Since by (31)
\[\sum_{n \leq x} d(n)^6 \ll x (\log x)^{42} \quad (x \geq 3), \]
it follows that
\[\sum_{\chi \in \mathcal{X}} \sum_{q \leq M} \frac{1}{\varphi(q)} \sum_{\chi} \left| \tau(\chi) \right|^2 \left| f(s_0 + it, \chi, \chi) \right|^2 \ll (\log M)^{62} < (\log MT)^{105}. \]

Now we introduce the integral function
\[F(s) = \prod_{\chi \in \mathcal{X}} \prod_{q \leq M} \prod_{d | q} \prod_{\chi} \left(1 - f(s, \chi, \chi') \right)^{\nu(\chi)} \]
where
\[\nu(\chi) = (M/|q|) \left| \tau(\chi) \right|^2 \]
and consider that any zero of \(\zeta(s, \chi, \zeta, \zeta) \) is also a zero (of at least the same order) of the function \(1 - f(s, \chi, \chi) \). Using (37) and (38) (which are the analogues of [1], Lemmas 8 and 9) and arguing as in the proof of [1], Theorem 5, we get (8).

References

Received on 15. 2. 1970

Diophantine approximation and certain sequences of lattices

by

WOLFGANG M. SCHMIDT (Boulder, Cola)

In memory of H. Davenport

1. Introduction. The present paper is a continuation of the joint work [2], [3] by Davenport and the author, but most of it can be read independently.

Let \(a_1, \ldots, a_n \) be real numbers. There are two forms of Dirichlet's theorem on simultaneous approximation.

(a) For any positive integer \(N \) there exist integers \(x_1, \ldots, x_n, y, \) not all zero, and satisfying
\[|a_1 x_1 + \ldots + a_n x_n + y| < N^{-n}, \quad \max(|x_1|, \ldots, |x_n|) \leq N; \]

(b) for any positive integer \(N \) there are integers \(x_1, \ldots, x_n, y, \) not all zero, with
\[\max(|a_1 y - x_1|, \ldots, |a_n y - x_n|) < N^{-1}, \quad |y| \leq N^n. \]

Now let \(A(a_1, \ldots, a_n; N) \) be the lattice in the space of dimension \(\ell = n + 1 \)

with basis vectors
\[g_1 = (N^{-1}, 0, \ldots, 0, a_1 N^n), \]
\[g_2 = (0, N^{-1}, \ldots, 0, a_2 N^n), \]
\[\ldots \ldots \ldots \ldots \ldots \]
\[g_n = (0, 0, \ldots, N^{-1}, a_n N^n), \]
\[g_{n+1} = (0, 0, \ldots, 0, N^n). \]

Form (a) of Dirichlet's theorem says precisely that \(A(a_1, \ldots, a_n; N) \) has a nonzero point (namely \(x_1 g_1 + \ldots + x_n g_n + y g_{n+1} \)) in the cube defined by \(|x_1| \leq 1, \ldots, |x_n| \leq 1, |y| < 1. \) Dirichlet's theorem in form (a) can be improved for particular \(a_1, \ldots, a_n; N \) if the lattice \(A(a_1, \ldots, a_n; N) \)
has a nonzero point in some smaller cube \(|z| = 0, \ldots, |z| = 0\) where 0 < \(\varepsilon < 1\). Thus for given \(a_1, \ldots, a_n\), to study refinements of Dirichlet's theorem in form (b) it is natural to study the sequence of lattices \(A(a_1, \ldots, a_n; N)\) with \(N = 1, 2, \ldots\).

Form (b) of Dirichlet's theorem says that the lattice \(A^*(a_1, \ldots, a_n; N)\) with basis vectors
\[
\begin{align*}
g_1^* &= (N, 0, \ldots, 0, 0), \\
g_2^* &= (0, N, \ldots, 0, 0), \\
\vdots & \quad \vdots \\
g_n^* &= (0, 0, \ldots, N, 0), \\
g_*^* &= (-a_1N, -a_2N, \ldots, -a_nN, N^{-n})
\end{align*}
\]

has a nonzero point (namely \(x_1g_1^* + \cdots + x_ng_n^* + yg_*^*\)) in the cube \(|z| < 1, \ldots, |z| < 1, |z| < 1\). The lattice \(A^*(a_1, \ldots, a_n; N)\) is polar to \(A(a_1, \ldots, a_n; N)\). To study refinements of Dirichlet's theorem in form (b) for fixed \(a_1, \ldots, a_n\) one has to look at the sequence of lattices \(A^*(a_1, \ldots, a_n; N)\) with \(N = 1, 2, \ldots\).

Given a point \(x = (x_1, \ldots, x_l)\), write \(|x| = \max(|x_1|, \ldots, |x_l|)\). The \(l\times l\)-determinant \(A(x_1, \ldots, x_l)\) of \(l\) points \(x_1, \ldots, x_l\) in \(l\)-dimensional space \(E^l\) is defined as the \(l\times l\)-determinant with row vectors \(x_i = (x_{i1}, \ldots, x_{il}) (1 \leq i \leq l)\). We now recall that the lattices of determinant 1 in \(E^l\) form a topological space (see [1], § V.3.2). A sequence of lattices \(A_1, A_2, \ldots\) is everywhere dense in this space precisely if for every \(\varepsilon > 0\) and every \(l\)-tuple of points \(x_1, \ldots, x_l\) with determinant 1 there is a lattice \(A_k\) in the sequence with points \(h_1, \ldots, h_l\) in \(A_k\) such that
\[
|x_i - h_i| < \varepsilon \quad (i = 1, \ldots, l).
\]

It is easy to see that a sequence of lattices \(A_1, A_2, \ldots\) is everywhere dense if and only if the sequence of polar lattices \(A_1^*, A_2^*, \ldots\) is everywhere dense.

