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On 7th November 1968 Alexander Ogipovié Gelfond passed away.

Born on 24 October 1906 in Petershurg (Leningrad) the son of
% physician, he began his studies at Moscow University in 1924.
He finighed his undergraduate studies in 1927 and the postgraduate
studies in 1930. From that time on until the last day of his life he was
teaching as professor at Moscow University, holding the Chair of-
Number Theory. From 1933 on he worked simultaneously at the Steklov
Mathematics Institute of the Academy of Seciences of USSR. In 1939
he was eleeted corresponding member of the sane Academy.

Hig mathemsatical bequest congists of mathematical papers belonging
to several mathematical domaing: number theory, theory of fmnetions,
differential and integral equations, history of mathematics and others.
The most widely known are his works on the theory of transcendental

- numbers and the theory of analytic functions. These two branches of

mathematics were closely related in his investigations. The profound
papers, concerning the problem of interpolation of entire functions and
establishing the relationship between their growth and the arithmetical
properties of their values at algebraic points, created the foundation
on, which he based his new analytic methods in the theory of transcendental .
numbers. These methods allowed him to obtain his fundamental results.

Tt is impossible to give in a short article a detailed report on the whole
work of A. 0. Gelfond. Thevefore in this article our attention will be
limitéd to his more imiportant papers in the theory of transcendental
numbers and a short description of the ideas on which his methods
are baged will be given.

Among the not too numerous methods of the theory of transcen-

-dental numbers those of A. 0. Gelfond belong to the most important

In the last 40 years they were developed and applied as well by himself
as by ofher mathemadticians,

At the end of the twenties of our century the theory of transsendental
numbers was still very poor. Few facts were definitely settled and very
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few methods of investigations were in existence. The farther developement
of the theory was rendered possible through the introduction by Gelfond
(1929-1934) and C. L. Siegel (1929) of new, strong, analytic methods
which founded the modern basis of the theory.

The first proof of existence of transcendental numbers we owe to
Liouville {1844). He showed that there do not exist “too” good approxi-
mations of algebraic numbers by rational fractions. Thus he got a necessary
condition for & number to be algebraic and he constructed the first exam-
ples of transcendental numbers.

Liouville's theorem supplied a tool for proving the transcendence
of a number given by very quickly comverging series or by produets of
rational terms or at least by continued fractioms with very quickly
increasing partial quotients. However Liouville’s method. failed to clarify
for instance the arithmetical nature of ¢ or =.

The trangcendence of e was proved by Ch, Hermite in 1873. Shortly
thereafter Lindemann gave in 1882 a proof of transcendence. of =, ¢* and
Ing for algebraic « % 0,8 # 0 and 1.

Ag early ag in the XVITI century Euler took an interest in arithmetical
properties of logarithms. Tn 1748 he proved that if @ and b are rational,
log,b is either rational or transcendental. This theorem of Euler hag been
put by Hilbert in 1800 in a generalized form as one of his famous 23
problems at thé Mathematical Congress in Pariz. His seventh problem is:
Let « and # be algebraic; is o transcendental (the trivial exceptions
excluding)? Especially, are the numbers e = = {7% and 2v% transcendental?

Hilbert added that sccording to his conviction the solution of the
problem is extremely difficult and it will sneceed only by a new method.

Until 1929 there were no results -connected with this problem.
Obviously, the reason for it was the following: In, the Hermite—Lindemann,
method it was decizive that ¢ iz the value for an algebraic algument of
the function ¢ satisfying a simple linear differential equation ¥ =y

with algebraic coefficients, whereas o is the value of ¢ for a trangcendental

argnment Alne or it is a value in an algebraic point of the function o
satisfying a linear differential egquation ¢’ = ylne with transcendental
coefficients. .

Thus a new idea for the solution of the problem was needed. That
exaotly was found by Gelfond in 1929, The idea was related. to the

problem of growth of an entire function which assumes integer values
for integer arguments.

