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ACTA ARITHMETICA
XVII (1970)

On the theory of nth power residues
and a conjecture of Kronecker

by
I. GEreT (Stony Brook, N, Y.)

" 1. Introduction. For given rational integers »>1 and g, let P(a)
denote the set of rational primes p for which the congruence #* == a(modp)

"ig solvable. In this paper, we consider the following question: How are

two integers ¢ and b related if P(a) and P(b) are essentially the same?
Here the term essentially the same can De taken to mean: the same except
for a finite number of primes; or, more generally, as we shall assame
in the sequel: the same except for a sei of primes having Dirichlet density
zero. With this definition understood, we write P(a) == P(b) when P (a)
and P{(b) are essentially the same.

The question we have posed arises naturally when one considers
Kronecker’s conjecture on polynomial equivalence in the binomial ease
(ef. §4). However, independently of this application, the question is
of basic interest in the theory of nth power résidnes; yet, there seems
to be no trestment of it in the literature, at least in the general form stated
here. Obe special case, though, has been the subject of fairly extensive

research in recent years—namely, the ease » = 1. Then, F(b) ) is the set

of all primes which we will designate by P, and the relation P(a) = =P is
described by saying that P(a) contains almost all primes. Our question
Decomes: What is the form of an integer a which is an #th power residue
of almost all primes? The solubion to this problem was given first by
Trost [14] in 1934. Subsequent treatments as well as generalizations to
algebraic number fields way be found in [1], {6], [12] (for # =2, see
algo [8], [11]h

Our own results which 1esolve completely the question raised, are
ambodied in the following theorem whose proof will occupy the greater
part. of this paper:

TrEEoREM 1. Let 0, a and b be rational integers with n > 1 and ab 3 0.
Then a necessary and sufficient condition that P(a) = P(b) 18 that there
ewist @ vational integer t with 0 << n, (t,n) =1 such that either

(iy ab® = @, for some inieger d, or, if 8in,

(ii) ab® = 22", for some integer d.
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For the purpose of orientation, we make the following obrervations
relative to Theorem 1.

(2) The sufficiency of the condition (i) or (if} is proved by elementary
means, and, the proof yields the stronger conclusion that P(a) and £(h)
differ at most in a finite namber of primes. The possible exeeptional
primes which, perhaps, do mot appesr in both P{g) and P(h) are those
odd primes which divide exactly one of a and b.

(b) Tt is possible that both conditions (i) and (i) can be satisfied
but, of course, for different values of £; e.g. w == 8, @ = 2, b — 2% wheroe
t =1, § yield the forms (il) and (i) respectively.

{¢) The symmetry of our hypothesis with respect to « and b leads
18 also to expect relationy of the form (i) or (ii) in which the roles of a
and b are interchanged. Indeed, such relations can e obtained by raising
each member in (i) or (ii) to the sth power, where 0 < s <<n and st
== 1{modn}.

(d) The theorem holds as well without the condition 0 <<¢< 5.
The form stated here has the advantage of indieating m:pllc-itly that
econditions (i} or (i) can be checked in a finite number of steps.

If we let b =1 in Theorem 1, we get ax & corollary (except for the
trivial case ¢ = () the result of Trost:

COROLLARY. Let n > 1 .and & be ralional inlegers, Then a wecessary
and sufficient condition that P(a) = P 43 that either

() & = d" for some integer d, or, if 8|n,

(i) @ = 2"2d" for some integor d.

Our observation (a) above implies that actually 2{a) is I’ if condition
(1) or (ii) of the Corollary is satigfied. The Corollary enablex ux to dispose
of those wvalues of 4 and b which were excluded from congideration in
Thecrem 1. Ior if, say, b = 0 then P (b} = P and the form of & is given
by the Corollary.

By comparing Theorem L and its Corollary, we infer

TreorEM 2. Let n, o and b be rational integers with » 1 and ab = 0.
Then P(a) = P(b) if and only 4f there ewists an integer & with O < t< n,
(t,n) == 1 for which P(ab') = P.

If it were possible to prove Theorem 2 directly, then Theorenr 1
would follow from the coroﬂnazy However we have been able to do this
only in the ease n = 2 {(cf. the remark at the end of §3).

Our proof of Theorem 1 makes use of fairly elementary properties
of algebraic number fields, particularly eyclotonic fields, with one excep-
tion. This is the utilization of a result of Bauer (¢f. Lemma 2) which relates
te the unigue determination of an algebraie nmumber field by the set of
prime divisors of any of its defining polynomials. Analogous considera-
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tions had been. employed in some of the proofs of the Corollary cited
previously. However, exeept for the applieation of a lemma found in [6],
the details of our proof differ to a considerable extent from those given
in these earlier papers, especially in the case when 2 iz even, Thisis a conse-
quence of the fact that we can no longer proceed, as in proving the
Corollary, by first taking n to be a power of a prime.

In the next seetion, we assenible the background material concerning
fields and prime divisors of polynomials which we will require. Theorem 1
ix then proved in § 5. Finally, in § 4, we apply this theorem to settle the
validity of the Kronecker conjecture for the case of monie, irreducible
binomials; that iz, we specify when fwo such polynomials which have
essentially the same sefs of prime divisors debermine fhe same simple
extension fields over the rationals. In particnlar, there result counter-
examples to the conjecture whieh involve Dbinomials of degree- eight.

