The average of the least primitive root modulo p^2

by

D. A. Burgess (Nottingham)

1. In 1968 Dr. Elliott and I [3] obtained the estimate

$$\pi(X)^{-1} \sum_{p \leq X} g(p) \ll (\log X)^4 (\log \log X)^4$$

for the average over all primes $p \leq X$ of the least primitive root $g(p)$ to the modulus p. Professor Heilbronn proposed to me the problem of the similar estimation of the least primitive root $h(p)$ to the modulus p^2. The argument of [3] remains applicable with slight modifications but yields only the weaker estimate

$$\pi(X)^{-1} \sum_{p \leq X} h(p) \ll (\log X)^4 (\log \log X)^8.$$

The argument of [3] was based on the Large Sieve inequality which may be stated as

$$\sum_{n=1}^{N} \sum_{m=1}^{m} \left| \sum_{n=1}^{N} \sigma(n/m) \alpha_n \right|^2 \ll (X^2 + N) \sum_{n=1}^{N} |\alpha_n|^2$$

where as usual $\sigma(n) = \sigma_{\text{mult}}$. In the estimation of $g(p)$ m in (3) ranged over the primes. In the estimation of $h(p)$ however m ranges over the $p^2 \leq X$ (together with the $p \leq X^{1/2}$) and it is this decrease in the size of the set of m that gives rise to the loss in effectiveness seen on comparing (3) with (1). The purpose of this paper is to regain in part this effectiveness by producing a modified form of the Large Sieve which will reflect such restrictions on the set of sieving moduli m. The resultant estimation for the average of $h(p)$ is contained in the following theorem:

Theorem. For large X

$$\pi(X)^{-1} \sum_{p \leq X} h(p) \ll (\log X)^8 (\log \log X)^4$$

the summation being extended over prime numbers p.
2. The Large Sieve.

Lemma 1. Let \(S \) be a set of positive integers. Suppose that
\[
S \subseteq [1, X]
\]
and that the cardinality of \(S \) is \(Q \). Then we have
\[
\left| \sum_{q \leq Q} \sum_{\substack{a \leq X \mod q \leq a' \leq X \mod q \leq a' \leq q, \quad (a', q') = 1,}} \sum_{n=1}^{N} a_n e(an/q) \right|^2 \ll XQ(N + XQ) \sum_{n=1}^{N} |a_n|^2.
\]

Proof. For each pair \(q, a \) in the summation on the left-hand-side of (4) let \(M(q, a) \) denote the number of pairs \(q', a' \) satisfying
\[
q' \leq S, \quad 1 \leq a' \leq q', \quad (a', q') = 1,
\]
\[
\left| \frac{a}{q} - \frac{a'}{q'} \right| \leq \frac{1}{4XQ},
\]
(where \(\|x\| \) denotes the distance of \(x \) from the nearest integer). We write
\[
\sum_{q \leq Q} \sum_{\substack{a \leq X \mod q \leq a' \leq X \mod q \leq a' \leq q, \quad (a', q') = 1,}} \sum_{n=1}^{N} a_n e(an/q) = \Sigma_1 + \Sigma_2
\]
where \(\Sigma_1 \) contains those terms for which \(M(q, a) = 1 \) and \(\Sigma_2 \) those for which \(M(q, a) > 1 \).

The estimation of both \(\Sigma_1 \) and \(\Sigma_2 \) is based on the beautiful inequality due to Davenport and Halberstam [4] that:

If \(x_1, \ldots, x_K \) are real numbers and
\[
\delta = \min_{i \neq k} \|x_i - x_k\|
\]
then
\[
\sum_{i=1}^{K} \left(\sum_{n=1}^{N} a_n e(nx_i) \right)^2 \ll (N + \delta^{-1}) \sum_{n=1}^{N} |a_n|^2.
\]

To estimate \(\Sigma_1 \) from this we put the \(x_i \) equal to those Farey fractions \(a/q \) corresponding to the summation conditions of \(\Sigma_1 \). Thus in this application of (8) we have
\[
R \leq XQ \quad \text{and} \quad \delta \geq \frac{1}{4XQ},
\]
and so
\[
\Sigma_1 \ll R \sum_{n=1}^{N} \left(\sum_{n=1}^{N} a_n e(nx_i) \right)^2 \ll R(N + \delta^{-1}) \sum_{n=1}^{N} |a_n|^2 \ll XQ(N + XQ) \sum_{n=1}^{N} |a_n|^2.
\]

