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1. Introduction. Davenport and Schinzel [1] introduced the following
problem on sequences. Suppose that Z, = {1,2,..., 2} and that V,(d)
denotes the set of all sequences a, b, a, b, 4, ... of length d, where ¢ and b
ave distinct elements of Z,. One congiders all sequences made up of ele-
ments from Z, such that no two adjacent elements are equal and no
subsequence is an element of 7, (j) for § > d. If N (n) denotes the maximal
length of any such sequence, we call any sequence of length Ny(n)
a Davenpori-Schinzel sequence (or a DS sequence.) The problem is to
determine all DS sequences and, in particular, to determine Ng(n). Of
course, it will be sufficient to determine all normal DS sequences; i.e.,
DS sequences in which the elements appear in order from left to right.

Davenport and Schinzel consider ¥,(n) for fixed ¢ and obtain the
results ¥, (n) =1, No(n) = n, Ng(n) = 2n—1. Two proofs of the restlt
for N4(n) are given, the second being based on Mrs. Turén's observation
that, in a DS sequence of length N,(n), there is some element which
occurs exactly one fime. They remark that 1,2,1,3,1,...,%4, 7,1 and.
1,2,..,8—1,8,72—~1,...,2%,1 are both D3 sequences for d =3.
Finally, they obtain bounds on N,{n) for fixed d, including the result
N,(n) = bn—0, where ¢ 15 a constant.

The authors [2] have proved that N,{2) = d and, for 4 > 3, N4(3)
— 3d—4 or 3d—5, depending upon whether d is even or odd. It is also
shown that, for » = 3, a DS sequence is unique.

The object of the present paper is to prove

(L.1) Ny(1) = 6d-14 (@ 0dd, 4> 4),
{1.2) Ny(4) = 6d—13 (4 even, 4 > 1),
(1.3 L [Wa—o< Mam  @> ),
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where € is a constant depending only on n. The constant ¢ = O'(») which
appears in (1.3) iIs given explicitly as a polynomial in #,

2. A lower bound. Given a normal DS sequence, it is clear that
""" <. (2>>7) is of length at most d--1.
For, otherwise, the sequence wowld eontain a subsequence f,1,7,1, ...
of length greater than 4.
Now suppose that 4 is even and d > » and let f denote the maximum
number of oceurrences of any element, say 1,ina DS sequence of length
Ya(n). There are f—1 blocks in the sequence; ie., groups of consecutive
elemenfis which contain no 1 hut are bounded both on the laft and the
right by 1’s. Bach of the remaining n—1 elements appears in at most
(d—2)/2 of these blocks; for if a symbol oecurred in as many as a/2 of
these blocks, there would result a sequence from V.(d4+1), and this is
impossible. On. the other hand, since no pair of 1's is to be adjacent, the
number of blocks must be no larger than the number of appearances in
the blocks. This proves

(2.1) ' R Gt S "2 g,

' Next, we give a construction of & sequence in which the bound (2.1)
i§ attained. List

L b2

! 2

I's and insert n between the first (d—2)/2 1’s, insert n— 1 between the
next (d—2)/2 1's, and so forth. Finally, list 2 normal DS sequence of
length N, ,{(n—1) made up of the entries 2,3,...,n to the right of the
lagt 1. Using the remark that the sequence of length &¥;_,(#—1) contains
no subsequence ¢,j,4,... (i >4) of length greater than d—2, we see
at once that the seguence we have constructed containg no subsequence
from V,(4) for j > d. Thiz proves the inequality

22)  Naln)> = 1)@=+ 14 Npy(n—1) (4 even).