2. Preliminary lemmas. Throughout this paper we shall use the
following notation. "We denote the rational wummber field by ¢, and for
each integer n 2= 1, we set £, = ™", and write @, for the corresponding

o

cyclotomic field ¢ (Z,). The radical Va will mean, unlegs further specified,
any fixed root of the equation 2®—a = 0. We ghall use the symbeol p,
always, to denote a rational prime, while 4, d', dy, d,, ..., will designate
rational integers which are defined by the equation in which they appear
and which need mnot be the same in different equations. The latter are
used to avoid repetitions of the phrase “for zome infeger...”. Finally,
the “equality” 8§ = T, where § and T are sets of rational primes will
always be understood in the senge defined in the introduction. It is easily
seen that “=" ag used here i3 an equivalence relation.

Let ii(x) be a non-constant polynomial with rational integer coef-
ficients. A prime p for which the congruence k(x) = 0(modp) is solvable
is called a prime divisor of h(x). The set of all prime divisors of R (i)
will be denoted by P (k). Further, if degh(z} = n,let P{h), 4 =1,2,...,n,
denote the set of prines for which h(x) = 0(modp) has exactly ¢ incon-
oruent solntions. Thus P (k) will be the union of the sets P;(k). In terms
of this notation which we shall employ henceforth, what we ealled P (a)
in the introduction is now denoted by P(f) where f(2) = a"—

Next, if K is an algebraic number field, define P(K) as the set of
rational primes p sueh that the factorization of p into prime ideals in K
containg ab least one prime ideal factor of the first degree. The two sets
P(R) and P(K) which we have defined are related to each other when -
h(m) is irreducible over ¢ and has a primitive element of K as a root.
In that case, it is well-known [5] that P (k) = P(K). It is also known [9],
that if & (@), of degree n, is irreducible over @, and K is the splitting field
of h(z), then P,(h) = P{K).
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We require an extension of this lagt result to the case where ha)
is reducible over (). This is provided by the following lemma in which
we uge the term separable polynomial to mean one without mulkiple
roots. '

Tievia 1. Let h(n) . be a separable polynomial of degree n =1 with
rational integer coefficients, and let K. be the splitting field of h{z). Then

P, (h) = P(K).
Proof. Let N = h ...k, where the h, are digkinet irredneible
polynomials over ¢ with infeger coefficients and degh; == n,;. Then,

taking into account the non-vanishing of the discriminant of k() it is
eagily seen that

M () = rj (i)

Foreachi = 1,2, ..., s, let K, be the gplitting field ol h,.
is the compositum of the K;. Bubt then we have

Evidently X

@) P = Q P(E).

(This result is known for s = 2, [9], and follows easily for any ¢ by in-
dnction.) A comparison of (1) and {2) establishes the lemuia. '

Remark. In Lemma 1, P, (k) and P(X) actually differ in at most
a finite set of primes; and, the same obgervation applies to the other equa-
lities between sets of primes listed thus far. However, we shall not require
thege stronger results in omr proof of Theorem 1.

We guote next the following special case of o theoremy of Bauer
([2], [3]), which iz bagic in our considerations:

LemMA 2. Let K and L be two algebraic number fields which are normal
over @ and for which P(K) = P(L). Then K = L.

In the remainder of this seetion, we diseuss certuin vewultis pertaining
to special algebraic number fields.

We begin by mentioning some facts regaxding the irreducibility
.over @ of the polynomial /(x) = &"— ¢, where ¢ iy an, integer (f. 4l [15]
for proofs). Tt is known that A (z) is irredncible if and only if b, (@) = & —¢
is irredueible for each prime power p' in the canonical factorization of n.
For I, (z) to be reducible, we must have cither ¢ = %, or, if p =2, 12 4,
¢ = —4d*

Using these results, we can deduce several elementary but nonetheless

usefnl agsertions concerning the normality over @ of the field Qo).
These we find convenient to formalize ag

icm
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LeuMA 3. Let n and m be natural numbers, and let ¢ % 0 be a rational

. L2
integer which is assumed to be positive when n is even. Let Ve denote the
real (real, positive) value of the radical if n is odd (even). Suppose, respectively,

o

that (a) Ve is of degree #; {(b) 0 =p" p odd; (¢} n = 2™ Then Q(?/’E),
is normal over @ if and only if the following conditions hold in the respective
cases:

{2y =1 or 2;

by ¢ = a4

(c) either ¢ = d™, or ¢ = @ with d not a square.

Proof. We eonsider only the necessity of the conditions stated since
the sufficiency iz trwivial

Statement (a) I8 immediate sinee for =23, the real field Q(f)
has at least one conjugate field which is complez,

To prove (b) and (c), write ¢ in the form ¢ = 47, where r is a non-

‘negative integer and d iy not a perfect pth power. When p =2, we

??L

may assume d > 0. Then Q(l/c =Q(8), where 0 = ()" and the
real (real, positive) value of the radical is faken when p is odd (even).
By the results on irreducibility just discussed, degé — max(L, ™),
and so0, in view of part (a) of thiz lemma, we must have p™ " < 2; that is,
# 2 m for arbitrary p, or # == m—1 when p = 2. Our proof is complete.

The following lemma, except for a trivial modification, is a special
case of a result given by Flanders ([6], Lemma 5). We refer to his paper

- for a proof.

Ly 4. Let n, o and b be rational integers wzth n =1 and ab # 0,

and let Qn(l/a) == Qn(l/b). Then ab' =™ where t is a rational integer
with 0 << t<<n, {{,n) =1, and y@),.

We complete this section by quoting a result which is kmown from
the theory of eyclotomy (ef. [17]).

Limava 5, Let n =
s n o= 2Mgligse..