Theorem 1. The sequence of lattices \(A(a; N)\) with \(N = 1, 2, \ldots\) is everywhere dense in the space of lattices with determinant 1 in \(E^l\) if and only if every block of positive integers occurs infinitely often in the sequence of partial quotients of the expansion of \(x\) as a simple continued fraction.

Almost every \(x\) (in the sense of Lebesgue measure) has an expansion as a simple continued fraction with the property described in the theorem. We therefore have the following

Corollary. For almost every \(x\), the sequence \(A(a; N)\) with \(N = 1, 2, \ldots\) is everywhere dense.

When \(n > 1\) an appeal to continued fractions is not possible.

Theorem 2. Let \(n \geq 1\) and let \(N_1, N_2, \ldots\) be real numbers which increase to infinity. Then for almost every \(n\)-tuple \((a_1, \ldots, a_n)\), the sequence of lattices \(A(a_1, \ldots, a_n; N_k)\) with \(k = 1, 2, \ldots\) is everywhere dense in the space of lattices of determinant 1 in \(E^l\).

This result sharpens Theorem 3 of [3]. By a remark made above it remains true if the lattices \(A(a_1, \ldots, a_n; N_k)\) are replaced by the polar lattices \(A^*(a_1, \ldots, a_n; N_k)\).

Siegel [6] defined a measure on the space of lattices of determinant 1. Hence it is natural to ask whether a sequence of lattices is uniformly distributed in this space. It is easy to see that the lattices \(A(a_1, \ldots, a_n; N)\) change rather slowly as \(N\) varies, and hence \(A(a_1, \ldots, a_n; N)\) with \(N = 1, 2, \ldots\) is not uniformly distributed for any \(a_1, \ldots, a_n\). On the other hand it is likely that the lattices \(A(a_1, \ldots, a_n; N)\) are uniformly distributed for almost every \((a_1, \ldots, a_n)\). Nothing in this direction will be proved in the present paper.

2. The necessity of the continued fraction condition. We shall adopt the notation of [4], chapter X, for continued fractions. Thus \([a_0, a_1, \ldots, a_n]\) is the rational function of \(a_0, \ldots, a_n\) defined inductively by \([a_0] = a_0\) and by \([a_0, a_1, \ldots, a_k] = a_0 + [a_1, \ldots, a_k]^{-1} (k = 1, 2, \ldots)\). Every irrational number \(x\) has a unique expansion as an infinite continued fraction \(x = [a_0, a_1, a_2, \ldots] = \lim[a_0, a_1, \ldots, a_n]\) where \(a_n\) is an integer and \(a_1, a_2, \ldots\) are positive integers. The numbers \(a_0, a_1, a_2, \ldots\) are the partial quotients, and the rational \([a_0, a_1, \ldots, a_n]\) are the convergents of the continued fraction. One puts \([a_0, a_1, \ldots, a_n] = p_n/q_n\) where \(p_n, q_n\) are in their lowest terms, and \(a_n = [a_0, a_{n+1}, \ldots]\).

Suppose now that \(A(a_1, N)\) with \(N = 1, 2, \ldots\) is everywhere dense. Then \(x\) must be irrational. Let \(x_1, x_2\) be the points
\[
x_1 = (2\varepsilon, -1 + 2\varepsilon y), \quad x_2 = (1, y)
\]
where \(0 < y < \frac{1}{x}\) and where \(\varepsilon > 0\) is small. We have \(A(x_1, x_2) = 1\), and hence there are lattice points \(h_1, h_2\) in some lattice \(A(a; N)\) of the sequence with \(|h_i - x_i| < \varepsilon (i = 1, 2)\). We may write
\[
\begin{align*}
h_1 &= a_0g_1 + bg_2, \\
h_2 &= c_0g_1 + dg_2,
\end{align*}
\]
where \(g_1, g_2\) are given by (4) and where the coefficients \(a, b, c, d\) are integers. Now \(ad - bc = A(h_1, h_2)\), and this is close to \(A(x_1, x_2) = 1\) if \(\varepsilon\) is small. Hence
\[
ad - bc = 1
\]
if \(\varepsilon > 0\) is small. By virtue of (5) we have \(h_1 = (aN^{-1}, aN + bN)\), \(h_2 = (cN^{-1}, aN + dN)\), and hence the inequalities \(|h_i - x_i| < \varepsilon (i = 1, 2)\) imply that
In particular we have $a > 0$, $c > 0$ if $z > 0$ is small. We further have $a(aa + b) < 3\varepsilon N|aa + b| < 8\varepsilon (1 + e)$ by (7), and hence $a(aa + b) < \frac{1}{2}$ if z is small. It follows from a well-known theorem (e.g. Theorem 13 of [4]) that $-b/c$ is a convergent to a, say $-b/a = p_k/q_k$. By (8) the numbers a, b are coprime, and by (7) we have $aa + b < 0$. Hence $a = q_k$, $b = -p_k$, and k is odd. Similarly from (8) we obtain that $a(aa + d) < (1 + e)N|aa + d| < (1 + e)(y + e) < \frac{1}{2}$ if z is small, since $0 < y < \frac{1}{2}$. Thus also $-d/c$ is a convergent to a, say $-d/c = p_{k+1}/q_{k+1}$. Using (6) and (8) one sees that $c = q_k, d = -p_{k+1}$, and that k is even. One sees from (7), (8) that
\[|q_k a - p_k| = |a| \cdot |a + b| = |a - p_k|, \]
since $0 < y < \frac{1}{2}$ and since z is small, and therefore one has $k > h$. Finally, $q_k p_k - q_{k+1} p_k = ad - be = 1$ implies that $h = k - 1$. For otherwise we would have $h < k - 1$, and
\[(q_k, q_{k+1})^\varepsilon = (p_k/q_k) - (p_{k+1}/q_{k+1}) > (p_k/q_k) - (p_{k-1}/q_{k-1}) \]
\[> (q_k q_{k-1})^\varepsilon > (q_k q_{k+1})^\varepsilon, \]
a contradiction. Altogether we have
\[a = q_{k+1}, \quad b = -p_{k-1}, \quad c = q_k, \quad d = -p_k. \]