In 1914 G. Polyd proved that 1f an entire function f(2) assumes
integer rational valies for all positive 1nteger values of #z and satisfies
the inequality

el < 2™, a4 <1, 6> 0—constants,
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. then f(z) is & polynomial. The proof was baged on an analysis of propertios

of coefficients of the development of f(z) into Newton’s interpolation
series with nodes at the points 1,2,3,... Gelfond [3] in 1929 proved
that if an entire funetion for integer a,rguments of the field Q(z ) assumes
integer values belonging to Qi) and if

164
@l <e™, y <~"(1+6 )
the.n (2} is o polynomial. In his solution of tlfus problem he used Newton
series :Wlt]l nodes in integer points of @(#). Towards the end of the same
year, in addition, he stated that the same series can be used for a partial
solution of Hilbert’s seventh problem. He proved mamely the

TH:DOREM If a20 and 1, g = el/b b — positive rational number,
then o is transcendental..
We shall fllustrate the idea of the proof by the example ¢® =i~ %,

Let all integers z--iy of the Gauss field @(4) be ordered according
to inereasing modulius. Then for all z

(z’_znml)ﬁ
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where 0, is the circle |{|. = E,, B, > iz,|. Let O, be the least common
multiple of the humbers ¢,,, where 1 < % < #. A caleulation of the expo-

nents of the prime divisors of #,, and £, makes it possible fo obtain the
inequalities

(3) .  |Q ;< 6?],]]1%/2-{-?171
C (2,171 < g,
Here and in the sequel the numbers y;;y,,... are positive constants.
Let &, = wy,+9y;; then the rational integer , satisfies the equality
2, = O(VE).
Therefore by (2) and
. gniyk = =1
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there follows o
An 'Qn = 2 Ds an’
a=0

where s, == 04 ?,;) and D, are integers of the field @(%); by (4)
|| < "3,

Tt is known that if ¢ = P(a), where o is algebraic and £ (2) is a polynomial
- whose coefficients are integers of Q(4), and if P(z) is not the zero poly-
nomial, then thers can be given & lower bound for |£]. It depends on a,
on the degree and on the height of P(2). If we assunie ¢™ tio be algebraic,
such a lower bound ean be given also for A, £2,. Thus one sees that either

4,0, =
or-

) VA ) > 677,

On the other hand by the integral representation (2) and by the inequality

(3) one gets the estimation

© 14,0,] < gl

For sufficiently large % the inequalities (5} and (6) are not consistent;
therefore A, = 0 for » > N. By (1) we obtain hence thznt ¢ 13 a polynomial.
This cont1a.d10t1on completes the pmof

The argument given above may be almost literally repeated when
instead of &* the number «¥7 iz considered. One needs only to use the
equations :

(1) @ = At ) Az (e— ) o (B2,
. =1

n

) n . o o
® A= et = D) i

(=20} + -+ (B 2em) (B — Bpq) -+ (B — %) -

Here the numbers m—}—@y I/b z and y — rational mtegers, are taken as
nodes.

In 1930 R. O. Kuzmin proved that this method may be used also

in the ease of g bemg a real guadratic rational. Thus the transeendence
. of 2% wag proved.
Farther attempts to apply the method presented above to the solu-

tion of the full Euler-Hilbert problem failed. If » > 2 is the degree of f,-
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then good estimations for £, have .been obtained only in the case when
the numbers

oot e B (@ @y ..., 2,y — rational integers)

were taken as nodes: However, then the coefficients A, were polynomials
with algebraic coefficients of »—1 numbers

- 3 r—1
(1) o ab, L, d T

To get a lower bound for {4,] it had to be assumed. that all these numbers
were algebraic. In this way it could be proved. onl;yr that among numbers
(i) one at least is transcendental

However, this first method of Gelfond created the possibility of
establishing many other results, e.g. those of K. Bole, (. L. Siegel, J. Koks-
ma and J. Popken, A. V. Lotocki. Gelfond himself [¢] applied the method
to a new proof of Lindemann’s theorer.

Tn 1929 0. L. Siegel published a paper in which, taking as an example
the examination of arithmetical properties of Bessel functions, he demon-
strated a new method in the theory of transcendental numbers. That
method, improved afterwards by A. B. Sidlovski, made it possible to
prove in many cases the transcendence and algebraic independence in
algebraic points of the so ealled F-functionz(?). This methed, however,
could not be applied to Buler-Hilbert. problem because o for algebratc
a (oes not belong to the class of E-functions.