3 be @ rational integer whose canonical factorizaiion
a5, where the g, ave distinct odd primes, m = 0 and a; > 0,

i=1,2,...,8 Then the quadratic subfields of Q,, are given by Q) with
b= (12 [ (1 gy,
where =1

e =g == if m=20,1;
= if m=12

and otherwise e, ¢, and each e, con take either the value O or l except that
not all of them can be zero simulloneously.
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3. Proof of Theorem 1. We start by establishing the sufficiency
of the conditions given in Theorem 1, as the proof will serve to llustrate
a line of Teasoning oceurring at several points in this section. It suffices to
congider condition (if) since it will be clear that a similar argument applies
aven more readily in the case of condition (i).

For the remainder of the paper, we use Lha notation f = a"—a,
g = &"—b. Thus, we must show thab P(f) = P(g). Actuslly, we ghall
prove that for each @ =1,2,..., %, D;{f) and Pig) ditfer at mogt in
-a finite number of primes.

Tor the purpose of this argument, let ug call a prime p admissible
if p is odd and p { ab. If p iz admissible, then (if) of Theorem 1 considered
wodule p implies in terms of some set of indices that

(3) inde--tindb = -giindz +n indd(mod_(p ——1)) .

Suppose also that peP;(f) for some ¢ =1,2,...,2. Recall from the
theory of binomial congruences that for p 1 a, f = 0(modp) is solvable
precisely when (n, p—1)|inda, and when solvable has exactly (n, p—1)
incongruent roots. Thus, we must have the relations 4 = (n, p—1) and
ilinda: Tt follows that peP;(f) is possible onty if ¢ iy an even divisor
of #, but then, usmo the relations just given, we can deduce from (3)
that

(4) _ tindd = 0 (mods).

This is eleay if 4|n/2. When 4 1 n/2, then 814, and 50 p =2 1(mod8). Thus,
ind2 is even, since 2 iy a quadratic residue of p, and (4) again follows.

In view of the condition (¢, n) = 1, (4} yields ¢|ind b, that is, p <P, (g).
Since the roles of f and ¢ can be interchanged in our argument, we have
shown that P;(f) and P,(g), for each i, either eontain no admissible primes
or they contain the same admissible prines.
thevefore established. As P, (f) and P(g) each contnin p == 2, aund also
contain, respectively, those primes which divide & and b rospoctively,
owr remark {a) in the introduction follows.

We turn now to the move difficult task of snbstantiating the necessity
of the conditions in Theorem 1; that is, given that :

(5) - P(f) = Plg),

we will show that either condition (i) or (i) follows. Qur earlier remark
about the solutions of binomial congruences leads to the  following
observation: for p 1 a, the number of incongruent roots of a solvable
congruence f == 0(modp) depends only on # and p (not on a). As an

Our agserbion above i .

icm
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immediate consequence, we get from (3) that P,(f) =
t=1,2,...,n In particular,

(6) Pn(f) — ‘Pn(g) .

() for each

Let K und L be the ‘a])littintr fields of f and g respectively. Plainly,

K =Q(Va,z,) and L= Q(F, £, )

Now, since ab == 0, we may apply
Lemma 1 to get P, (f) = F(&),

P,lg) == P(L). Then, from (8) and Lem-

no_ "o
ma 2, we find K = L. Since also K =@, (Va) and L =@, (Vb), there exists,
by Lemma 4, a rational integer ¢ with 0 < i< n,{f,n) =1 for which

(7) ab’ = Vﬂr 'VEQn'

We proceed to examine the condition (7) more closely. For future applica-
tion, we emphagize at this point the fact that (7) was deduced from the
single condition (6).

In the remainder of this section, we shall use the followmg notation:
¢=ab’; n=2"k,m=0,%o0dd; if k> 1, we write k = ¢f1 4. ggs with
the ¢, djstmct odd primes and the a; > 0

It is convenient to divide the discussion into three cases according
to the power of 2 which divides =.

Case 1: nodd. Denote by ¢ any one of the powers ¢} which divide K.
From (7), we infer that the eguation 2¢ —6=0 ha,s a 1root y = y’”qﬂ

which Lh in@Q,. ‘Since the roots of this equation are all of the fonn ‘,gjlf P

where l/c can be taken T:o be real and » is a rational integer, it follows that
a '

Ve is in Q.. Thusg, Q(Vf;) is a real subfield of ¢, which must be normal
over ¢ since ¢, is Abelian. By Lemma 3, this is possible only if ¢ = a?.
As ¢ is of this form for each ¢;, we conclude, by comparing powers of the.
same prime which divide each of these forms, that ¢ = 4. This is (i),
and our proof iz comyplete,

Remark. In this case, we have a-ctua]ly shown that condition (i)
follows from the single condition P,{f} = P,(¢); or, put another W.}y, _
that the condition P, (f) = P,(g) implies P, f) ( ) for each ¢, L <
<. n--1. Such an implieation is no longer tru_e, in general, for # even. \Ve
give counter examples from each of the cases remaining to be considered.

Examere 1. Lebt » =10, ¢ == 5%, b = 5% Then (10,p) =10 iff
p = 1{mod10), and, since 5 is a quadratic residue of primes in this class,
we have

inda4indd = 5ind b = 0(mod10).

‘Thus Pip(f) = Pi(g)-
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On the other hand, for primes p == 3(mod10) where (l(l p) = 2,
and 5 is a quadratic non-residue of p, we find inde-+indd == 1(mod2).
Thus each prime p in this class is in exactly one of P,(fy and P,{g) and
50 Py(f) # Palg). |

ExaMprm 2. Letn =12, 0 == 3% b = 3% The relation Fyg(f) = P (y)
is established Ly the procedure of Example 1.
then (12, p) = 4 and, clearly, every such prime ix in Fy(g). But ginee
is o quadratic non-residue of p, 4finda, and thus no sueh prime i in
P(f)y i e, Po(f} 7 Palg).