The inequalities (7), (8) imply that
\[q_{k+1}/q_k = a/c < 3\varepsilon (1 - e)^{-1} < 4\varepsilon \]
if z is small. We also have
\[|q_k (aq_{k+1} - p_{k+1}) - y| = |c(aa + d) - y| < |N(aa + d) - y| + |N - c| |a + d| < e + N\varepsilon |y + e| < 3\varepsilon. \]
But by (4), § 10.9,
\[q_k a(q_{k+1} - p_{k+1}) = q_k (-1)^{k}(a_{k+1} + q_{k+1} - q_{k+1}/q_k)^{-1} = (a_{k+1} + q_{k+1}/q_k)^{-1}. \]
Thus
\[|a_{k+1} + q_{k+1}/q_k| - y| < 3\varepsilon, \quad \text{whence } |a_{k+1} + q_{k+1}/q_k| - y| < 4\varepsilon \]
if $z > 0$ is small, and using this together with (10) we obtain
\[|a_{k+1} - y| < 10\varepsilon^2. \]
Since $e > 0$ was arbitrarily small, the sequence a_1, a_2, \ldots comes arbitrarily close to y. Since y was arbitrary in $0 < y < \frac{1}{2}$, the sequence is everywhere dense on the half line $x > 2$. Since $a_2 = a_0 + (a_{k+1})^{-1}$, the sequence a_0', a_1', \ldots is in fact dense on $x > 1$. From this it follows easily that every block of positive integers occurs infinitely often among a_1, a_2, \ldots

3. The sufficiency of the continued fraction condition.

Lemma 1. Suppose every block of positive integers occurs infinitely often among a_1, a_2, \ldots. Then the points
\[(a_n/q_n, a_{n+1}/q_{n+1}) \quad (n = 2, 4, 6, \ldots) \]
are everywhere dense in the quadrant $x > 1, y > 1$ of the plane. The same is true with $n = 3, 5, \ldots$.

Proof. Let $x > 1, y > 1$, and suppose $e > 0$ is small. There are integers $b_0, b_1, b_2, \ldots, b_0$ such that every number $x' = [b_0, b_1, b_2, \ldots, b_{n+1}, \ldots, b_1]$ with arbitrary f and b_2, b_3, \ldots, b_n satisfies $|x' - x| < e$. There are integers c_0, c_1, c_2, \ldots such that every number $y' = [c_0, c_1, c_2, \ldots]$ with arbitrary c_{n+1}, \ldots satisfies $|y' - y| < e$. Now suppose n is large and such that
\[a_n - 2 = b_2, \ldots, a_{n-1} = b_1, a_n = b_0, \]
\[a_{n-1} = c_0, a_{n+2} = c_1, \ldots, a_{n+2} = c_n. \]
Since $q_n/q_{n-1} = [a_0, a_1, \ldots, a_n]$ ([5], § 11), we then have $|q_n/q_{n-1} - x| < e$, and similarly we have $|a_{n+1} - y| < e$. But (11) happens for infinitely many values of n. Since every block of integers occurs in a_1, a_2, \ldots, there are in fact infinitely many values of n for which (11) holds both for n and for $n' = n + 2r + 2s - 1$. But n, n' have opposite parity, and hence there will in fact be infinitely many even as well as infinitely many odd n with (11). This proves the lemma.

We now have to show that for any two points x_1, x_2 with $d(x_1, x_2) = 1$, there are lattice points h_1, h_2 in some lattice $A(a, N)$ with $h_1 - x_1$ and $h_2 - x_2$ both less than 32ε by replacing h_1 and h_2 by $-h_1$ and $-h_2$, respectively, if necessary. Let $y_1 = (x_1, y_1)$ be a minimal point in A, i.e. assume that $y_1 \neq 0$ and that there is no point $(x', y') \neq 0$ in A with $|x'| < |x_1|$, $|y'| < |y_1|$. By replacing y_1 by $-y_1$, if necessary, we may assume that $x_1 > 0$. Let $y_1 = (x_1, y_1) \neq 0$ be a point with $|y_1| < x_1$, and with $|y_1| as small as possible. Then y_1 is again a minimal point, and in fact there is no point $(x, y) \neq 0$ with
\[(x, y) < (x_1, y_1), \quad (y, y) < (y_1). \]
We may assume that $x_2 > 0$. The point $(x, y) = (x_1 - x_2, y_1 - y_2)$ has $0 < x < x_1$, and hence by the possibility of (12) it has $|y| = |y_1 - y_2| \geq |y_2|$. Since $|y_2| < |y_1|$, this implies that y_2, y_1 are of opposite sign.
Since there is no nonzero point in the region defined by (12), the triangle
\(\mathbf{0}, \mathbf{y}_1, \mathbf{y}_2 \) contains no lattice points but its vertices, and
\[
A(y_1, y_2) = x_1 y_2 - x_2 y_1 = \pm 1.
\]
One has
\[
|y_1| (x_1 + x_3) < |y_2| x_3 + |y_3| x_1 = |y_1 x_2 - y_2 x_3| = 1,
\]
and therefore
\[
\frac{1}{|x_1 y_1|} x_2 = 1 - \frac{x_3 |y_1|}{|x_1 y_1|} > 1.
\]