For example,

(2:3) Nald) 2 3(d—2)+1+3(d~1)—5 = 64—13 (4 even),
We now congsider the case d odd and 4 > n. A gimilar argument shows
that, 1f_ J denotes the maximnm frequency of any element, then
{n—1)(d—1)

(2.4 :
) f%—ﬁz—b +1.
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In practice, the inequality (2.4) seems to be less ugeful than (2.1_).
Tn fact, to obtain a lower bound for N4(n), d odd and d > 7y We begin
(—1)(d—1)

by ligting only —5 T~

the first (d—3)/2 1’s, n—1 between the second (d-—3)l‘2 1’s, and so forth.
Finally, we insert a normal DS sequence of length l%‘,i_l(fn—l) made up
ot 2,3, ..., n between the last two 1's. It is easy to verify that the resulting
sequence has no adjacent terms equal and has no subsequences ﬁ[]lr.n
v.,.(j) for j > d. 1t is now only necessary to compute the length of this

sequence in order to prove .
(2.5) Ny(n) = (d—3)(n—1)F+2+Ng.1(n—1) (d odd).

n+3 1's. Next, we insert n between

FYor example,
(2.6) Ny(4) = 3(d—3)+24+3(d—-1)—4 = 8d-—14 (@ odd).

It is interesting to note that, as we shall show in § 4 and § 5, (2.3)
and (2.6) are exact values for N4

3. The constant (. Let d > n and pub

(;’) a—C,(n) (d even),

o) At = (g)d—oo(n) (@ 0dd).

It io]lowé from (2.2) that
(5)a—0.(m > (=1 (d—2)+1+(*5 ) (@1 ~Ostn—1)
e 1) =i
which implies |
(3.2) 0um) < Caln— 1)+ "3 1) —2-
In the same way, it follows from (2.5) that
(3.3) 0o(n) < O, (n—1)+ (’”;2) _-5.

Let D,{n) and D,(n) denote the maximum values of C,(n) and Cy(n)
ag indicated by (3.2) and (3.3). That is, Dy(2) = D,(2) =0 and

(34 D, = D1+ ("5 2,

(3.5) ' Dyin) = Dy(n—1)+ (*‘"}‘,:2)—5.
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It is an ensy induction to prove that

. n—1
(3.6) D)y = D, (n)+ [_—O ]?

s0 it will be sufficient to determine D {n). Combining (3.4) and (3.5),

we find that

(3.7) D,(n) = D, (n—2)+2 ('”?2" 1) 7.

Tterating (3.7} and using the initial conditiong, we are able to show

204 On* — 32n+9
12

2P+ 07— 32+ 12

g

(n odd, u = 3),

(3.8) D, (w) =

{n even).

The first few values of D, (n) and Dy(n) ave given by fthe following
table ‘

no ]2l s |6 | 7 | 8 | 9 10
Dw) | 05 4 18 |37 | 48 | w6 | 113 | 1m0 | 216
Do) | 0 5 1 |20 [ 50| re | 116 | 165 | 220

Combining the results (3.8), (2.2), and (2.5), we get that, for d > n,
(’2‘) d—D,(n) |

(;b)ck—l)c(az:)*— [”;1] (@ odd),

where D, (n) is given by (3.8),

_ (d even),
(3.9) Niln) =

4. The case % = 4 and d even. If 4 is even and d > 4 then, according

te (2.1}, f<34/2—2. On the other hand, it follows from (2.3) that 4f
Z Ny(4) 2 6d—13, so that f 2 3d/2 —3. We will show that in a DS sequence
of length Nj{4),f = 3d/2—2. T
~ If one of the elements, say 1, occurs f = 3d/2—3 times, then there
are f—1 Dlocks between 1's. Since each of 2,3, and £ can occur in at
most (d—2)/% of these blocks, we see that tlie appearances of 2,3, and
4 can overlap in at most one block. We consider two cases.

. Case 1. There is no overlapping. Here the humber of interior bloeks
oceupied by 2,3, and 4 is {d~2)/2, (d—2)/2, and (d—4)/2, respectively.
Since this sequence containg subsequences 1,2,1,... and 1,3,1,...
of length ' ' .

' (d—2

[Le)

5 ) +1 =d-1,
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1t i5 clear that 2 and 3 can oceur at only one of the two ends of the gequence.
However, 4 can occar at both ends.