We conelude from these examples that for » even we cannoli expect
to prove Theorem 1 using (6) alone, but ﬂmt we mush alko tako intoe aceount
the ather relations P.{f) = Py(g), ¢« =1, .oy 1 which we know 1o
hold. Stated. in other terms, it will not suf.:Eice tu consicler solely the primes
p ==1(modn) of the principal class modulo ». It iy this circumstance
which will complicate the proofs in the remaining eases. 16 is no coincidence
that (n, @) > 1, (n,d) > 1 in the above examples for it will be apparent
from our argument later that the procedure of Case 1 goes through essen-
tially unchanged when {(n, a) = (», b) = L.

Cage 2:m =2k Tf & =1, then @, =@ and from (7) we get ¢ = d*,
a8 required.

Hence, assunie k> 1. The argument uged in Case 1 applies heve
as well for each of the prime powers dividing #. By considering the odd
prime powers, we find again that ¢ = @°. Using the prime 2, we conclude
that #*—¢ has its roots in §,. There are two pogsibilities here which we
consider in turn,

(a) ¢ = &.

When coupled with the preceding assertion, ¢ == d, (a) implies that
¢ =4, so that condition (i) holds here.

(b) ¢ # db.

Then Q(l/c is a. qumlmtlc gubfield of ¢, and by Lemma b
(8) . ¢ = udy,
with
® o w= [J(—Lpieg,

PERS |

where each ¢, is either 0 or 1 except that not all e; are zero simultaneously.

‘We show next that (8) and (9) imply ihe existence of o get of primnes,
8, of positive Dirichlet density, such that each prime of & iy in exactly
one of the sets 2(f ), Paolg). This conclugion is incompatible with the

relation Py{f) = P.(g) which we know to hold, and 80 subease (b) is seen
to be impossible.

When p = 5{mod12),”

icm
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In order to describe 8, we assume that the ¢; have been ordered so
that ¢, < g, < ...< g, Then § consists of those primes p which satisfy
the following conditions: -

a) ptab;

(8) p == 1(mod 4);

{(v) it ¢ iy the first ¢ for which ¢; =1 in (9), let p =
where n; 15 & quadrafic non-residue modulo ¢;;

(8) fov all other ¢, for which ¢; = 1 in (9), let p = r;(modg,) Where ¥
is a quadratic residue modwlo g; and »; 5= 1(modg,);

(¢} for those ¢; for which ¢, =0 in (9), let p == m;(modyg,) where
m, is any reduced residus modunle ¢; such that mg s 1(mod g;).

It is clear that § consists of the primes in a reduced residue class
module 4¢,q,...q, with a finite number of exceptions, and thus, as is
well-known, the Dirichlet density of 8 exists and is positive. It follows
from our definition of § that for pe8 and for each i =1, 2, ..., g,
g7 (p—1}, and 80 we have

m{mod qy),

(10) (n,p—1) =2, ped.

Furthermore, we assert that for » in (9)
% oy .

(11) (—) =—1, pes. ((5) = Legendre symbol.)
P ' :

For, by applying the Quadratic Reciprocity Law and taking account of the
conditions («)-(c), we find after a simple calculation that (ufp) = (nfay).
Now, for pe8, consider (8) modulo ¢ and transform to indices. Then

inde = inde-+#indb = indu4 2indd,{moed (p—1)).
We have that ¢ ‘and ind % are both odd, the latter by virtue of (11). Thus
inde-+indd = 1 (mod3),

and therefore exactly one of inda, indb is divisible by 2. Together with
(10), this means that p belongs to exactly one of P,y(f), Pa(g)- Our proof
iz’ complete. '

Case 3: 7 =27k, m > 2. We show first that e > 0. Assume the

contrary and let ¢; = —¢, so that ¢ > 0. Equation (7) now implies
2’“1

that #*” + ¢, has a¥oot o (= o*) which iy in @, . We may write o = C.,m+11 €1,
where the radical has its real, positive value and r is an odd integer. Tt _

9HiL ght

~ follows that l/cl €(Qy,, and 50, by an argument used pre,wously, Q(Vey)
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. - . it M=
is normal over §. Then, by Lemma 3, either (a) ¢, == &, ov (b) ¢, == @" 1,
d not a gquare. We will show that both (a) and {b) Iead o contradictions.

. 2"”', .

If (a) obtains, then it follows that (lw iy = Q/|/ ¢ e}, This is impossi-
ble, for it would mean that @, = @,,, contrary to the fact that [Q,,: Q]
= 2[@,: @1 for the values of » under congideration.

The remaining eondition (h) ean be shown o lead to o contradiction
of the kmown relation P,(f) = P,(g), in the same mannor as this was
done in Case 2. This time we choose for the set & those primes p with
ptob, p = 3(mod4), and p == m;(mod g, Tor each ¢, dividing %, where Ty
is any reduced residue modulo ¢, such that m; 5= 1(modg,). The condition
(n,p—1) = 2 for pef is easily verified; and in view of the fact that
ind(—1) iz odd for pe8, (b) leads divectly to the congruence inde--
+indb == 1(mod2). The details are left to the reader.

In the remainder of this section we may therefore assnme that ¢ > 0,
From (7) there now follows, by an argument already used several times,

gt
the result that the real field @ (I/E) iy normal over . By Lemmsa 3, we niust
have either {«) ¢ = &, or (B) ¢ = (ng—l, d not a square, where we may
suppose also that 4> 0.

If () holds, then Q(Vd) is a real, quadratic subfield of @, and so,
by virtue of Lemma 5, d = 2¥ud;, wheve v is an odd, positive, square-free
divigsor of », and w = 0 if m = 2, while w = 0 or L i m = 3. Here 2%u > 1.
Thus, in subease (B),

(12) ¢ = (Zr!;%)z'li«'fld?m.

