With (3.14) and (3.22) this yields the case \(D < 0 \) of our principal result.

Theorem. Let \(f(x, y) \) be a binary cubic form, irreducible over the integers. Then there exist constants \(C_1, C_2 \), depending on \(f \), such that, as \(Z \to \infty \),

\[
\Sigma_1 = \sum_{|t|, |s| \leq Z} d(|f(t, s)|) = C_1 Z^{23} \log Z + C_2 Z^{23} + O(Z^{23 - \varepsilon}),
\]

for any fixed \(\varepsilon > 0 \).

From (4.12) it appears that \(C_1 \) and \(C_2 \) are in fact given by

\[
C_1 = \frac{\sqrt{3}}{|D^{1/2} - I^{1/2}(1)|} c_4, \quad C_2 = \frac{\sqrt{3}}{|D^{1/2} - I^{1/2}(1)|} (2a_1 - c_4),
\]

where \(c_4 \) and \(c_{\delta} \) are as defined in (5.7), or as given by the alternative expressions (5.8). Since \(c_4 \neq 0 \), we have \(C_1 \neq 0 \), so the sum \(\Sigma_1 \) is in fact asymptotic to \(C_1 Z \log Z \).

The proof for the case \(D > 0 \) is similar in principle, the principal differences relating to the definition of the appropriate function \(m \). Furthermore the above expressions for \(C_1 \) and \(C_2 \) should be multiplied by a factor \(\sqrt{3} \), as should the expression for \(c_4 \) in (4.12). We suppress all other details.

References

Structure of maximal sum-free sets in \(C_p \)

by

H. P. Yap (Singapore)

1. Introduction and definitions. Let \(G \) be an additive group with non-empty subsets \(S \) and \(T \). Let \(S+T = \{ s+t : s \in S, t \in T \} \) respectively, \(\tilde{S} \) be the set complement of \(S \) in \(G \) and \(|S| \) be the cardinal of \(S \). We abbreviate \(\{ f \} \), where \(f \in G \), to \(f \). If \(S+T \) and \(S \) have no element in common, then we say that \(S \) is a sum-free set in \(G \) or that \(S \) is sum-free in \(G \). If \(S \) is a sum-free set in \(G \) and if for every sum-free set \(T \) \(G \), \(|S| \geq |T| \), then \(S \) is said to be a maximal sum-free set in \(G \). We denote by \(\lambda(S) \) the cardinal of a maximal sum-free set in \(G \). We say that \(S \) is in arithmetic progression with the difference \(d \) if \(S = \{ s, s + d, \ldots, s + nd \} \) for some \(s, d \in G \) and some integer \(n \geq 0 \).

Let \(C_p \) be the additive group of residues modulo the prime \(p \). In [5], we proved that \(\lambda(C_p) = k+1 \) if \(p = 3k+2 \) and \(\lambda(C_p) = k \) if \(p = 3k+1 \). (We note that most of the results in [3] were generalized and improved by Diamanda and Yap, see [1].) In [4], we proved that (i) if \(S \) is a maximal sum-free set in \(C_p \), \(p = 3k+2 \), then \(-S = \{ -s : s \in S \} = S \); (ii) there are altogether \((p-1)/2 \) distinct maximal sum-free sets \(S_j \), \(j = 1, 2, \ldots, (p-1)/2 \), in \(C_p \), given by

\[
S_j = \{ js : s \in S_0 \}, \quad j = 1, 2, \ldots, (p-1)/2,
\]

where \(S_0 = \{ 1 + 3i ; i = 0, 1, \ldots, k \} \); and (iii) any two maximal sum-free sets in \(C_p \) are isomorphic.

In this note, we shall study the structural properties of maximal sum-free sets in \(C_p \), \(p = 3k+1 \).

2. Main theorems. We shall make use of the following lemmas and theorems.

Lemma 1. Let \(A = \{a+id ; i = 0, 1, \ldots, r \} \) be a set of residues modulo \(m \) with \((d, m) = 1 \) and \(1 \leq r \leq m - 3 \). If \(A = \{ b+id ; i = 0, 1, \ldots, r \} \), then \(d' = \pm d \pmod{m} \) \((\{3\})\).

Lemma 2. Let \(A = \{a+id ; i = 0, 1, 2, \ldots, r \} \) be a set of residues modulo \(m \) with \((d, m) = 1 \) and \(3 \leq r \leq m + 1 \). Then \(A \) can be written in only
two ways in arithmetic progression form, namely, either

\[A = \{a + id; \ i = 1, 2, \ldots, r\} \]

or

\[A = \{(a+(r+1)d) + i(-d); \ i = 1, 2, \ldots, r\}. \]

Proof. By Lemma 1, if \(A = \{b + id; \ i = 1, 2, \ldots, r\} \), then \(d = \pm d \pmod{m} \).