I£ 2 and 4 oceur at one end of the sequence and 3 and {4 occur at the
opposite end, then the sequence is of length at most

fAHf—142N,,(2) =3d—9.

This is not a DS sequence since, for d > 4, Ng(4) 2= 6d—13. Next, if 2, 3,
and 4 sppear at one end of the sequence, the maximum length of the
sequence is

L4+ f+f—14+N; ,(3) = 6d—14.

And, again, this is not a DS sequence.
Thus we are led to consider

Case 2. Two of the elements, say 3 and 4, appear in the same block.
The resulting sequence contains subsequences 1,a,1,... of length d—1
for a =2, 3, and 4, so that 2, 3, and 4 can oceur at only one of the end
positions. .

It 4 is at one end and 2 and 3 are at the opposite end, then the sequence
has length at most

fAf—2414+2N, (2) = 3d—9 < 6d—13.

Next, it 2 is on one end and 3 and 4 are at the opposite end, the maximum

length ig
fHf—24 14N, (2042 = 4d—8,

&, contradiction, -
The remaining possibility is when 2, 3, and 4 appear at the same end.
Here the lengfh is at most

FHI=24Nopa(2)+Na o (3),

This is the saie as 6d—2a—10 if a is even and 6d—2a—11 if « is odd.
But then the requirement N;(4) > 64—13 implies that « = 1. However,
we. are able to rule out this case by making the observation that the
unique DS sequence of length N,(3) (d odd) contains a subsequence
@, b, a,... of length at least 4—2, for all ¢ and b. Thus the sequence
constructed above with e =1 would contain a subsequence of length
at least 143 +d-—1—2 = d4-1, a confradiction. This was the last case
to De considered and therefore we are able to conclude that f == 3d/2—3.

‘We remark that the construction of § 2 provides a sequence for which
f =3d/2—2. We will now show that this is the unique DS sequence for
the case d > n = 4. '

where a1,
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Suppese f = 3d/2—2, and that 1 oceurs f times. Since there are
f—1 blocks between adjacent 1’s and each of gymbols 2, 3, s'ajnd_ 4 can
occur in at most {d—2)/2 of these, we conclude that no overlapping oecurs.
Sinee this sequence contains subsequences 1, &, 1, ... of length d—1 for
@ =2, 3, and 4, each of 2,3, and 4 can oceur at only one of the end

Ay !

ositions. .
! 1f 9 ocours at one end and 3 and 4 occur at the opposite end, then
the sequence is of length ab most

Fhf1414 N, q(2) = 4d—5.

However, since 4d—5 < 6d—13 for d >4, thig is not a DS seq}tenc]f.
On the other hand, if 2, 3, and 4 occur at the same end, we obtain the
sequence constructed in § 2. Tt fo]..lows 'that, for @ even and @ >4, Ny(4)
= 6d—13 and the DS sequence s unigue.

5. The case # — 4 and d odd. If & is odd and d > 4 then, according
ﬁo&@déS@—Dﬂ+lw¢um%@ﬁhweyt#;ﬂﬂﬁ>6w—m,
g0 that f> 8{d—1)/2--2. Notice that if f= S(dw})/zi—% then N_d'(é)
= 6d—14. Since we can construct a sequence of this length with
f=28(d—1)/2—1 (see §2), we need only congider

3(d—1)

: 3(d—1)
__Ew~ﬂ1<féwi“~—

2 1
in order to prove N({) = 6d—14. However, this has the disadvantage
of leaving the question of uniqueness unanswered.