It will be convenient in what follows to treat conditions {) and (p) simnul-
taneously. We achieve this by allowing also the value 2Vu == 1 in (12)

Now, ¢ is also of the form ¢ = 45 (¢f. Case 2). A comparison of this
form and (12) leads readily to

{13) , abt = (2P u) q,

where we reiterate that 0 <it<<m, (f,m) =1, w =0 or 1 with w 1
S m =2, and v iy an odd, positive, squave-free divisor of n, In (13), if
w =0, =1, we get condition (i) of Theorem 1, while if w == I, # =1
we get (ii). Observe that this last possibiliby can cecur only if-m = 3.

~ Can we actually have (13) with & > 17 Certainly this is not possible
if k=1 and go our theovem is established in this case.

Henee, suppose & > 1. Then it turng otuh, in contrast to Case 2,
that we may very well have » > 1 in (13) even when the ofher conditions
PN =Plg),1<i<n—1 hold. This fact further complicatey the
proof in this cage. Agan illustration, consider the example when » = 12,

@ =23, =3 Then with { = 1, ab® = 3% which is of the form (13) with

icm
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w =0, w =3, But note that with ¢ =7, ab® = (27)", which is in the

form of condition (i), and so P{f) = P(y).

In order to complete the proof of Theorem 1 in this case, we must
show that although there may be relations (13) with « > I, nevertheless
there always exists at least one such velation in which v = 1, Our approach
will be indirect. Hence, suppose that for all integers ¢ with 0 < < n,
(t,n) = 1 for which ab’ is of the form given by (13), that we have u > 1.
{(There will be af least one such relation (13), ax we have shown.) Then
we will ebtain a confradiction by proving that P, {f) = P,(g) for a suitable <.

Let 3,1 = § < 5, denote the minimum number of odd primes ¢, which
divide « in all relations of the form (13), and let us call relation (13)
wrindsnel if w i3 a produet of exactly § primes. Select one such minimal
relation. By re-indexing the g;, we may suppose that the corresponding
U= G fs.. . Write 4, =qi¢p... ;£ =2 and =110 j=1L

Now consider all minimal relations (13) in whieh »,|u. Select a maxi-
mal set of sueh relations which have distinet s, by arbitrariy cehoosing
one relation in each group of relations having equal u's. Let # be the
number of relations in the maximal set. Plainly, 1< r<s—j-+1

Without loss of generality, we may write the relations in the maximal
set as :

abfl — (2101 b qj)ﬂ-f? d?:

fh ) ja
(14) ab? = (2w2351qi+3)n 5 )

alt = (27U, sy V85

In (14) the #;, and w, are, of course, subject to the conditions Imposed
upon ¢ and w in (13).

We consider two subcases.

Subecase A: r =s—j41. We will show that P, (f) + P, (¢),
where n, = 2"¢f...¢7i71 (%, = 2%, i j = 1). .

Let f, = a"v—a, g, =#"—Db, and suppose that P, (fy) =P, (¢)-
Then all of our previous considerations apply with =, for #, and we get
for some 7, with 0 < # < my, (f, %) =1 that

m_btﬂ_ o (211.50 uq)nufﬂ d30~
Here w, = 0 or 1 except that w, = 1 for m = 2, and «, is an odd, positive,
square-free divisor of s, From (13), since #/2 is a multiple of nfn,, it
follows that
abt — (d’)m‘ua .
Now determine an integer ¢' by the conditions

t = t,(modn,), ¢ =t(modnlr,), 0<t <n.
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Then it may be verified readily that
ab’' = (2%oy, Y,

Since (i', #) = 1, we have here o relation of the form (13) in which % has

at most j—1 distinet primes as divisors. This is impossible by our

definition of j. _
Thus Pﬂn( Tl = P, u(g(,)‘ Then there exists a seb of primes § having
a positive upper Dirichlet density, such that for peS wo have

(%) (Rgy p=-1) == g,

with n, dividing exactly one of inda, indb. If also (n, p-—1) == n,, it
would follow that 2, { )y = I’,LO((/). We proceed tio extablivh (n, p—1) = a,.
For pef, the fivst relation in (14) yields the congruence

7

. _ "
{16) _ indae-++4indhb == —é—inclulqj(n‘lodnu),

since ind2 is even when w, = 1. Now 2findu,q;. For otherwise, (10)
would imply that both inda and indbd are divisible by w,. Thus (u,q;/p)
== —1. From (15), we have that p =1l(modg), l=1,2,...,j—1,

p =1{mod4), and so
1= (L‘f) _ (za)
N 29 Qj

Ag o consequence, p % L(modg,). By nsing the other relations in (14),
an identical conclusion is reached for each of ¢, ..., g,. Troum these
facts, we gee that (n, p—1) = n,, as was to he proved. .

Bubease B: 1< r<g—~g Iy =57, then the prool in Subouse A
goes through but using f, = ™ —a, ¢, = 2™ —b with », = n,¢f in place
of fo,q,- Here P, (fi} =P, (¢} is imposxible since we can doduce from
it a relation of the form (13) with % = u,q,, contrary to the rmaximality
of v in (14), :

- IMence, suppose 137 =Cs—j—1. Then there will he al leash two
primes in the set S = {g; ..y €011 «+s €b Now, consider all relations
of the form (13) in which the prime factors of @ belong to either &, or
Sy = {0y Qy -ey Gpn)e I any such velations exist, then, since w innsb
have at least j prime factors, it follows from the maximality of » in (1)
that u will have at least two prine factors from &,. Write w4 == o'
where the prime factors of «’ and u'' are in the sets 8, and 8, respectively,
and form a set 7' consisting of all the distinet «”’s which arise in this way.
We note that 7" may be the null set.