To estimate \(\Sigma_2 \) we assume (without loss of generality) that \(X \) is an integer, and we write
\[
F(x) = \sum_{q \leq Q} \sum_{\substack{a \leq X \mod q \leq a' \leq X \mod q \leq a' \leq q, \quad (a', q') = 1,}} \sum_{n=1}^{N} a_n e(an/q).
\]

Clearly we have
\[
\int_{0}^{1/4XQ} F(x) dx = \frac{1}{4XQ} \Sigma_2.
\]

Thus we can choose \(\sigma \) such that
\[
F(x) \geq \frac{1}{4} \Sigma_2.
\]
We write for this choice of \(x \)
\[
F'(x) = \sum_{a} \sum_{n=1}^{N(\sigma)} \left| \sum_{n=1}^{N} a_n e(an/q) \right|
\]
where \(\Sigma^{(\sigma)} \) denotes a summation restricted to those pairs \(q, a \) which contribute to \(F(x) \). Two pairs \(q, a \) and \(q', a' \) in this summation satisfy (6) if and only if they correspond to the same \(y \mod 1 \). For each \(y \mod 1 \) choose that pair \(q, a \), associated with \(y \), to be included in the summation \(\Sigma^{(\sigma)} \) for which
\[
\left| \sum_{n=1}^{N} a_n e(an/q) \right|
\]
is maximal. Thus
\[
F(x) \ll \sum_{q} \sum_{a} \left| \sum_{n=1}^{N(\sigma)} M(q, a) \right| \sum_{n=1}^{N} |a_n|^2
\]
The summation \(\Sigma^{(\sigma)} \) is thus over a collection of pairs \(q, a \) for which the corresponding Farey fractions are at least \(1/2XQ \) apart \(\mod 1 \). Hence
\[
F(x)^2 \ll \left(\sum_{q} \sum_{a} \left| \sum_{n=1}^{N(\sigma)} M(q, a)^2 \right| \sum_{n=1}^{N} |a_n|^2 \right)^{\frac{1}{2}} \ll \sum_{q} \sum_{a} \left(\sum_{n=1}^{N} \left| \sum_{n=1}^{N} a_n e(an/q) \right|^2 \right)^{\frac{1}{2}}
\]
by (8).

However we have
\[
\sum_{q} \sum_{a} \sum_{n=1}^{N(\sigma)} M(q, a)^2 \ll \sum_{q} \sum_{a} \sum_{n=1}^{N(\sigma)} M(q, a)
\]
$$\sum^\infty_n$$ is restricted to those pairs that contribute to Σ_n. For each pair q, q' there are at most $^{(3)}$

$$2 \frac{X}{q} (q, q')$$

pairs a, a' (for which q, a and q', a' both satisfy (5)) for which

$$qa' - q'a = n$$

when n is divisible by (q, q') and none otherwise. Thus there are at most $5X/Q$ such pairs a, a' for which

$$|qa' - q'a| \leq q/Q.$$

Only such pairs can satisfy

$$\left| \frac{a}{q} - \frac{a'}{q'} \right| \leq \frac{1}{QX},$$

from which we deduce that $\ll XQ$ such sets q, q', a, a' satisfy (6). But this latter collection is counted by the right-hand side of (12) so that from (10) and (11) we obtain

$$\Sigma^2 \ll XQ(N + XQ) \sum_{n=1}^N |a_n|^2.$$

This together with (7) and (9) completes the proof.

For problems concerning primitive roots the Large Sieve is required in a character sum form. A convenient connection between character and exponential sums for our investigation is the following:

Lemma 2. Let S be as in Lemma 1. Let C_z be non-negative numbers. Then we have

$$\sum_{q \in S} \sum^* C_z \sum_{n=1}^N a_n \chi(n) \leq \sum_{q \in S} q^{-1/2} \left(\sum^* C_z \sum_{n=1}^N a_n \chi(an/q) \right)$$

where the summation over χ is over primitive characters mod q.

Proof. We use the well-known identity that if χ is a primitive character mod q then

$$\chi(n) = \frac{1}{\tau(\chi)} \sum_{a \equiv 1}^q \chi(a)e(an/q)$$

where

$$|\tau(\chi)| = q^{1/2}.$$

(3) (a, b) denotes the highest common factor of a and b.