Thus, exactly as before, for a full solution of Euler~Hilbert problem
at that time 2 new méthod was needed. That was given by A. O, Gelfond
in 1934. He proved [17], [18] the :

THROREM. If a0 end 1, § %0 and 1, are algebraic numbers then
Inaflng is either rattonal or transcendental.

COROLLARY 1. If a # 0 and 1 is algebraic and g is an algebraic irra-
tionality then o is transcendental:

COROLIARY 2. If a and § are algebraic then log,f is either rational
or tronscendental. : _

The main features of the new method (which we shall eall the second
method of Gelfond) will now be demonstrated by presenting the main
steps of the proof of the enunciated theorem. Let

q 42

(9) | HE! 2 D G,

k=0 I=

=]

(*) Entire functions with algebraic derivatives ot the point #z = 0 which have
certain arithmetical propertics, :
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By Dirichlet’s box-principle there is proved the existence of integer
rational (p; (not all equal to 0) such that the following inequalities

(10) 1f9 < prredmelnTine oo g Y y—1, = 0,1, s 7k,
() r = [ ng-lniq], 7y = [In*lng),
' 2
{12) | Ol << 87
held. Obviously
z
(13) £y =£§£§@ﬂhma+unmm“ﬂﬁ‘
- q a
— 18 N N O o+ g,
. k=0 [=0
“where
1 &= lnaflng.

Therefore the numbers & (1)ln~°g are polynomials in 5 with algebraic
coefficients. If we assume that 7 is algebraic, from (11) and (12) it -follows
. that either () =0 or

(ifi—) : [ f(&) () > gV gt pgsIng

Using (11) we conclude that for s < #;, £ < ry and g > ¢, the inequalities

{10) and (14) are not consistent. Therefore

{15) fO@ =0, s=01..,mn—1t=0,1,...,7,—1.

Thug there are “many” zeros of f(#) in a “not too big” vicinity of 2z = 0.
By confronting it with the estimation of the modulus of f(2) Gelfond
-proves that f(z) is “small” in an . “fairly big” circle. Indeed, by
equations (15) :
' 731 .
HONFRCES
=0
is an entire function. Using the maximum principle and Cauchy’s integral

formula for the derivatives of an analytic fonction he proves the ine-
qualitiey .

(18) f(‘g)( ) < e—vmq—mlnq

for s =0,1,...,7m—1,t =0,1, ..., [Vq].
Now, from inequalities (14) and (16) it follows that for ¢ q,

n - =0, s=0,1,.,m—1,1t=0,1,..,0/q. .
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These equations supply the means for proving that for # = 0 the function
f{2) has a zero of a “high” multiplicity. Indeed, applying the maximum
prineiple to the entire function :

F@ele—1) ... =V}
and using Cauchy’s formula we get the inequality
PO s =01, g1 -1, g2 g
Comparing it with inequalities (14) one gets

7 g
(18) - fA©) = ¥ MCa(knatlingy =o,

k=0 I=0

s =10, 1: (R (Q+1)2_1s q = g,-

This is a linear homogeneous system of equations. Tts determinant
is mot 0 since it is Vandermonde’s determinant formed by powers of
different numbers klna47Ing (Ine/lng — irrational!). Therefore for all
Eand I

'chz =0,
contrarily to the choice of these numbeus.

It should be mentioned that a short time afterwards an 1ndependaut
proof of the same theorem wag given by Th. Sehneider.

The method presented above allows to obfain a,lqo an estimation
of the measnure of transcendence of the nmmbers {; = o a,nd fy =Inaflng;
this means inegualities of the type

(19) PN = el n, H),
where Pz} £ 0 iy a polynomial with rational integer coefficients, the
height and degree of which are not greater than H and w, respectively.

It is known that inequalities of Eype (19) are closely related to ine-
qualities of type

—6] 2z p(l; 1, H),
where 6 iy an algebraic nunber the degree and height of which are not
greater than # and H, respechively,

Gelfond came back several times to estimations of thix type. In 1935
he proved [23] the inequalities ‘

o — §] > -0 s Ho(ay 8, 80,

20 1}2—;—0;> e TR HnH, (0, B, e, 0).
In 1939 he proved [33] that

(21) | Ine 91 > e WHH s (e, By &, m),

| np
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and in 1949 he established [56] s#ill sharper estimates

[aﬁ-—'ﬂi - exp (H _33_(”+1;-1H} lnz-re(n_rlnﬂ)) n+InH = H,(a, 3, &,
1+ In°n
(22) |
—i%g— —8] = exp({—n’ (oI B, mloH 2 Hy (e, 6, 8).