Our goal is to study the set 7' in order to arrive at additional Tela-
tions of the form (13) which are analogous to those given in (14). In so
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, doing, it will be useful to think of a fypical element % of T as being a “com-

bination” of its constituent prime factors, the latter being considered
as the “objects” in the combination. To facilitate the use of this viewpoint,
it will be convenient to simplify our notation and to denote g,,,,..., g,
respectively by 1,2,...,7 where I =s—j§—7-41 so that 1> 9. Then
we may describe T as follows: 7' is & set of combinations without repetitions
of the | objeets 1,2, ..., taken at leagt two at a time.

Concerning T, we next state a puvely combinatorial lemma which
will enable us to complete the proof for this subease. We use the term
combination to mean combination without repetition.

Lemma 6. Let T be defined as above. Then there evisis a combination
o =My Ay, A2 1, wheve the A; are chosen from 1,2, ...,1, having the
following two properties:

(a) any combinalion of Ly, ..., &, faken v af o time, where 2 < v < B,
is not in T (in particuler, o¢T); ' '

(b) of X is amy one of 1,2,...,1 which is not a X;, 1 =1,2,..., k,
then there exists an element of T which is of the form A digeo Ay Ay e 2 L.

Asgsuming the truth of this lemma for the moment, let usg proceed .
with our main argument. By re-indexing g;.,, ..., 4, if necessary, suppose
that ¢ = ¢ oG rperr+ Giprrn_y 18 the product corresponding to fhe com-
bination ¢ of Lemma 6. Observe, for later use, that A’ of property (h) will
then correspond to any one of the primes g ,iny .-+ G-

Now consider

f'=a"—a, ¢ =o"—b, where = =2"gh. . ghgisr.. . oidnhst.
We assert that P..(f) =P, (¢'). For, suppose that P, (f) =P, (¢).
Then, by the procedure of Subease A, we construct a relation of the
form (13) where u is a divisor of »’. In particular, some divisor ¢ of ¢’
having at least two prime factors will be a factor of u; that is to say,
g eT. By property (a) of Lemma 6, this is impeossible, and our assertion
is egtablished. Thus, there exigty a geb of primes § having positive upper
Difichlet density such that for pef,(n’,p—1) =2/, and »' divides
exactly one of inde, indd. To complete our proof, we will show that
also (n, p—1) = »’, since this means that P, (f) 5= P, (g).

The fact that p = L{modg) for ¢ = g, Gy1y -1 Gier1» 18 obbained
exaclly ag in Subease A. If B =1 = s—j—r+1, that is, if T is fhe null
set, then we are finished. Otherwise, we must show that this same
congruential property holds also for ¢ = G5 iny Grphp1s +- -y Gs- FOT eaCh
such prime g, property (b) of Lemma 6 insures the existence of a relation

Y] o
abt = (2%wg1ty )" A"

as in (13), where the prime factors of u, and «, are in the sets
Bs == {@yprs Gjgrirs ooy Gyriny 8nd S, respectively. Since each prime
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in 8, and §; divides p—1, we have here the same situation ag in the,

proof of Subease A, and we conclude, as before, thab (p/g) = —1, so that
p == 1(modg). '

There remaing the

Proof of Lemma 6. We congtruct o by the following sieve-lile
algorithm which yields a o with 4, = 1. Consider the pairs 14 where 1
ranges successively over 2,3,...,1L Rither all of these pairs are in I,
in which eage take ¢ = 1; or there is a first pair 11, which is not in 7.
Tn the Jatter case, consider next the triples 1,4 where 4 ranges successively
over ip+1, Ay42,..., 1. Determine, if it oxists, the first 4 say A = 4

for which none of 14, 2,4, 12,4 is in 7' (these are all of the combinations
of 1, %, 4 involving 1, tznken at least two at a time). If no sueh 24 existy,
then take o = 1A.. Otherwise, congider the guadruples 11,254 wheve 4
ranges over A-F1,%4+-2,...,l. We continue in this faghion, stopping
whenever there is no cholee for 1, and going on to the next higher com-
bination when there is. Eventually the process ends and. it is clear that
the resulting o will satisty property (a) of the lemma. But also (b) holds.
For, i ' is not one of the A’s in o, then, for some ¢, 4; << A' << A, (it ¢ = B,
omit the second inequality). But, in view of our algorithm, this means
that some combination of 1,4,,...,4;, A’ taken at least two at a fime
and involving A" is in. . This is (b). T£7is the null set, note that we get
o ==123...1. _
Remark. Theorem 1 and its Corollary are so gimilar in appearance
-that one is led naturally to consider the possibility of deriving the Theorem
from the Corollary. In fact, we can do this when n = 2. In this case,
agsuming pAab, P(f) = Plg) implies that (a/p) = (bfp) == 1 for pely,
. whete P, is P{f) nP(g). Also (afp) = (bjp) = —1 for pePy, where P,
is P—(P(f) U P(g). Since P, U P, = P, (ab/p) = Lior almost all primes p
and, our result follows via the 0010]1%1 V.

For » > 2, this approach would reguire that we establish certain
properties of 1,110 higher reciprocity symbols, Though the nature of
these properties can be inferred explicitly from Theoremn 1, they appear
recondite at the moment and so we leave this matter open for the time
heing.

4. The Kronecker conjecture. Tn thiy section we consider only non-
constant polynomials with rational integer coefficients which ave irve-
dueible over . Two such polynomials h (x) and hy(w) will be called
equivalent — in symbols h, ~hy — if hy(e) = 0 and 5y(f) == 0 where «
and f# are both primitive elements of the same algebraic number field K.
Bguivalent polynomialy ave of the same degree and determine the gsame
seb of simple field extensions over @.