Thus the left-hand side of (13) is equal to

$$\sum_{q \in S} \sum_{z} C_z q^{-1/2} \left| \sum_{n=1}^N a_n \chi(an/q) \right| \leq \sum_{q \in S} q^{-1/2} \left(\sum_z C_z \sum_{n=1}^N a_n \chi(an/q) \right)$$

as required.

3. The argument of Burgess and Elliott. Fundamental to the argument in [3] is the existence of a suitable bound for $g(p)$. Similarly we require a bound for $h(p)$. This can be obtained by substituting any estimates for character sums mod p^t of [2] into the argument of my estimation of $g(p)$ in [1]. The result obtained is that

$$h(p) = O(p^{10/7}).$$

Now the argument contained in the first five lemmas of [3], with the obvious modifications, shows that if

$$S_1 = \{ p \leq X^{1/2} : \pi(p-1)h'(p) < (\log X)^2 \}$$

where $h'(p)$ is the least primitive root mod p, then

$$\sum_{p \leq X^{1/2}} h(p) \ll X^{1/2}\log X.$$

We require this inequality which cannot be deduced from Lemma 1 since (14) is not sufficiently sharp for this.

4. Analogue of the argument of Burgess and Elliott.

Lemma 3. Let S be a set of q for which

$$\sum_X C_z < R.$$

Then we have

$$\left(\sum_{q \in S} \sum_{z} C_z \sum_{w \in R} \chi(w) \right)^2 \ll R^2 Q(H^2 + XQ)\pi(H)^r!\log X,$$

where (as in [3]) we follow the convention that w is always restricted to be prime.

Proof. Let S' be the subset of S for which

$$Y < q \leq 2Y$$

and let the cardinality of S' be Q'. As in Lemma 1 of [3] we have

$$\left(\sum_{w \in R} \chi(w) \right)^r = \sum_{n=1}^{Hr} \chi(n) a_n$$

where

$$\sum_{n \equiv Hr} |a_n|^2 \leq r! \pi(H)^r.$$
Thus we have
\[\sum_{x \leq X} \sum_{\omega \in H} a_x \chi(\omega)^r = \sum_{x \leq \lambda} \sum_{\omega \in H} a_x \chi(\omega)^r. \]
and by Lemma 2. But by Lemma 1 the latter expression is
\[\ll X^{-1/2} R X Q^{1/2} (H + X)^{1/2}. \]
by (15). Since \(D \) can be divided into \(\ll \log X \) such subsets \(D' \) we obtain
\[\ll X^{1/2} \left(\sum_{x \leq \lambda} a_x \right)^2 \ll q^{1/2} \left(\log X \right)^{1/2}, \]
which completes the proof of the lemma.

We write
\[T_q = \sum_{x \leq \lambda} a_x \chi(\omega)^r, \quad \text{and} \quad \varphi(q) = \sum_{\omega \in D} a_x \chi(\omega). \]

For any pair of parameters \(\lambda \) and \(R \), both greater than 1, we define
\[S_\lambda = S_\lambda(\lambda, R) \]
to be the set of primes \(p \leq X^{1/2} \) and squares of such primes for which
\[\varphi(q) < R \quad \text{and} \quad T_q > \lambda^{-1} \chi(H). \]

Lemma 4. Let
\[2 \leq H \leq X^{1/2}. \]
Then if \(H \) is sufficiently large we have
\[\text{card} S_\lambda \ll X^{1/4} \frac{\log X}{\log H} \exp \left(\frac{\log (X^2 H) \log (12 R^2 \log X)}{4 \log H} \right), \]
the constant being absolute.

Proof. By Hölder's inequality if \(q \in S_\lambda \) we have
\[T_q \ll \left(\sum_{x \leq \lambda} a_x \right)^{r-1} \sum_{x \leq \lambda} a_x \chi(\omega)^r. \]
Thus by Lemma 3 we obtain
\[\sum_{q \in S_\lambda} T_q \ll R\gamma \left(H + X \right)^{1/2} \chi(H)^{r/2} (r!)^{1/2}; \]
and so since
\[Q \ll X^{1/2} / \log X \]
we have
\[\text{card} S_\lambda \ll R\gamma X^{1/2} \left(H^2 + X^2 \right)^{1/2} \chi(H)^{r/2} (r!)^{1/2}. \]