Now, suppose \(A = \{b + id; \ i = 1, 2, \ldots, r\} \). If \(b \neq a \), let \(b + \bar{d} = a + jd \), \(1 < j < r \). Then

\[a + \bar{d} = b + jd \pmod{m}, \quad h \in \{2, 3, \ldots, r\} \]

from which it follows that

\[(h+j-2)d = 0 \pmod{m}, \quad 1 < h, j \leq r \]

which is impossible.

Similarly, from \(A = \{(a+(r+1)d) + i(-d); \ i = 1, 2, \ldots, r\} \), we can prove that if \(A = \{b + i(-d); \ i = 1, 2, \ldots, r\} \), then \(b = a + (r+1)d \).

The proof of Lemma 2 is complete.

Theorem 1 (Cauchy–Davenport). If \(A \) and \(B \) are non-empty subsets of a group \(G \) of prime order \(p \), then

\[A + B = G \quad \text{or} \quad |A + B| > |A| + |B| - 1. \]

Theorem 2 (Vosper). Let \(G \) be the additive group of residues modulo a prime \(p \). Let \(A, B \) be non-empty subsets of \(G \) and \(C = A + B \). Then either \(|C| \geq |A| + |B| \) or one of the following holds: (i) \(C = G \); (ii) \(|C| = p - 1 \) and \(C = j - A \), where \(j = C \); (iii) \(A \) and \(B \) are in arithmetic progression with the same difference; (iv) \(|A| = 1 \) or \(|B| = 1 \).

In this note, the following two theorems will be proved.

Theorem 3. Let \(p = 3k+1 \) be a prime and \(S \) be a maximal sum-free set in \(G = \mathbb{Z}_p \). If \(-S \neq S \), then

\[S = \{a + id; \ i = 1, 2, \ldots, k\} \]

where \((a, d) \) is a nonzero solution of

\[2a + (k-1)d = 0 \pmod{p}. \]

Conversely, if \((a, d) \) is a nonzero solution of (B), then \(S \), given by (A), is a maximal sum-free set in \(G \) such that \(-S \neq S \). The number of maximal sum-free sets \(S \) of \(G \) such that \(-S \neq S \) is \(p - 1 \).

Moreover, if \(S \), given by (A) is a maximal sum-free set in \(G \), then

\[S = \{-(a + kd), -(a+(k-1)d), a + d, \ldots, a + kd\} \]

is such that

\[S^* \cap (S - S) = \emptyset \quad \text{and} \quad S^* \cup (S - S) = G. \]

Theorem 4. Let \(p = 3k+1 \) be a prime and \(S \) be a maximal sum-free set in \(G = \mathbb{Z}_p \). If \(-S \neq S \), then either

\[S \cup (S + S) = G \]

or

\[S = \{a + id; \ i = 1, 2, \ldots, k\}, \]

where \((a, d) \) is a nonzero solution of

\[2a + (k+1)d = 0 \pmod{p}. \]

Conversely, if \((a, d) \) is a nonzero solution of (D), then \(S \), given by (C), is a maximal sum-free set in \(G \) and \(-S \neq S \). There are \((p-1)/2\) distinct maximal sum-free sets \(S \) in \(G \) such that (i) \(S \) is in arithmetic progression and (ii) \(-S = S \).

3. Proof of Theorem 3. If \(S \) is a maximal sum-free set in \(G \) such that \(-S \neq S \), let \(S^* = -S \cup S \). Then we have \((S^* + S) \cap S = \emptyset \) and thus by the Cauchy–Davenport theorem and the fact that \(|S| = k \), we have

\[2k + 1 = p - |S| \geq |S^* + S| \geq |S^*| + |S| - 1 = |S^*| + k - 1 \]

from which it follows that \(k < |S^*| \leq k + 2 \).

Since \(k \) is even, and \(|S^*| \) is always even, hence \(|S^*| = k + 2 \).

Now, from (1), we have \(|S^* + S| = |S^*| + |S| - 1 \) and thus by Vosper’s theorem, we know that \(S \) and \(S^* \) are in arithmetic progression with the same difference \(d \neq 0 \). Thus

\[S = \{a + id; \ i = 1, 2, \ldots, k\}. \]

Case 1. If \(-a + id \notin S\), then there exists \(j \in \{2, 3, \ldots, k\} \) such that

\[a + d + (a + jd) = 0 \pmod{p}, \]

and

\[2a + (1+j)d = 0 \pmod{p}. \]

If \(j \) is odd, then \(a + [(1+j)/2]d \in S \) and

\[2\{a + [(1+j)/2]d\} = 0 \pmod{p}, \]

which is impossible. Hence \(j \) is even.