Now, it is well-known that if hy (@) ~ hy(®) then P(h,) = P(hy), [B].
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More precisely, if degh, = degh, = n, then P, (hy) = P,(h,) for i = 1,2,
.oy 7. Infact, P;(Ry) and Py(hy) differ only in a finite number of prlm(ﬂ
It was conjectured by Kronecker [10] that the converse proposition,
is nlso trae; that is, Pi(R) = Pi{hy), 7 =1,2 2,...,1n, Imples that
hy(@) ~ ho(2). The Kronecker conjecture is mot true in general as was
shown by Gassmann [7] in 1926, He proved the existence of two ine-
quivalent polynomials of degree 180 which not only satisty the required
conditions bub also factor in the same way modulo p for all except
a finite number of primes p. (See also Schinzel [13] who gives & cubic & with
P(h) = P(h;), b = k(a”).) Nevertheless, it is of interest to determine
under what conditions the Kronecker conjecture will hold for specific
classes of polynomials. In this section, ag an application of our previous
results, we carry out this investigation for the clase of monic binomials(?).
Let f and g have their previous meanings, except that now a and b
are integers for which f and g are irveducible over Q (¢f. § 2). As a conge-

quence, we note that ] l/a, r=10,1,...,2—1 will be a complete seb

of conjugates for ]/a over @, with similar results for V5. We assume that
the conditions P;(f) =P(g), i =1,2,...,n, hold. For binomials, as
we have shown, these n conditions are equivalent to the single condition
P(f) = P{g) and thus we need refer only to the latter in discussing the
Kronecker conjecture for f and g. The ease n = 1 being trivial, we take
7z B

By Theorem 1, at least one of the conditions (i} and {ji} must hold,
the latter, of course, only if 8|n. For convenience, we list these again:
(i) ab* = d*, (ii) ab’ = 224" Our problem, therefore, is reduced to the
determination of exactly when (i) or (i} implies f ~g. The results are
embodied in the next three theorems and state that, apart from one excep-
tional case, the Kronecker conjecture is true if and only if econdition (i)
holds.

THEOREM 3. Lef n = 2"k, with 0 m <2 and & odd. Then P(f)
= P(g) implies f ~ ¢.

Proof. For these values of #, only (i) can hold. Let 0 = Va, P = Vb
By faking #th roots in (i) we find tha,t ' = d¢7,, where r is some integer.
Write 0, = 0£,7. Then 8, is a voot of f, and 8, = d/¢‘<Q(¢). Since both 8,
and ¢ are of degree n over @ we must have Q(8,) = @¢) and s0 f ~ ¢
The prooi is conplete.

Before proceeding to consider the remaining values of »n, we note
that when # is even, then both (i) and (i} imply that ab > 0. It is con-

(*) The ease of a binomial with leading eoefficient different from 1 iz easily
reduced to the monie case, but we do not sfop to do this here.
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venient to treat separately cases corresponding to the possible signg
of a and b.

THEROREM 4. Let # == 27k, m = 3, & odd, and let o == 0, b= 0. Then
P(f)y = P(g) implies f ~ g if and only if condition (i) holds.

Proof, That {i) implies f ~ ¢, has been proved in Theorem 3. Mence
suppose (ii) holds but not {i). SBuppose also that f ~g¢. We will show
this assnmption leads to o contradiction.

. wno L
Let § = Va, ¢ = Vb, where now the real, positive values of the
radieals are meant. Taking nth roots in (i), wo gob

an 0f = ave, d>o0.

Since 44, 4y respectively, are the only real roots of fand g respectively,
we must have @ (8) = Q(p). 1t follows from (17) that V2 @ (p). Thus ¢
is of degree 7/2 over Q(V2). Now, it N( ) denotes the norm. with vespect
to Q(V'2), we find that ¥ (@) = £¥b for some integer ». Since N (¢) € (V2),
we infer that {§ must be real and hence equal to -1, Then l/?;eQ(l/i),
which means thas '

(18) | b= 2.

Now, for the ¢ of condition (ii), let t, = t-j-n/2 if #« %2, and i,
=1—mn/2 if 1 > nf2. Then, using (ii) and (18), we find in the regpsciive
cases that ' '

(2, a)* (t < n/2);
(@ay =@ (> n/2).

B =

Since (#,,n) =1 and 0 < #, < m, we have here, in each case, a relation
of the form (i), contrary to our hypothesis. The prool is now complete,
The remaining case to be considered is preceded by the foliowing:
Lmvma 7. Let e be o positive integer which is mot o square, and let ¢

-be o root of unity. Further, let f = oVe be of degree 2 over Q. Then one
of the following cases must oceur:

(a) B = &Ve;

() § = +V—g; -

(© & =2d% 8 = £(1+i)d (5 =V ~1);

(d) e =32 § = +(3-Li/3)d/2. _

Proof. The hypothesis implies that ¢* is a root of unity which is
of degree 1 or 2 over @, and so it is one of+1, 44, =&, =2 The lermma

now follows in a straightforward manner and we leave the details to the
reader. : '
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THEOREM 5. Let n = 2"k, m = 3, k odd, and let a < 0, b << 0. Then
F(f) = P(g) implies  ~ g if and only if either (2) condition (1} holds, or
(b) condition (ii) holds and a = — a2, b = — @ for some integers d, and d,.

Proof.. When (a) holds, then f ~ g follows as before. Hence let (b)
hold and suppose, as we may, that d, > 0, d, > 0. For the ¢ of condi-
tion (i}, choose #, such that i, +{ = n/+(mod2xn). Note that , will be odd.
Now let 6 = 25 (4", ¢ = &, (d,)*"™, where the real, positive values
of the radicals are taken. It is easily verified that & and @ are roofs of f
and g respectively. To prove that [ ~ g, it suffices to show that 0¢Q (g).