Now we choose
\[r = \left[\frac{3 \log X}{2 \log H} \right] + 1 = \left[\frac{\log (X^{1/2} H)}{\log H} \right], \]
so that
\[H^r > X^{3/2}, \]
and obtain (by applying the prime number theorem) that
\[\text{card} S_\lambda \ll (r!)^{1/2} (1 + \delta)^{1/2} (\log H)^{r/2} \pi(X^{1/4}), \]
provided that \(H \) is sufficiently large (in terms of \(\delta \)). Finally by Stirling's formula for \(r! \) we deduce that
\[\text{card} S_\lambda \ll \left(\frac{\log X}{\log H} \right)^{1/4} \pi(X^{1/4}) \exp \left(\frac{\log (X^{1/2} H) \log (2 X^2 \log X)}{2 \log H} \right) \]
as required.

We write
\[V = (\log \log X)^2. \]

Let
\[P = P(q) = \prod_{s \leq q} s, \]
the product being extended over primes \(s \). Define
\[C_s^{(1)} = \begin{cases} \varphi(\text{ord} \chi)^{-1} & \text{if } 1 < \text{ord} \chi \leq P(q), \\ 0 & \text{otherwise}, \end{cases} \]
\[C_s^{(2)} = \begin{cases} (\text{ord} \chi)^{-1} & \text{if } \text{ord} \chi \text{ is a prime } > V, \\ 0 & \text{otherwise}. \end{cases} \]

Then as in Lemma 4 of [3] we have that if \(\delta \)
\[V > 4\phi(p^2) P(\phi(P)), \]
\[T_{\delta}^{(1)} + T_{\delta}^{(2)} \leq \frac{\pi(H)}{\delta} \quad \text{and} \quad T_{\delta}^{(3)} + T_{\delta}^{(4)} \leq \frac{\phi(P)}{4P} \pi(H), \]
where \(P = P(p^2) \), and if \(H \) is sufficiently large
\[h'(p) \leq H. \]

Let \(S_\lambda \) denote the subset of the set \(S_\lambda \) of primes \(\leq X^{1/2} \) and their squares, for which
\[h'(p) \leq H. \]

(16) \[h'(p) \phi(p^2) < (\log X)^B \]
and
\[\phi(p^2) = \text{the number of distinct prime divisors of } n. \]
and
\[h'(p) < D \left(\log X \right)^2 \left(\sigma^2(p^3) + \frac{p(p-1)}{\varphi(q(p)^2)} \right) \]
where \(D \) is an absolute constant to be determined later.

Lemma 5. We have
\[\sum_{p \in S_4^{-1}} h(p) \ll X^{1/2}/(\log X)^2. \]

Proof. We denote by \(S_4(R_1, R_2, W) \) the subset of \(S_4 \) satisfying (16) and
\[\frac{1}{2} W \leqslant P/\varphi(P) \leqslant W, \]
\[\frac{1}{2} R_i \leqslant \sigma^2(q) < R_i, \quad i = 1, 2, \]
\[T_0^2 > \lambda_i^{-1} \pi(H) \quad \text{for some } i = 1 \text{ or } 2 \]
where
\[\lambda_0 = 8 \quad \text{and} \quad \lambda_2 = 8W. \]

We note that for \(S_5 \) to be non-empty we have \(\lambda_4, R_4 \) both
\[\ll (\log X)^2. \]

We choose
\[H = E(\log X)^3 \max_{i=1,2} (\lambda_i^2 R_i^4) \ll (\log X)^{12 H-1}. \]

Thus since
\[S_5 \subset S_5^{(i)} \cup S_5^{(2)}, \]
we have by Lemma 4 that
\[\text{card} S_5 \ll X^{1/4}(\log X)^{1/4} \exp \left\{ \frac{1}{4} \log (X^3 H) \left(1 - \frac{\log E}{\log H} \right) \right\} \]
\[\ll X^{1/4}(\log X)^{1/4} \exp \left\{ \frac{1}{4} \log X \left(1 + O \left(\frac{\log \log X}{\log X} \right) \right) \left(1 - \frac{\log E}{(12 B + 4) \log \log X} \right) \right\} \]
and so if \(E \) is sufficiently large
\[\text{card} S_5 \ll X^{1/2}(\log X)^{2+1}. \]

From this we deduce Lemma 5 by the argument of Lemma 6 of [3].

Proof of Theorem. The proof of the theorem follows by the argument of [3].

References

Received on 16. 3. 1979