By the gecond method of Gelond several ofher important resulty
of the theory of transeendental numbers have been established. For
ingtance G. Rieci, F. Franklin, M. L. Platonov used. it with success.

A. 0. Gelfond put stress on the importance of effective estimations
from below of the moduli of linear forms with algebraic — even only
rational — cocfficients depending on m logarithms of algebraic numbers.
For m = 2 such estimations result from (20), (21) and (22). For arbitrary
m however such estimations have been established for the first time by
A. Baker in 1966, Baker proved several ineqgualities of the type

(23) et B Ina,) > Ge

where H is equal to the maximmmn of heights of 8y, ..., 5., F>m1
and ¢ is & congtant. For establishing these inequalities Baler used the sec-
ond method of Gelfond supplemented by some very ingeneous reasoning.

An inequality of type (23) permitted Baker to get an effective
estimation stronger than that of Liouville mentioned above and to give
an effective form to Thue’s theorem on finiteness of the set of solutions
of the equation f(z,y) = N, where N and. the coefficients of the irre-
ducible form f are rational integers and the degree of f is > 3.

The inequalities (20)-(22) of Gelfond were hasic for proofs of several
number-theoretic theoremg. It will be sufficient to mention the papers
by B. L. Segal, Yu. V. Linnik, N. G. Cudakov, A. Schinzel, J, W. 8 Gassulb
and . B, Babaev.

In 1969 N. G. Cudakov showed that these inegqualities make it possible
to obtain a bound for diseriminants of imaginary quadratic fields with
cone clasy of ideals. Using inequality (22) Baker got a partial solution of
analogous problem in the case of fields with two classes of ideals.

K. Mahler generalized the second Gelfond method to p-adic fields;
he proved the p-adic analogue of the theorem on the transcendence of df.

Gelfond himself [35] obtained the p-adic analogue of inequality (21)

in 1940. He proved. that, except the trivial cases, the congruence
@4) P =0(modp), t=[n**gl; ¢ = max(jal,lml)

has for any e > 0 a finite number of solutions in intégral i*ational n and m.
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Using that theorein and the inequality (21) Gellond proved that
the equation

o pY = '}_’EJ

Jwhere «, § and y arve real algebraic nnmbers different from 0 and -+1 and

such that at least one of them is not an algebrale unit, has only a finite
number of integer rational solutions x, ¥, 2, except in case

o = :{:2”1 16’ = :|—_-2“2, ¥y = :]:i),ﬁll’

where ny, n, and #, are rational.

Effective bounds for possible solutions of inequality (91) and the
congruenge (24) were given by A. Schinzel in 1967. As a consequence he got
several interesting number-theoretic theorems.

In 1949 Gelfond strengthened his second method. This renderad
possible to establish several assertions on algebraic independence of
numbers. As an important tool he used the following

LEMMA. Let @y > 1, leb o{z) >0 and 0(x) >0 be wmonofonically
increasing for m= x, and ayo(2) = olw+-1). If for fized o and each
integer N = N there emists o polynomial P(x) == 0, with integral coefficients,
of height H and degree n for which the inequalities

(Pla)] < e~ max (¥, InH) < o(N),

hold, then o is algebraic.

Notice that the hypothesis of the lemma may be weakened; instead
of 8(x} a sufficiently large consbant ma,y be taken. This was indicated by
Gelfond himself.

The main features of the third method of Gelfond we shall llustrate
by the proof of the following

THEOREM. If a # O and 1 is algebraic and f is o cubic mm‘waml
then o, = d® and o, = o are algebraically independent.