From (ii), we have that

(19) bg' = ar?

57!,}/25
where ¢ is an integer with 0 <{» < n, and 4 > 0. But also
bp' = L (d, di).

A comparison of this equation and (19) shows that £0%2 = ¢, from which
v = n/8 results. Thus, (19) becomes '

(20) | ot = dzy2.

Next, observe that £,V2eQ(i) since ¢, = (1+4)/V2. But also Q()
< Q(p), in view of ¢™* = d,7. We conclude from (20) that 8¢Q(yp), and
the sufficiency of (b) is established. o

We are left with the case when (ii) holds but not (i), and not both &
and & are negatives of squares, say b = —di. We will assume again
that f ~ ¢ and ghow thiz leads to a contradiction. a

Let 8, = —b. Thig fime, we take as aroot of ¢ the quantity ¢ = Cz.,,l/ by,
where the real, positive value of the radical is meant. By onr assumption,
there exists a root 6 of f for which @(6) = Q(g). For these values of ¢
and ¢, (ii} again yields a relation (19).

Write o = £2V2, and let dega = 1. Then, sirce V2@, ae@,. Also
from (19), «e@{p), and so {|n, and ¢ is of degree nfl over Q(a). If N, ()
denotes the norm with respect to Q(a), we have, for some integer vy,

: i i
that N,(@) = &% Vb, eQ(a). We conclude that Vb,eQ,,, and then, by

I . .

a familiar argument, that Q(V#,) is normal over Q. :
In view of both the irreducibility of 4™+ b; over § and the faet .that

b, = di, we infer from the criteria given in § 2, that also #f—b, is irre-

1
ducible over €, that is, Vb, is of degree I. But then by Lemma 3(a) we
must bhave I =2, sinee clearly I > 1. Thus « is quadratic over .
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We now apply Tremma 7 o o. Sinece ¢ = 2 here, we find that @ (a)

iz one of the fields Q(I/—2—), Q(}/jé), @(¢). Next, apply Lemma 7 to

B :'4"2’},1/5; which we know fo De in ¢{a) and whieh is of degree 2 over (),
sinee by # d;. Then, by examining ’ul.le V&bllleﬂ. (?f i W}'l](ﬂh‘lnﬂﬁf] aceut,
we see that b, = 242 i¢ the only possible condition which is compatible
with ﬁe(g(d). But then, exactly as in Theorem 4, we gel the contradiction

that also condition {i) can be shown to hold.

Exavrre. By means of Theorems 4 and 0, it is easy o constract
exarmples of polynomials f and ¢ for which the Kronecker conjocture is
false. These must necessarily be of degree not less than 8, bt thiv minimal
degree s easily attained. Consider the pair f = 2*—3-2%, ¢ = a'eu 37,
where hoth f and g are irreducible sinee neither o nor b is & squawe. If iy
" easily verified that eondition (i) holds with 7 = 1, hub that condition (i)
does not-hold for ¢ =3,5,7. Thus P(f) = Pg), but  and ¢ are not
squivalent by Theorem 4. Moreover, as Professor A. Schinzel has indieated
to me, the binomials f and g have the Gassmann property of factoring
in the same way modulo p for all but a finite number of primes.” Or,

' || 4_

equivalently, if K = @G(¥/3-2%) and L = @(¥37) are simple extension
fields determined by f and g respectively, then & and I are non-conjugate
and P, (KY =P (L) for every 4, where P {H) denoles the set of those
rational primes which decompoge into prime idealy in JT in & prescribed
way 4. Since K and L (and other fields like them of degree 8 determined
by using Theorems 4 and 5) thus furnish the simplest known examples
of fields having this property, it is of inferest to sketeh o proof.

We apply the following theoremn of Gassmann ([7], [9]) where it Is
understood that the ground field is.¢. : o ‘

If K and I are algebraic number fields then the following conditions
are sguivalent: : '

(8) P4 (K) =P, (L) f r overy A, |

(b) K and L determine the same novmal field N , and if &, Gy and @y
denote respectively the Galots growp of N and the subgrowps belonging
to I and L, then for every conjugacy eclass ¢ of ¢, G, N and G, N C
hawve the same number of elements.

In the present. case, the normal fields of X and I are the splitting
tields of fand ¢ respectively. Since Py (f) = Py{g), it follows from Lemmas 1

| —
and 2 that K and L have the same normal field, say N. As ¥ = §,(V3-2%,
and-ag it iz readily esfablished that f remains irreducible over @,, the
Galois group @ of N is of order 32, Then, using known results on the
groups of binomial equations, (ef. [16,1 v. 1, p. 180) it follows that & is
isomorphic o the group of linear substitutions ' = cit+ d modulo 8,
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where ¢ =1,3,5,7 and 4 =0,1,...,7. The subgroups G, and &,
belonging fo K and I respectively may be found in the usual way and
we get Gy = {z, 3z, bz, 70}, @ = {r,32}4, Be+4, Tar. It is now
a straightforward computation to determine the conjugacy classes
of & and to verify thaf, indeed, @, n ¢; and G, n €, for each i, have
the same mumber of elements.

We close this seetion with a result that follows from our Theorems 3—-5
and which we have not seen elsewhere.

THEOREM 6. For drreducible polynomials f and g, we have Fr~aif

and only if either (a) ab® = 4" or, if 8i#y (b) abl = 2" @" with g = —d,
b = —d,. Heret is an infeger with 0 <1< u, (t,n) = 1.
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