw) = \JZ(b, 8+ L(a,)
where the union is taken over all L(h, 8)<#;, with ¢ (0, ..., 0).

So, in order o show that {25) ecannot hold, it suffices to prove that

V(1€ + L(a,)) 0 (n{U LB, 8)+ L(ny))) < ¥ {n(¢+L{as)))-

It follows from Lemmas 3, 4 and 5, below, that this last is equivalent to

(28) D V(n% 0 nL(o, 8)) < V(n%¥)
5

where the sum is taken over all divisors b as in (27). Indeed, we shall
‘show in Lemma 5 that, if ¢ > ¢;, then V{(n%¥) = 1. So, in order to prove
the theorem, it suffices to prove that

N VL, 8) A nlies, 8) <1,
The defails of this computation are given in § 6.
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5. Preliminary lemmas.
LemMA 1. Let T be an integer = 0. Then

(29) U Le.8H= U

a4 degh g4+ T deg bm+ T

L{b, 8).

The number of suoh divisors D satisfying d+ T < degb s m-+T and a,|b
is equal to the mumber, N(T), of solutions of

(30) o, deg Pyt + 2 degPy = (u-+ ayd-+T,

Proof. Suppose degh > d+T+m. Then we can find a divisor B’
such that d+4 7 < degh’ < degb and B'|b. Clearly,

U L, 8 = (v, 8).

d+T<degh d+T<degh<d+-T+m
If g,|b (that is, if »,(B) = »(a,), 1 << h) then

b = Qata pata

o< pd < m,

‘where
2, eg P+ ..+ w, deg Py, = pd+ T—degay = (u+a)d+ T
But d+7T = degh and #,>0,..., ;> 0. Thus the number of such
divisors is N (7).
LemMA 2. Let o, be o divisor of the type introduced in (23) and wrile

T = t,degP,+. ..+ tdegPB,. Let &, denote the umion of linear spaces
dofined in (24). Then

(31) Liag, 8) n B, = U L5, 8)

where the union on the vight-hand side is taken over all divisors b such that
d+T <L degb < d+T+M and »,(B) = a, ot places where {; > 0.

Proof. Let b’ be a divisor contributing to (24). Consider the divisor
b such that »,(b) = »,(b") if #,(b') = a; and »,(b) = @, if »,(%") << a;. Then,
in the notation of (23) and (24)

degb = degh'-f,deg®P,+... -1, degP;, = degb’-1.
Obviously,
-t'(ao: 8) n -t’(b’) 8) = jj(_b, )

and the desired result now follows from Lemma 1.
Lewwes 3. Let £, & el. Then if the intersections are non-emply,

V{aL{gs, 8) N nL(b, 8)) = Vink(a,, 8) 0 q(L(b, 8)+ &)
= V{n(Zfas, 8)+ &) 0 {L(o, O+ £+ £)).
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Proof. The notion of volume referred to above is the analogue of
Jordan measure, It is additive and invariant under translations and those
are the properties which we use.

Choose ae(L{b, 8)+ & N Liay, §). Then if pef(®, 8) nLia, S,
a+ﬁ€(j}(b; 8)+ 5) N L{ag, 8).
So
V(ndi(as, 8) N (L0, 8)+ &) = V(nllas, 8) 0 L(B; ),

sinee the volume if invariant under translation.

Apgain,

V("?(-ﬁ(aoﬁ S)+ ff) N (-t(b, 8+ &+ 5’)) = V(7?—E(a0; 8) N "]Iﬁf(br S))r

and so the lemma is proved.

LEvya 4. Let ¢ = 1 and write @ = ad-+1—g 2= g (ef. (10)). Let

1\ : :
(32) =g (1~g) H o8 Bt (e Bi-ISdesBl g N, 1)
15i=h
X ” (4— Ny,
2<f<[Gfdeg Py

where, for given 3, N;; denotes the number of solutions of
@, degPy+... 4z deg Py, < G,

2 deg P+ .. 2, degP,;_, -+ jdegP; > a,

subject to the condition 1< j < [G/degP;] (the integer port of G/deg®,).
Then, there ewist M eloments x) (L<j< M) in L(ay, 8) such that:

(a) For all £eL(a,),

(33)

(34) v (20— £) < y(00)+ [G/degB],  L<i<h.
(b) For all EeL(ay),
{35} 2 v,z — £)degP, < 0.
157=h

(¢} For all r,s with 1 < r,8 < M,
{_36) £(f)_ x(s) ¢I .