It will suffice to find points \(f_1, f_2 \) of \(A(a; N) \) which are close to
\(y_1, y_2 \), respectively. For since \(y_1, y_2 \) form a basis of \(A \), we have \(a = a_1 y_1 + a_2 y_2 \), and if \(f_1, f_2 \) are close to \(y_1, y_2 \), then \(h_i = a_1 f_i + a_2 f_2 \) is close to \(a_i \) \((i = 1, 2)\). From here on, \(y_1, y_2 \) will be fixed. Now choose \(n \)
even if \(y_1 > 0 \), and \(n \) odd if \(y_1 < 0 \), and such that
\[
(q_n/q_{n-1}) - (a y_2) < \delta,
\]
\[
a_{n+1} - \left(\frac{1}{|x_1 y_1|} - \frac{x_2}{x_1} \right) < \delta,
\]
where \(\delta \) is some small positive quantity. Let \(N \) be an integer with
\[|N x_2 - q_{n-1}| < |x_2|.
\]

(13)
\[
|q_{n-1}/N - x_2| < \delta
\]
if \(n \) and hence \(N \) is large. We also have
\[
|N x_2 - q_{n-1}| = \left| \frac{x_1}{x_2} (N x_2 - q_{n-1}) + q_{n-1} \left(\frac{x_1}{x_2} - \frac{q_{n-1}}{x_2} \right) \right| < x_2 + q_{n-1} \delta \ll N \delta,
\]
whence

(14)
\[
|q_{n-1}/N - x_2| \ll \delta.
\]
(The constants in \(\ll \) depend only on \(y_1, y_2 \).) We note that by a formula in
\[\{4\}, \S \text{10.5},\]
\[
|N (aq_n - p_n) - y_1| \ll \frac{q_n}{x_1} |aq_n - p_n| - y_1 + \frac{q_n}{x_1} N \ll \frac{q_n}{x_1} |aq_n - p_n| - y_1 + \frac{q_n}{x_1} N \ll \frac{q_n}{x_1} |aq_n - p_n| - y_1 + \frac{q_n}{x_1} N, \]
\[
|a_{n+1} + (q_{n-1}/q_n) - x_1 y_1| - \delta.
\]
But
\[
|a_{n+1} + (q_{n-1}/q_n) - x_1 y_1| - \delta.
\]
and therefore
\[
|N (aq_n - p_n) - y_1| \ll \delta.
\]
Putting
\[
f_1 = q_n g_1 - p_n g_2 = (q_n N^2, q_n x_1 N - p_n N) = (a_1, b_1), \text{ say},
\]
\[
f_2 = q_{n-1} g_1 - p_{n-1} g_2 = (q_{n-1} N^2, q_{n-1} x_1 N - p_{n-1} N) = (a_2, b_2), \text{ say},
\]
we have
\[
|a_1 - x_1| \ll \delta, \quad |a_2 - x_2| \ll \delta, \quad |b_1 - y_1| \ll \delta
\]
by (13), (14) and (15). Since
\[
a_1 b_2 - a_2 b_1 = q_{n-1} p_{n-1} g_2 = (-1)^{n-1} = x_1 y_2 - x_2 y_1,
\]

4. The method of proof of Theorem 2. We shall restrict ourselves
to the case when \(n = 2, l = 3 \). Throughout the proof, \(x_1, y_1, \ldots \) will denote
points in 3-dimensional space. We shall write \(A(a, \beta; N) \) instead of
\(A(a_1, a_2; N) \).

Let \(x_1, x_2, x_3 \) be points with \(A(x_1, x_2, x_3) = 1 \). Further let
\(T(N; x_1, x_2, x_3; \epsilon) \) consist of all pairs \((a, \beta)\) for which the lattice
\(A(a, \beta; N) \) contains points \(h_1, h_2, h_3 \) with \(|h_i - x_i| < \epsilon \) \((i = 1, 2, 3)\).

Proposition. There is a \(\theta = \theta(x_1, x_2, x_3; \epsilon) \) \(> 0 \) such that for every
square \(Q \) of the type
\[
(a - a, -a, \beta - \beta) < a, \quad |\beta - \beta| < a
\]
and every \(N > N_0(Q; x_1, x_2, x_3; \epsilon) \) the intersection of \(Q \) with \(T(N) \)
\(= T(N; x_1, x_2, x_3; \epsilon) \) has measure
\[
\mu(Q \cap T(N)) \geq \theta \mu(Q) \geq \theta a^2.
\]

Thus the complement of
\[
T(x_1, x_2, x_3; \epsilon) = \bigcup_{k=1}^{\infty} T(N_k; x_1, x_2, x_3; \epsilon)
\]
has density \(\ll 1 - \theta < 1 \) everywhere. Since a measurable set has density 1
at almost all of its points, the complement of \(T(x_1, x_2, x_3; \epsilon) \) has measure
zero, and almost every point \((a, \beta)\) belongs to \(T(x_1, x_2, x_3; \epsilon) \). Since
this is true for every \(\epsilon > 0 \) and every \(x_1, x_2, x_3 \) with determinant 1,
Theorem 2 follows. It remains to prove the proposition.