Agsume to the contrary that an equation P(w,, wg) = O iy satisfied
where P(u,v) # 0 iz an irreducible polynomial whose coefficients are
rational integers. We introduce the function

: g 4 ¢ '
@) fle) = 3 3 D A oS,y = na,
K18 K0 Eg=0
9 .
1 By T A2 1M
A gy = 2 Crgehaty ©1° @ = [ 1 .
Km0

For rational integer ¢, 1, and {; the numbery

fstltzra s O+ 1 f 4187 0 °
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are polynowmials in o, and o,. Their coefficients are linear forms in Gy .,
with algebraic coefficients. By Dirichlet’s box principle and by equation
P(w,, w,) =0 one obtains the existence of rational integer Cheyteghy
which are not simultaneously equal to 0, such that the conditions

Fotaty = Pt +1,6%) = 0,
= [¢"*1n**g],
el g= 9

203121y
| gieyoy < € ;

(26) O\tlrtzytaégﬂ

= [yu Qm In™

088
are satisfied.
From (26) it follows the equabion

@7 f@ (2)
—“; and/ Ame Eﬁ_'3'2 sorhd fig
-G § LI H i) ey

Fi B=0 b=t t=0

where I" denotes the circle ly| = l/qlnq and I the circle |{] = ¢2 TFrom

(25), (26} and (27) it Tollows:
FO s < o,
0L s < 4¢P ] =5y, 0= tut'sta oy 2.

Among the numbers f®(f+1,8-4,8") satisfying (28) there are
different from 0. One proves it asswning the contrary. Indeed, let all
these nmbers be = 0. Introduce the function

' a - a
2
Fiz) = Z Z ) Bklk.,];_c! {7y Hleghi+leg B )uz
(200 . et famd =0
Biigry = Ai g, A7

(28)

=]
=

A = max IAIclkz.'csl '

A # 0 becanse not all the numbers g

oy Jeglty
tlental By our a.asmnptmn

are zero and , is transcen-

PO+ 8+ 007 =0, 0<8<8, 0K, b, 64< g

From (27), writing s, instead of s, and F(z) instead of f(2), we get the
estimation .

FOO) o™, s =0, 1,0, (@+1P~1, g2 s
‘and from that and from the equation
-1 N—-1. N-1
B, =} B, > Dyrl = ¥ Dy, (0)
k=t §=0 8=0
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wheré
o N-1 .
2 Do 2D e gt N -1 —2) L 1—2)
o (N —p—1)! ’

N-1

o) = D' Byow,

k=0
we get for all numbers By, ;. the incquality
1B;.

LL?CETcE! < 17 q > Q4'
This is impossible, since by (29} the modulus of one at least of the numbers
By g, 18 = 1. 7

Thus there exists among the numbers {28) af leagt one different
from 0. It is & polynomial in o, w, with algebraic ecoefficients. Multiplying
it by polynomla,ls with conjugate coefficients we get a number Polmy, ws),

where P, iz & polynomial in w,, @, with rational coefficients and

(30) 0 < |[Py(m;, og)] < 67H™, g5 Qo

Now the equation P(w,,w,) =0 renders possible the elimination
of w, and eventually we get for any ¢ > @, the existence of & polynomial
P, {z} with rational integer coefficients which satisfies the inequalities

1P, ()] < e7*sme max(n,, InH,) < y,,¢ Intg,

where %, and H, denote the degree and height of P, (z) respectively.
Gielfond’s lemma mentioned above leads to the result: w, = o is algebraic.
Thus we get a contradiction proving that P(wy, @,) = 0 is impossible.

“The outline of the proof given above can be refined to get [58] the
inequality

s e ol

[P (g, 03} > €2 ', &0, o =max(n, nH) > a,{c), B = 04 n,.

Here P(u,v) # 0 is o polynomial with rational integer coefficients of
height A and of degrees n; and #», in % and v, respectively.
We shall present now some of the main results obtained by Gelfond

“by his third method.

Denote by R, an extension of the field § of rational numbers by one
transcendental number. By &; we shall denote an algebraic field of finite
order, or a field we get by extending B, by a root of a polynomial with
coefficients from R,.

We say that the number {; is algebraically representable by the number
&, if there exists a polynomial P(u, ) with algebraic coefficients for which
P(u, ) # 0 and P(f,, &) = 0. By this definition all algebraic numbers
are algebraically representable by any number. A transcendental numpber
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# may be algebraically represented by a number %, only if Z, i
transeendental and in sueh a case a sufficient and necessary condition
is that &, and £, be algebraically dependent. It is obviouns that the field
we get by extending @ by <y, .
the numbers &,,..., {, can be algebraically represented by one of them.