Proof. It follows from the Riemann—Roch Theorem that there
are exactly 6 k-independent points of I in L{a,, 8); we denote them by
V. E9, For M, considered as an element of X, write

(310 0 = Nef}al, rze, 1<IS@ 1<i<h,
r
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where =; is a prime element at P; and the ¢, are elements of the residue
field at P, possibly 0. Any element of L(a,), congidered ax an element
of X, may accordingly be written in the form

(38) Z‘ZAI@gf,lnz, ek, r=a, 1<1<6.
i T
We now construct ¥PeTl(ay, 8),1<j< M, by considering the
local expansions at ; and choosing the coefficients so as to ensure that

the eonditions of the lemma are satisfied.
We write the ith component ) of % in the form

(39) = M, 0 <r< et [6/eaBil,

and we consider systems of equations of the form
(40) Mol b+ AgdS) = dp,,  Ayek.

Each of these equations may be thought of az deg®; equations with
coefficients in k.

In order to satisty condition (a) we may lose not more than [G/deg®,]
exponents at P,. Io order to satisfy (b} it iy sufficient to ensure that
;.. 7 0 and that if »; exponents are lost at B;, then

a, deg P+ ... adegPy, < G

For then,
D n(E— faegP; = D @+ 6 = —ad+ G =1—g<0.
1Cissh 1<Ci<h

By starting at P, and working with B,, B,, ete., successively, it iz
now straightforward, although tedious, to verify that the number of such
choices is ¢® 3, where M is defined by (32).

In order to satisfy condition (¢), it suffices to observe that to each
of the ¥ just constructed, there correspond ¢¢ points x4 £, £eL(a,}.
But the difference of any two £ — x® must lie in L(a,) and so, a fortiori,
there are at most ¢¢ distinet s+ £ in L(a,), with &eI.

Hence there are M -points x satisfying (a), (b) and (e).

Levsra 5. With the assumptions of Lemma 4, let x be one of the M

points constructed and et € be the fa,m'ily of ocosets defimed by
(41} v{x—a) = a,+ (G/degPB,1+1,
Then: :
(a) No two members of the family €+ I overlap. ‘
(b) If vi(x—2D) = a,4-[G/degPB,14+ 1, then for all Eella,),
(42) 2D nlE—Edeg; <0.

1 dh

1<i< M.
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(e} In the space P, the volume of n¥€ satisfies

-2
q

(4) There emists a constant ¢ (K, §) such that if q > ¢y, then V(n€) = 1.
Proof. (a). Suppose there exists sefi(ng, S) such that

vi(x—3") > a;+ [G/degPB]--1
and for some §elfay)

v (x2— 20— £) = o+ [G[deg P, ] +1.

(43)  V(®) > q'?'“l(l—- :—l-)h n {

q 1<ich 1<i<{@/des PB4l

Then
(87 — 3+ £) = a;-+ [GldegP ]+ 1.

Now it follows from (39) that £ —x® eI, a contradiction to Lemma 4 (c).

(b) We have
3 n(a—odegP = D) wltx—3)+ (0 — b)) deg B
L<ish 1<i=ch
= 3 w(z"—£)desB; <0,
lgisch

by (41) and Lemma 4 (b). “ ‘ -
(c). Since the bodies do not overlap and the volume ig additive,
we have

Vin€) = M H q—(aiwi-[Gldeg‘-Bﬂw'—l)deg?Bz

1<gi=th
b ) N,
_ g (1_ i) 1 (1,__ M) | [] (1— —qi)
q ik q 2 [Gder Byl _
. 1\* Ni4+1
> g% (1— ——) { - *—Lﬁ*)} :
g 1<ish - 1= deg Byl 1

(d) Choose ¢ > ¢; in order that

ot LI b

Liah i des Byl

(for example, take ¢, = max (2", 2(N;;+ 1)}}. Then, for ¢ > 1, (d) holds.
The cage & = L ocours if and only if g =1 and d = 1. If deg®, = ... =
deg®P, = 1, then by a modification of the argument uged in the proof
of Lemma 4 we see that the exponent ¢°' in (¢} may be replaced by q.
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A gimilar observation is true if at least one of deg®P; > 1. This completes
the proof of (d).

6. Proof of the theorem. As already remarked in §4, tle cases
g+d=1and g =0,d 322 have alveady been dealt with; so we are left
with the cases in which g = 1.

We refer to the outline of the proof given in § 4. We tale the family #
tio be that constructed in Lemmas 4 and 5 and we note that, by Lemma
5(d), V(n¥)=1, provided that ¢ > ¢, (K, 8). Consequently, in order
to complete the proof of the theorem, it suffices to prove thut if ¢ =
max (¢, ¢}, where the constant ¢, is defined below, after (46), then

ZV(7;’-?:’(BJ §) "'71'3(‘10} S)) <1,
b

where |J Z(b, 8) is defined in (26). (Cf. (28).)