5. The set \(\Sigma(N) \). Write \(x_i = (\xi_{i1}, \xi_{i2}, \xi_{i3}) \) \((i = 1, 2, 3)\). We may
assume that \(x_1, x_2, x_3 \) satisfy only the equation \(A(x_1, x_2, x_3) = 1 \) and
equations implied by it, i.e., that \(x_1, x_2, x_3 \) is a generic point of the surface
in 9-dimensional space defined by \(A(x_1, x_2, \ldots, x_9) = 1 \). From now on, \(x_1, x_2, x_3 \) will be fixed. The constants in \(\leq \) may depend on \(x_1, x_2, x_3 \) and on \(\delta \), but they will be independent of \(N \) and of squares \(Q \).

Let \(\Sigma(N) = \Sigma(N; x_1, x_2, x_3; \delta) \) consist of all pairs \((\alpha, \beta)\) for which the lattice \(A(\alpha, \beta; N) \) contains points \(h_1, h_2, h_3 \) with
\[
A(h_1, h_2, h_3) = 1
\]
and with
\[
|h_1 - x_1| < \delta, \quad |h_2 - x_2| < \delta, \quad |h_3 - \xi_{x_1}| < \delta, \quad |h_3 - \xi_{x_2}| < \delta
\]
where \(h_3 = (h_{31}, h_{32}, h_{33}) \). Since \(A(h_1, h_2, h_3) = A(x_1, x_2, x_3) = 1 \), the eight inequalities implicit in \((19) \) imply a ninth one, namely \(|h_3 - \xi_{x_3}| < \delta \).

Hence if \(\delta \) is sufficiently small in relation to \(\varepsilon \), then \(|h_i - x_i| < c \) \((i = 1, 2, 3)\), and \(\Sigma(N; x_1, x_2, x_3; \delta) \) is contained in \(T(N; x_1, x_2, x_3; \varepsilon) \).

Hence it will suffice to prove the proposition above with \(c \) replaced by \(\delta \) and \(T(N) \) replaced by \(\Sigma(N) \). It will suffice to prove the proposition for \(0 < \delta < \delta_0 \), where \(\delta_0 = \delta(x_1, x_2, x_3) \) is arbitrarily small.

Recall that \(A(\alpha, \beta; N) \) has the basis
\[
(20) \quad g_1 = (N^{-1}, 0, \alpha N^2), \quad g_2 = (0, N^{-1}, \beta N^2), \quad g_3 = (0, 0, N^2).
\]
Any three points, \(h_1, h_2, h_3 \) of \(A(\alpha, \beta; N) \) may be written as
\[
h_1 = q_1 g_1 + q_2 g_2 + q_3 g_3,
\]
\[
h_2 = q_1 g_1 + q_2 g_2 + q_3 g_3,
\]
\[
h_3 = q_1 g_1 + q_2 g_2 + q_3 g_3
\]
with integer coefficients \(q_i \). For given integer points \(q_1, q_2, q_3 \) with \(q_i = (q_{i1}, q_{i2}, q_{i3}) \) \((i = 1, 2, 3)\), let \(F(N; q_1, q_2, q_3; \delta) \) be the set of pairs \((\alpha, \beta)\) for which \(h_1, h_2, h_3 \) as given by \((20)\) and \((21)\) satisfy \((18)\) and \((19)\). (\(F \) also depends on \(x_1, x_2, x_3 \), but these points are fixed.)

Now \(A(h_1, h_2, h_3) = 1 \) is equivalent with
\[
A(q_1, q_2, q_3) = 1
\]
and six of the eight inequalities implicit in \((19)\) are equivalent with
\[
|q_{i1} - x_{i1}| < N\delta, \quad |q_{i2} - N\xi_{x_i}| < N\delta \quad (i = 1, 2, 3).
\]
Thus \(F(N; q_1, q_2, q_3; \delta) \) is empty unless \((22)\) and \((23)\) hold. But if these inequalities hold, then \((\alpha, \beta)\) lies in \(F(N; q_1, q_2, q_3; \delta) \) precisely if
\[
|q_{i1} + q_{i2} + q_{i3} - \xi_{x_i} N^{-2}| < N\delta \quad (i = 1, 2, 3).
\]
(These are the remaining two inequalities of \((19)\).) Hence in this case \(P(N; q_1, q_2, q_3; \delta) \) is the parallelogram \(B(N; q_1, q_2, q_3; \delta) \) defined by \((24)\).

(Since \(x_1, x_2, x_3 \) are generic, and by \((23)\), we have \(q_{i1} q_{i2} - q_{i2} q_{i1} \neq 0 \) if \(\delta > 0 \) is sufficiently small, which we may assume.)

Lemma 2. Suppose \(\delta > 0 \) is sufficiently small, and the integer points \(q_1, q_2 \) satisfy \((23)\) for \(i = 1, 2 \). Then \(B(N; q_1, q_2; \delta) \) has area
\[
\mu(B(N; q_1, q_2; \delta)) = N^{-6}
\]
and diameter
\[
d(B(N; q_1, q_2; \delta)) = N^{-3}.
\]

Proof. This is Lemma 2 of \([3]\).