TuroREM 1. Let the numbers 1y, 11, s @8 well as the numbers o =1,
ay, ay be Unearly independent over @ and let the inequality

atg+ @11+ Tarjal > €T, lay <@y 4 =0, 1,2,

where T > 0 18 o constant and %y, @y, Ba, B -+ |8+ 8] >0 ave vationsl
integers, hold for @ > «'. Then, the extension of Q generated by L1 numbers
Uy gy €% (3 =0,1,2; % =0,1,2) cannot be a field K.

THEOREM 2. Let 9, % 0, u1/ny — drvational, ap = 1, ay, ay — linearly
independent over  and let for & > & the following inequality be satisfied:
U

&y -+ &y —
. o

—refln
> e ,

0 < @y -+ o] < @,

where © >0 is a constant and 3y, v, are rational integers. Then, the emtension
of @ generated by 10 numbers 1y, 41, G1y G, 6% (8 = 0,150k = 0,1, 2)
cannot be a field B, o

We shall draw some conclusiony from these theorcs. Let a 520

and 1 be an algebraic number, and let » 3= 0 be rational. Then
(i) Not all the numbers o, a®, a“gv,-af"w can be algebraically
repregented hy ¢; therefore one at leagt of them is trangcendental.

(i) Not all the numbers e, e””, ¢ can be algebraically represented
by e; therefore one at least of them is transcendental.

(iii) Not all the numbers, ™%, "%, ™% can be algebraically
represented by Ing. Therefore- one: at least of them is franscendental.

(W) Let ,8 be an algebraic number of degree == 3. Then all the numbers
o, o, o, a™ cannot be algebraically represented by one of them. In the
qpeclal case when £ iy a cubic irrationality, of and a” are algebraically
independent. Availing himgelf of the third Geltond method A. A. Smoelev

. got & geries of analogous resulbs.

In 1962 Gelfond [93] published his fourth, this time “elemcnta.w”
{this meéans without using analytic funotlons), method. It rendered
possible a proof of ‘his theorem on the transcendence of of in the cage of
‘real a and 8. The only tool he used belonging to mathematical analysis
was Rolle’s theorem.

.We pointed out a]reacly the connection of the first three methods
of Gelfond with his investigations on functions assuming integral values.

He came back to those investigations several times and obtained many
important results. We shall mention some of them.

..y £, will be a field R, if and only it all
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TurorEM 1 (cf. [15]). Lei g{z) be an entire function, f an infeger
# 0 and +1, g(f") o rational integer for # =1,2, ... and ot

9(z) = o(™ NI ), 2| - 00

Then g(2) is a polynomial. :

A funection f(2) is called normally integral-valued of degree v on the
set B it fla) is an integer of a field K of degree v for all ae E and for any
6 > 0 there exists ¢, = Co{8) such that for all numbers f{a)* (f (a)* denotes
any conjugate to f(a)),

()] < (M (e, M) = max|f(z)

|| =¥
TreorEM 2 (cf. [69]). Let f(2) be normally integral-valued on E
= {at Biks 1ol el 1Bl < [Brsals B = 0,1, ... and
=M1, Nn= 31, ¥Nin=
legl<r Byl

There exist ,consmms 6,4, e.q. 0=>2+V2 and i< (8) 'In{{(8—1)—1)/
[(26—2)) such that if the ineguality .

min{¥, (1), Ny(r)}.

In M (0r) < AN (7)

holds, the function f(2) satisfies a functional equation

D Aufle+£) =0,

k=0

m>1,

whers A,y ..., A, are algebraic numbers mot all egual to 0.

We shall give but a very short account of Gelfond’s works concerning
other branches of numnber theory.
In paper [71] using the identity

Eﬂﬂ)z;’('v"“ 5‘21+6(p)+ +0(p

n=1 ) k=1 1 56l
valid for any mulhpheatwe function 6(n) satisfying the condifions
) <1, fla)=olz",

Gelfond proved the following
THEOREM. If an absolutely multiplicative function 9(n) assumes only
the values 0,1, —1 and

)f(m“),

8 > 0— congtant,

(31) i = !Zﬂ(k‘wg<
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then

1 0

K
=1

Condition (31) probably cannot be weakened by.replacing Va by
& more quickly increasing function. Indeed, the Riemann hypothesis implies

n Iia
’2#(7‘5).<”2 Yy lm 4, =0,
=1 . N0
and it is well known that
T pln) 0.
"
n=1

In the same paper Gelfond gave a new, very simple proof that
L1, g} 5 0 for real characters.