" 1§ § =3(d—1)41, then there is exactly cne of the elements 2, 3,
and 4 between each pair of 1’s. Since thig sequence contains all subse-
quences 1,a,1,... of length 2(d—1) j24+1 = d, there are no other
oecurrences of 2,3, or 4. Thus the length of this sequence 18 2f—1. But
gince 2fﬁ1 < 6d—14, the sequence is not a DS stquejnce. _

Next, if f = 3(d—1)/2, there will be overlapping in at most one of
the interior blocks. If there is overlapping in no interior block then th.e
length of the sequence is at most f-f—31+1, and, _again, we 5ee ﬁha.t it
is not a DS sequence. On the other hand, if there 1s overlapping in one
of the interior blocks, tlien the length is at most

fAf—24 N, ,(3) = 4d—5 < 64— 14,
Fin.a.]ly, if f =3(d—1)/2—1, then there will he overlapping _in 0, 1,
or 2 of the inferior blocks. It there is overlapping in none of the interior
blocks, the sequence is of length at most f+f~1+4+Ng (2)+2 or f4 f-
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—1-2. Neither of these is as large as 6d— 14. Tf there is overlapping
in 2 of the interior eells, either 2 and 3 oceur together in 2 blocks or 2
and 3 oceur in one block and 2 and 4 oceur together in a second block.
In the former case the sequence has length at most

FHf—=3-+Ng (2)4+N,01(2) = 4d—7 < 6d—14.
In the latter case, the sequence is of length at moss
f+f—342N,.,(2) = 5d—10 < 6d—14.

Finally, if there is overlapping in one of the interior bloeks then the

-gequence is seen to be of length at most

Jri-24Naa@+2 o1 fhf—24Na,(3).

The first of these is less than the second which is equal to 6d— 14. Tt
follows that, for d odd and d >4, we have proved N,(4) = 64— 14.

6. Tabulation of N;(n). The table of this paragraph gives the known
values of N;(#). The value N(5) was obtained by computer. We have
established the inequality:

"
-1

(6.1)

Mm—8 < Ny(n) < " Nyn—1)+2

and the values of N,(n), for n <8, follow from it; however, we omit
the preof of (6.1) since Professor Sehinzel informs us that Davenport
and J. II. Conway have established a stronger resulf. We also owe to
FProfessor Schinzel the information that Conway has shown that ¥, (9) = 37,
N,(10} = 42, but that the equality ¥,(n) = 5n—8 snggested by the
table is false, and in particular that N,(13) > 58.

Q@ 1 2 3 4 5 6 7 8 9 10
141 1 1 1 1 1 1 1 1 1
2.1 2 3 4 5 6 T 8 9 10
3| 1 3 5 8 10 14 16 20 22 26
41 1 4 7 12 16 23 28 35 40 47
50 1 B 9 17 22

6{ 1 6 11 22

70 L 7T 18 27

81 1 8 15 32

91 1 9 17 37

10 | 1 10 19 42
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Since submitting this paper, the authors [3] have proved that, for 4> 5,
Xg(B) = 10d--27 or 10d—29 according as ¢ is even or odd. It is also shown thet the

normal DS sequence of length Nag . (5) i8 unique but that there are exactly two normal

DS lengths Nagei(#) and Nsg(5).
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1. Let us eall a sequence admissible if it has no immediate repetition
and contains no subsequence of the form a, b, e, b, ¢ with & 7= b. Let
N (n) be the greatest length (that is, greatest mumber of terms) of an
admissible sequence formed from # distinet elements.

The problem of estimating N (n) has been investigated in [1] and
it has been proved there that

5n—C < N(n) = O(nlogn).

(¥ (n) was denoted by N,(n).) The aim of this paper is to improve the
above regult in both directions. We prove
TororeEM 1. We have

1
Nin) = 0,( " Oﬂ).
. loglogn
THEORE_M 2. We have
-
lim -—("‘2 = 8.
no.

TurorREM 3. For positive integers 1, m the following ine@mlity holds
N({lm+1) = 6lm—m—Bl1+-2.

Theorem 3, found in collaboration with J. H. Conway, gives in general
a weaker bound for & (n) than that which can be obtained from. the proof
of Theorem 2. It is included as useful for small values of n. In particular,
it implies ' _

CorROLLARY., We have N (n) = bn--8 and the equality sign is ewcluded
for odd » = 13 and even 7 = 18,

Tt is nteresting to note that ¥ (n) = 5n— 8 for # = 4, ..., 10 {ck [2]).
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