Lemma 3. Suppose \(N \) is large and suppose that integer points \(q_1, q_2 \) satisfy \((23)\) with \(i = 1, 2 \) and
\[
\left| \frac{q_{i1}}{q_{i2}} - \frac{q_{i1}}{q_{i3}} - a_0 \right| < \frac{\eta}{4},
\]
\[
\left| \frac{q_{i1}}{q_{i2}} - \frac{q_{i1}}{q_{i3}} + \beta_0 \right| < \frac{\eta}{4}.
\]

Then \(B(N; q_1, q_2; \delta) \) is contained in the square \(Q \) defined by \((16)\).

Proof. This is Lemma 3 of \([3]\).

Now let \(B'(N; q_1, q_2; \delta) \) be the parallelogram of points \((\alpha, \beta)\) which satisfy \((24)\) with \(\xi_{x_1}, \xi_{x_2} \) replaced by zero. Now if \((23)\) holds, then \(|q_{i1} q_{i2} - q_{i2} q_{i1}| > N^3 \), and \(B(N; q_1, q_2; \delta) \) is obtained from \(B'(N; q_1, q_2; \delta) \) by translation by a vector of length \(O(\delta^{-1}) \).

Lemma 4. Suppose \(q_1, q_2 \) are part of a basis and satisfy \((23)\) for \(i = 1, 2 \). Make the same assumptions on \(q_1, q_2 \). Then, if \(q_1, q_2 \neq (q_1, q_2) \), the parallelograms \(B'(N; q_1, q_2; \delta) \) and \(B'(N; q_1, q_2; \delta) \) are disjoint.

Proof. This is Lemma 4 of \([3]\).

Lemma 5. Suppose \(N \) is large. Then a point \((\alpha, \beta)\) lies in \(\leq 1 \) parallelograms \(B(N; q_1, q_2; \delta) \) with \(q_1, q_2 \) part of a basis and satisfying \((23)\) with \(i = 1, 2 \).

Proof. This is Lemma 5 of \([3]\).

6. The number of certain integer points. Let \(Z(N) \) be the set of triples of integer points \(q_1, q_2, q_3 \) with \((22)\), \((23)\) and \((25)\). Suppose that \(q_1, q_2, q_3 \) and \(q_1, q_2, q_3 \) lie in \(Z(N) \). Then by \((22)\) we have \(g_3 = g_3^* + v g_1 + v g_2 \) with integer coefficients \(u, v \). By \((23)\) we have
\[
|q_{i1} - N\xi_{x_i}| < N\delta \quad \text{and} \quad |q_{i1} - N\xi_{x_i}| < N\delta.
\]
whence $|q_1' - q_2| = |w_1 q_1 + w_2 q_2| < 2N \delta$. In the same manner one finds that $\max(|q_3' - q_2|, |q_3 - q_2|) < 2N \delta$. Now by (23) again one has
\[\max(|q_1|, |q_1 + q_3|, |q_2 + q_3|) \ll N^2\] and hence u, v satisfy $|u|, |v| < \delta$. Hence if δ is sufficiently small we have $|u|, |v| < 1$, whence $u = v = 0$, whence $q_i = q_j$.

We have shown that if q_1, q_2, q_3 and q_1', q_2', q_3' are distinct triples in $Z(N)$, then already the pairs q_1, q_2 and q_1', q_2' are distinct.

Let $\mathcal{P}(N)$ denote the number of elements of $Z(N)$. By Lemma 3, the set $Q \cap \Sigma(N)$ contains at least $\mathcal{P}(N)$ parallelograms $B(N; q_1, q_3; \delta)$ where q_1, q_2, q_3 lie in $Z(N)$. But those parallelograms need not be disjoint. By what we just said, the pairs q_1, q_2 are all distinct here. Hence by Lemma 5, any given point (a, b) lies in $\ll 1$ of these parallelograms. Since $B(N; q_1, q_3; \delta)$ has area $\mu(B) \gg N^{-1}$ by Lemma 2, we obtain
\[\mu(Q \cap \Sigma(N)) \gg N^{-1} \mathcal{P}(N).\]

Therefore to prove (17) and thus Theorem 2 it will suffice to show that (26)
\[\mathcal{P}(N) \gg N^{2/3} \delta.\]

7. Some further lemmas.

Lemma 5. Let \mathcal{P} be a bounded Jordan measurable set in 6-dimensional space. Then as $t \to \infty$, the number of integer points $X = (x_1, x_2)$ in \mathcal{P} such that x_1, x_2 is part of a basis of the integer lattice in 3-dimensional space is asymptotically $\mathcal{P}(N) \gg N^{-1}$.

Proof. This is the case if $m = 3$ and $l = 3$ of Theorem 4 in [3].

Lemma 7. Suppose $0 < \varepsilon < 1$ and $l = (l_1, l_2, l_3)$ are given. There is a basis v_1, v_2, v_3 of the integer lattice such that every point x with
\[x = u_1 v_1 + u_2 v_2 + u_3 v_3\]
where
\[|u_i| < |u_1| + |u_2|\]
satisfies
\[|u_i v_i| < \varepsilon |x|\]
and
\[|v_i| |x| < \varepsilon |x|\]

Proof. We may assume that $l \neq 0$, and in fact we may assume that $|l_1| + |l_2| + |l_3| = 1$. The equation $lx = 0$ defines a plane P in \mathbb{R}^3. Let x_1, x_2, x_3 be two nonzero orthogonal points on P, and let $\varepsilon > 0$ be small. Let S be the set of points $x = (x_1, x_2)$ in \mathbb{R}^2 with
\[|x_1 - x_2| < \varepsilon, \quad |x_1 - x_2| < \varepsilon.\]

Lemma 6 tells us that for sufficiently large t there will be points (x_1, x_2) in tS such that x_1, x_2 is part of a basis of the integer lattice. Let (x_1, x_2) be such a point, and choose x_3 such that x_1, x_2, x_3 is a basis. Now let v be a large integer and put
\[v_1 = x_1 v_1 + x_2, \quad v_2 = x_2 + x_3, \quad v_3 = x_3.\]

Then v_1, v_2, v_3 are again a basis of the integer lattice.