Some of his papers ([73], [T7T], [93]) were devoted to an interesting
_ generalization of the notion of arithmetical progression.

.Let fry ...y @, De.Dositive integers, by, ..., b, non-negative integers.
He introduced linear substitutions ‘

Ly(@) = qwt-by,y, @+ b= 2,

The inverse substitution I;'(z) can be applied fto numbers congruent
to b, modulo . Two positive integers m -and n are called equivalent if
they can be linked by a chain of substitutions

Ll (L om)]...] = L [Lig .. [Tg(n)] .,
g =k1, & =41, 1<i<q.

He proved some necessary and sufficient conditions for the finiteness
of classes. He considered . especially the cage '

B=1,2,...,.

L<<igs,

Ok m—1, == 2,
t, — integers. In this case the number of clagses is equal to :

Com—1

De]_:toting_by N,(z) the number of elements of »th clags (r=1,2,..,9
which are not greater than #, he found the asymptotic formula

N,() — w%_( oo

)+0(1). 
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Here ¢,(u) is a periodic function of period 1 satisfying the Lipschitz
condition, If ¢, =1, = ... =1, = {, he solved the problem of distribution
of primes in the sequence generated by the substitution Ly {x) = ma-+
4tm-+%. For that purpose he introduced and investigated {-function
of a class. He got

In:
(32) DN 1)) = e, (%) T ofa),

L

where A(n) is Mangoldt’s function. He indicated a way for improving
the error term of the last formula. ) _

In {937 he presented one of the simplest variants of the proof that
the nomber of prime numbers in primitive progressions is infinite. He
is also an author of a very elementary proof, in A. Selberg’s spirit, of
Hadamard’s theorem for the sequence 1,2, 3, ..., for the arithmetical
progresgion and for the sequence of numbers of »-th class, mentioned
above. ' : .

By combining A. Selberg’s elementary method with simple notions

of the theory of functions he arrived at 2 proof (not elementary, in the -
- ugual terminology, but very simple) of

liz

(33) w(x, m, I) = 40 (e~ P02y,

p(m)

The proof iz based on the equation

1 i, 1
ZW =@ t-i—a(i)-I—O(;),

N
whers
1 (1 ) ,
at) = 14—+ 2 {}Z (" — [9-@—1]‘11)+?a“1“f}.

He proved that for i| >1,

[

1
“alt ———,
“M) > 3501t
. . ¢ r, '
From that he derived the estimations for 2 (s)| and T(S’ 2| and the

absence of zeros of £(s) and L(s, y) in corresponding domains. Using
curvilinear integrals he got (33). _

It should be noted that later W. Wirsing and B. Bombieri succeeded.
to get the error term O{zln 4z}, A > 0, by a completely elementary,
although wvery complicated method. '
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In paper [91] Gelfond derived an approximate funetional equation
for a class of Dirichlet series.

Tn papers [32] and [65] he derived very general theorems on distri-
hution of fractional parts of systems of funetions. :

Denote by L a,8equence ¥i, ¥a, ---s Yy, .- of numbers monotonically
increasing to infinity and let M be a sequence of points 7,(By; ..., fu)
~ everywhere dense in the unit cube of y-dimensional space. The fractional
parts f(¥), ..., f(y) will be called (¢, ID)-everywhere denssly distributed
if the system of nequalities

Og{f'a(y)}_ﬁzk‘{m(q/)l ?:"“_1:2:---;1’;

where g(y) is an arbitrary monotonically decreasing function, 0 << g¢(y)
< 1,Hm ¢{y) = 0, has infinitely many solutions gL for each point z.