Tet ¢t = (t,..., %) be a vector 0 <# <8y, ..., 01, 58, and let
#, be the family of spaces defined by (24). To fix ideas, suppose thab
4 #0, 1<<i<<r<h Then it follows from Lemmas 1 and 2, that

(43) 2 V{yL{b, 8) nyL(a, )
[

< Nt degP,-+... +1,degP,) g~ ¢~ adosPyt-thdeBy) - Fip & e,

where N(f;deg®;+...+f.deg®P,) is the number of solutions of the
equations

a; deg Py +... + a,degP, + 2, degB, .1 +.. . + 2, deg Py,
= (ptayd+ N tdeg®;,
teih
with #,,, =0, ..., %, 2 0 and d < pd < m. Hence, for vectors ¢ in which
there are exactly » non-zero components i;,
4 Y Y VL®,8) ngbla, )< gt Y N, L, 8,
[

=0 b

where T stands for the various expressions of the type ¢,deg®P, ...+
+ . degP,.

Let us consider the right-hand side of (44) in the case when, ¢ has
exactly one non-zero component. The contribution of sueh terms to the
sum in (44) is

{45) Qf_d Z . Z N (1 deg ;) g—t,;degz}s,s

1<ish i<
& Q_d' 2 Z N((n—#l)deg%) g dog ¥y

1 h 0
For the number ¥ ((n+ 1)deg€[}i) we have an estimate of the form

N {(n 1)deg®,) < 4;(n)
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where 4, iz a polynomial of degree —2 in # whose coefficients depend
only on deg®,, ..., degP, (and which is, of course, related to (7)).

Tt follows that the series in (45) involving such ¢ iy dominated by
a reeurring series in ¢~! whose scale of relation is (1—g ")*'. IHence
its sum is less than DY, where D{!) is a rational function in ¢, of degree 1,
with coefficients depending only on deg®Py, ..., degPy.

Similarly, the more general sumg, in which exactly » comnponents
in # have non-zero entries, are less than D.{’;)lr, where the s are rational
functions in ¢~' of degree 1, with coefficients depending only on the
degrees of the places in §.

Hence

(6) Y V(ykay, 8 naL(s, 8

aglb
< S 3D o i)
i 7
Since d > 1, it follows from (46) that there exists a constant ¢,(§, K)
(which can be dstermined in terms of the coefficienis in the L-series (7))
such that, if ¢ > e,(8, K), then the left-hand side is < 1. As already

remarked, this proves the theorem.

7. Postlude on the case i = 2. The analogues of Davenport’s thecrems
in the case h = 2 (that is, when there is just one fundamental unit of
infinife order) may be derived eagily from Lemma, 4.

Since F is locally compact, there exists an a;, with a,]a;, such that,
it (3) holds, then

(47) Lia;; 8) = U L(b, 8)+ Liay).

Ag in the proof of Lemma 4, we now construct a badly approximable
¥, with
(48) G = degagtideg P+ ..+t deg By
Note that such a construetion is always possible, since i =2. If 7 > 2,
then the comstruetion works only if ¢ > N,;, which depends on ¢

By the approxzimation theorem, there exists ael, such that »;(x—u)
is arbitrarily large. Whenee, by (35), with @, in place of a,, we obtain
a contradiction to (47).
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ACTA ARITHMETICA
XVIII (1971)

[Cyclotomy and complementary difference sets
by

G. Szepreres (Kensington, New South Wales)

In memory of H. Davenport

1. Let (@, +) be an additive abelian group of order n, 4,B, ..., C
% non-empty subsets of G, each containing m elements. Thesets 4, B, ..., €
are said to form a k-ary difference system in G if for each non-zero deG
the total number of solutions of the k equations

§=a;—dg, 0, 0zed,
8 =51"‘ﬁ2: fB1s 2B,
5

0 =y1—%a Y1 2€C
is the same number ¥, independent of . Clearly we must have
(2) (n—1)N = km(m—1).

For ingtance, if: G is the group of residues mod 5 then 4 = {0, 1}, B = {0, 2}
iz a binary difference system, with ¥ = 1. The number of solutions of
the individual equations (1) in of no interest, only the total number of
solutions of all % equations. Ordinary difference sets correspond to the
care b = 1,

Of particular interest arve binary difference sets 4, B ip a group &
of order # = 2m+41; in this case we say that A, B are complementary
difference sets, provided that at least one of the sets, say 4, has the prop-
erty that

{3) ged = —adA.

The number of solutions of (1) in a complementary difference system
is ¥ = m—1. Interest in complementary difference sets stems from the
fact that if they exist in some &G of order 2m -1, then there also exists
a, gkew Hadamard matriz of order 4(m-1) (see [5], Theorein 2).