Now x_1, x_2 were orthogonal, and if v is sufficiently small, the points x_1, x_2 will be "almost orthogonal", and if v is sufficiently large, the points v_1, v_2 will be "almost orthogonal". To make this precise, we may ascertain that the angle between v_1, v_2 lies between $\pi/3$ and $2\pi/3$, say. Then
\[|u_1 v_1 + u_2 v_2| > c_0 (|u_1| + |u_2|) \min (|v_1|, |v_2|),\]
where $c_0 > 0$ is an absolute constant, and (29) implies that $|u_1 v_2| \ll (|u_1| + |u_2|) |x|$. Now $\min (|v_1|, |v_2|)$ becomes arbitrarily large for large v, while $|v_3|$ is independent of v. Thus for large v we have
\[|u_2 v_3| \ll \frac{1}{\varepsilon} |u_1 v_2 + u_2 v_3|,\]
and hence the point x given by (28) satisfies (30). Also
\[x = u_1 (v_1 v_2 + u_2 v_3 + u_3 v_1) + u_2 v_2 = \mathbb{P} + y\]
where
\[p = v_1 (u_1 v_2 + u_2 v_3),\]
and
\[y = v_1 (u_1 v_2 + u_2 v_3 + u_3 v_1) + u_2 v_2 + u_3 v_1 v_2 + u_3 v_1 v_3.\]

Here p lies in the plane P, and $|p| \gg c_0 (|u_1| + |u_2|)$. On the other hand, $|x_1 - x_2| < \varepsilon$ ($l = 1, 2$), whence $|y| \ll c_0 (|u_1| + |u_2|) + \varepsilon (|u_1| + |u_2|)$. Thus if ε is sufficiently small and if v is sufficiently large, then $|y| \ll \varepsilon |p|$. But this yields (31), since
\[|x_1|x_2| \ll |y| \ll |x_1| \ll |x_1| \leq \varepsilon |x_1|,\]
and the conclusions of Lemma 7 are valid with (30) replaced by
\[|u_2 v_3| \ll \varepsilon (|u_1| + |u_2|),\]
and such that $r_1 r_2 r_3 - r_1 r_2 r_3 \neq 0$.

Lemma 8. Suppose $s, l = (l_1, l_2, l_3)$ are as in Lemma 7, and assume that $l_3 \neq 0$. There is a basis of the integer lattice such that the conclusions of Lemma 7 are valid with (30) replaced by
\[|u_2 v_3| \ll \varepsilon (|u_1| + |u_2|)\]
Proof. Since \(l_3 \neq 0 \), one may choose \(z_1, z_2 \) in the proof of Lemma 7 such that \(\xi_{12} z_1 \pm \xi_{32} z_2 \neq 0 \). There is a constant \(c_0 > 0 \) such that for arbitrary \(u_1, u_3 \) one has

\[
|u_1 \xi_{11} + u_3 \xi_{31} + |u_1 \xi_{12} + u_3 \xi_{32}| > c_0 (|u_1| + |u_3|).
\]

Now if \(\epsilon \) is small and if \(\kappa \) is large, the points \(r_{12}/\epsilon \) and \(r_{32}/\epsilon \) will be arbitrarily close to \(z_1, z_2 \), respectively. Thus one will have \(r_{12} r_{32} - r_{21} r_{32} \neq 0 \) and

\[
|u_1 r_{12} + u_3 r_{32}| + |u_1 r_{21} + u_3 r_{32}| > \frac{c_0}{2} (|u_1| + |u_3|) \epsilon t.
\]

Hence

\[
|\xi_1| + |\xi_2| = |u_1 r_{12} + u_3 r_{32}| + |u_1 r_{21} + u_3 r_{32}| + |u_1 r_{12} + u_3 r_{32} + u_3 r_{32}|
\]

\[
> \frac{c_0}{2} (|u_1| + |u_3|) \epsilon t - 2 \epsilon \eta,
\]

by (30). Since \(|x| \) \(\leq c_2 \epsilon t (|u_1| + |u_3|) \), we obtain \(|\xi_1| + |\xi_2| \geq c_0 \eta \) if \(\epsilon > 0 \) is small. In conjunction with (30) this gives

\[
|u_3 r_{32}| \leq c_0^{-1} (|\xi_1| + |\xi_2|).
\]

Since \(\epsilon > 0 \) was arbitrary, the lemma follows.

8. A lower bound for \(\varepsilon(N) \). There are numbers \(l_1, l_2, l_3 \), not all zero, with

\[
l_1 \xi_{11} + l_2 \xi_{21} + l_3 \xi_{31} = 0, \quad l_1 \xi_{12} + l_2 \xi_{22} + l_3 \xi_{32} = 0.
\]

In fact, since \(\xi_1, \xi_2, \xi_3 \) were generic, the number \(l_3 \neq 0 \). The inequalities

\[
|q_{11} - N \xi_{11}| < N \delta/2, \quad |q_{12} - N \xi_{12}| < N \delta/2 \quad (i = 1, 2)
\]

are stronger than the cases \(i = 1, 2 \) of (23). There exists an \(\epsilon = \epsilon(\delta) > 0 \) such that (33) together with

\[
|l_1 q_{11} + l_2 q_{21} + l_3 q_{31}| < \epsilon \max(|q_{11}|, |q_{21}|, |q_{31}|),
\]

(34)

\[
|l_1 q_{12} + l_2 q_{22} + l_3 q_{32}| < \epsilon \max(|q_{12}|, |q_{22}|, |q_{32}|)
\]

implies (23) for \(i = 1, 2, 3 \).