Yo

Then the following theorem is truoe:

THEOREM. Let the functions fi(t, ), ... L {t, %) .s’dt?isfy the eon-

ditions:
(1) filt:, y) s defined for all yeL im the interval a; < <b,
4 =1,2, ey ¥ :
6 ) ’ . . . . . .
(ii) 6{1 = filk, ) 18 continuous and non-decreasing in the inierval
A .

La;, b;); fila:, y) > 1 for oll 4 and k.

(iii) If 4 45 fized the derivative Filt;s 4) = 0o for k — oo,

Then, for an arbitrarily fized sequence M and for arbitrary e > 0 and
arbitrarily chosen function (1), in the intervals [o;, &1, d; = ¢, ¢, ¢; = ay,
d; < by, there are poinds a;, 6 < o d” 4=1,2,...,» for which the
fractional parts of functions fi{oy, ¥), ..., e, y) are {(p, M)-everywhere
densely distributed. '
. Tor instance in- an arbitrary mtewal there ewclst pomts where the
fractional parts of functions

a®, (14 af; a(1+ﬂ)““, §>0,a>0,0=1,2,...
are (p, M)-everywhere densely distributed.. _

Starting from these resultys Gelfond obtained conditions for the
impossibility of prolonging several lacunary series. Fabry’s theorem follows
irom this theorem in a very siriple way.

As a consequence he got from thls theorem ‘the following:

If the Dirichlet series

(z) ""“ZG 6—Anﬁ

=1
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is conwergent in the halfplane Rez > 0 and 1, are monatomcally ﬁmweasmg
and farther

.4
lim —* = oo,
n—oo W

[==]

U@ =[] a—a2,
M=l

]lIIl |Cﬂ ( n)llnn = 1?

A0

then f(#z) cannot be prolonged beyond the imaginary awis.

Much of his time A. 0. Gelfond devoted to teaching work. He lsctured
at the Mogcow University, among other topies, on mathematical analysis,
analytic funetions, number theory and gave many special courses. For
a long period he directed research seminars and seminars for students
on number theory and analytic functions. He had a great number of
students. Many of them are now known specialists in number theory
and analytic functions.

He wrote several books: [241, [671, [68], [69], [93] and [99]. Some
of them were translated into different languages.
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Weak forms of Mann’s density theorem
extended to sets of lattice points

by

Brrry EvARDA GARRISON (San Diego, Calif.)

§ 1. Introduction. Tet ¢, be the set of all nomzero n-dimensional
lattice peoints with nonnegative integer ecoordinates. We will use the
ugnal componentwise addition and subtraction of elemnents of ¢, and the
usual partial ordering: For any = and y in @, »<<y if y—o is in @,,.
Tt 8 is any subseti of @, and ¥ is any finite subset of @, then S(F) will
denote the number of clements in § nF. For any # in @, let
L = {;y e, ¥ = w} It A and B are subsets of @,, 4B will denote
the set of all elements of the form @, b, a+b, where aed, beB, while
A—B iy the set of all elements of 4 which are not in B.

A fundamental subset of @, or, hriefly, a fundamental set, is defined
to be any finite nonempty subset B of @), snch that x<R implies Ly < R.
For any subset 4 of ¢, Miiller [3] has defined the density of 4 to be the
glb A(R)/Q, (R), taken over all fundamental sets R. For % =1 thiy is
clearly the Schnirebmann density of A.

With this family of fundamental sets and definition of density,
several results have been obtained for subsets of @, which are analogous
to well-known theorems of additive number theory for sets of positive
integers. (See [2], [3], [5], [67, [8), [9].) In this note we will discuss the
extension of the famons theorem of Mann [7] to ¢,. Using the nofation
giver above, an m-dimensional analogue to Mann’s theorem may be
statiod as follows.

(I) TLet 4 and B e subsets of @,, let ¢ = A+B, and let B be any
fundamental subset of Q,. Then either C(R) = @,(E) or there
oxivts w fundamental set W = B such that no maximal element
of W is in ¢ and O(R)/Q,(R)> [A(W)+B{W)]/Q, (W}

The statement (I) is false for # > 1, as is shown by the following
exanple for @,. (For # > 2 this examiple may be embedded in @,). Let
the fundamental set B =T(2,5) v L(3, 2). In the figure below lattice
PO]IILb of (A —B) n It are marked by X, those of A N B m B by e, those