Putting \(l = (l_1, l_2, l_3) \) and

\[
q_1 = (q_{11}, q_{21}, q_{31}), \quad q_2 = (q_{12}, q_{22}, q_{32}), \quad q_3 = (q_{13}, q_{23}, q_{33}),
\]

we may rewrite the inequalities (34) as

\[
|q_1| < \epsilon |q_1|, \quad |q_2| < \epsilon |q_2|.
\]

Let \(r_1, r_2, r_3 \) be the basis of Lemma 8. We may write

\[
q_1 = u_1 r_1 + u_2 r_2 + u_3 r_3,
\]

(37)

\[
q_2 = u_1 r_2 + u_2 r_2 + u_3 r_3,
\]

\[
q_3 = u_1 r_3 + u_2 r_3 + u_3 r_3,
\]

with integer coefficients \(u_i \). By (31) of Lemma 7 and 8, the inequalities (36) will be satisfied provided (29) holds, i.e. provided

\[
|u_i| \leq |u_{i1}| + |u_{31}| \quad (i = 1, 2, 3)
\]

holds for \(i = 1, 2, 3 \). Define points

\[
q'_1 = (q'_{11}, q'_{21}, q'_{31}), \quad q'_2 = (q'_{12}, q'_{22}, q'_{32}), \quad q'_3 = (q'_{13}, q'_{23}, q'_{33})
\]

by

\[
q'_1 = u_{11} r_1 + u_{21} r_2 + u_{31} r_3,
\]

(40)

\[
q'_2 = u_{12} r_1 + u_{22} r_2 + u_{32} r_3,
\]

\[
q'_3 = u_{13} r_1 + u_{23} r_2 + u_{33} r_3.
\]

By (32) of Lemma 8 we have

\[
|q_i - q'_i| < \epsilon (|q_{i1}| + |q_{i3}|) \quad (i = 1, 2, 3)
\]

provided (38) holds. Thus (38) implies that

\[
|q_i - q'_j| < \epsilon (|q_{i1}| + |q_{i3}|) \quad (i, j = 1, 2, 3).
\]

Thus if \(\epsilon > 0 \) is sufficiently small and if (38) holds, then

\[
|q'_{i1} - N q_{i1}| < N \delta/4, \quad |q'_{i2} - N q_{i2}| < N \delta/4 \quad (i = 1, 2)
\]

will imply (33). Similarly, (38), (41) together with

\[
|q'_{i1} - q_{i1}| \leq |q'_{i2} - q_{i2}| - \alpha_i < \eta/8,
\]

\[
\left| q'_{i3} q_{i1} - q_{i3} q_{i1} \right| - \beta_i < \eta/8
\]

will imply (23).

Thus \(\varepsilon(N) \geq \varepsilon'(N) \), where \(\varepsilon'(N) \) is the number of integer bases \(u_1, u_2, u_3 \) with (38) such that the quantities \(q'_i \) defined by (39) and (40) satisfy (41) and (42). The inequalities (41) and (42) with \(N = 1 \) define a bounded set in 6-dimensional space for \((q_{11}, q_{12}, q_{13}, q_{21}, q_{22}, q_{23}) \). This
set has volume $\gg n^d$. Now \((q_{11}, q_{12}, q_{13}, q_{14}, q_{23}, q_{24})\) is related to \((u_1, u_2) = (u_{11}, u_{12}, u_{13}, u_{14}, u_{23}, u_{24})\) by the linear transformation \((40)\) of determinant \((r_{11} r_{22} - r_{12} r_{21})^2 \neq 0\). Hence \((41)\) and \((42)\) with \(N = 1\) together with \((39)\) and \((40)\) define a bounded set for \((u_1, u_2)\) in 6-dimensional space of volume \(\gg n^d\). For arbitrary \(N\) we obtain the same set but blown up by the factor \(N\). Hence by Lemma 6 there are \(\gg n^d N^k\) pairs of points \(u_1, u_2\) which are part of a basis such that \((41)\) and \((42)\) are satisfied. There still are \(\gg n^d N^k\) such pairs \(u_1, u_2\) all of whose components are different from zero.

It remains to be shown that for every such \(u_1, u_2\) one can find a third basis vector \(v_3\) such that \((38)\) holds. There certainly will be such a vector \(v_3\) of the type \(v_3 = \lambda_1 u_1 + \lambda_2 u_2 + u_0\), where \(\lambda_j \leq \frac{1}{2} (j = 1, 2)\) and where \(u_0\) is the point with \(d(u_1, u_2, u_0) = 1\) which is orthogonal to \(u_1\) and \(u_2\).

It is easy to see that the coordinates of \(u_0\) have absolute values at most 1, and hence
\[
|u_{0i}| \leq \frac{1}{2} |u_{1i}| + \frac{1}{2} |u_{2i}| + 1 \leq |u_{1i}| + |u_{2i}| \quad (i = 1, 2, 3),
\]
since we made sure that \(u_{1i} \neq 0, u_{2i} \neq 0\). Thus our \(u_0\) does satisfy \((38)\), and we have \(z(N) \gg z'(N) \gg n^d N^k\). This proves \((26)\) and hence the theorem.

References