Thus for each \(a + S' = \{a + d, a + 2d, \ldots, a + jd\} \), it is clear that \(-a + S' \neq S \). If \(j < k - 2 \), then there exists \(i \) such that \(1 \leq i < k - j \) for which

\[-a + (j - i)d \notin S \] and thus there exists \(r \) such that \(1 \leq r \leq k - j \) for which

\[a + (j - r)d + (a + (j + r)d) = 0 \pmod{p} \]
and from (2) it follows that \((j+i+r-1)d \equiv 0 \pmod{p}\) where \(j+i+r-1 \leq 2k-1\), which is impossible. Hence \(j = k-2\) and therefore

\[(3)\quad -(a+(k-1)d), -(a+kd) \in S.\]

From the above discussion, it follows that \((x, y) = (a, d)\) is a nonzero solution of

\[(B)\quad 2x+(k-1)y \equiv 0 \pmod{p}.\]

We now prove that the converse is also true.

Suppose \((a, d)\) is a nonzero solution of \((B)\), i.e.

\[(4)\quad 2a+(k-1)d \equiv 0 \pmod{p}.\]

We shall prove that \(S\), given by \((A)\), is a maximal sum-free set in \(G\). In fact, if \((S+S) \cap S \neq \emptyset\), then for some \(i \in I = \{1, 2, \ldots, k\}\), \(j \in J = \{2, 3, \ldots, 2k\}\),

\[(5)\quad a+id \equiv 2a+jd \pmod{p}.

From (4) and (5), we have

\[(6)\quad 2(j-i)-k+1 \equiv 0 \pmod{p}, \quad i \in I, j \in J.

Now,

\[
\begin{align*}
\max \{&\langle 2(j-i)-k+1; \ i \in I, j \in J\rangle \} = 3k-1 < p, \\
\min \{ &\langle 2(j-i)-k+1; \ i \in I, j \in J\rangle \} = -3k+5 > -p
\end{align*}
\]

and \(2(j-i)-k+1 \neq 0, \ i \in I, j \in J\) because \(k\) is even.

Hence (5) cannot be true. This shows that \(S\), given by \((A)\), is sum-free in \(G\) and thus is a maximal sum-free set in \(G\).

Case 2. If \(-(a+d) \notin S\), then \(-(a+2d) \notin S\). Otherwise if \(-\langle a+2d \rangle \in S\), then there exists \(j \in \{3, 4, \ldots, k\}\) such that \(\langle a+2d \rangle + \langle a+jd \rangle \equiv 0 \pmod{p}\), from which it follows, by arguments similar to the previous ones, that \(j = k-1\) and thus \(a+kd \equiv -(a+d) \in S\) which contradicts the hypothesis. In this case, by similar arguments, we can show that if

\[S = \{a+id; \ i = 1, 2, \ldots, k\}\]

is sum-free in \(G\) then \((x, y) = (a, d)\) is a nonzero solution of

\[(7)\quad 2x+(k+3) \equiv 0 \pmod{p}.

and conversely, if \((x, y) = (a, d)\) is a nonzero solution of \((7)\), then \(S\), given by \(S = \{a+id; \ i = 1, 2, \ldots, k\}\) is a maximal sum-free set in \(G\) such that \(-S \neq S\).

Let

\[
S_1 = \{S; \ S = \{a+id; \ i = 1, 2, \ldots, k\}\}
\]

where \((x, y) = (a, d)\) is a nonzero solution of \((B)\), and

\[
S_2 = \{S; \ S = \{a+id; \ i = 1, 2, \ldots, k\}\}
\]

where \((x, y) = (a, d)\) is a nonzero solution of \((7)\).

We now prove that \(S_2 = S_1\).

Suppose \(S_2 = \{a_1+id_1; \ i = 1, 2, \ldots, k\} \in S_1\), then

\[(8)\quad 2a_1+(k-1)d_1 \equiv 0 \pmod{p}.

Put

\[(9)\quad d_2 = -d_1, \quad a_2 = 2d_1-a_1.

Then

\[(10)\quad 2a_2+(k+3)d_2 = 2(2d_2-a_1)+(k+3)(-d_1) = -2a_1-(k-1)d_1 \equiv 0 \pmod{p}.

From (9), we have

\[(11)\quad d_2 = -d_2, \quad a_1 = -(a_2+2d_2).

Thus, for each \(0 \leq i \leq k-1\),

\[
a_1+(k-i)d_1 = -(a_2+2d_2)+(k-i)(-d_2) = a_2+(i+1)d_1 \pmod{p} \quad \text{(by (10))}
\]

and

\[
S_1 = \{a_1+(k-i)d_1; \ i = 0, 1, \ldots, k-1\} = \{a_2+(i+1)d_1; \ i = 0, 1, \ldots, k-1\} = \{a_2+id_2; \ i = 1, 2, \ldots, k\} \in S_2.
\]

Hence \(S_1 \subseteq S_2\).

Similarly, we can prove that \(S_2 \subseteq S_1\) and thus \(S_1 = S_2\).

Let

\[
S = \{a+id; \ i = 1, 2, \ldots, k\}, \quad S_0 = \{a_2+id_2; \ i = 1, 2, \ldots, k\} \in S_1.
\]

We shall now prove that if \((a_0, d_0) \neq (a, d)\), then \(S_0 \neq S\). If \(S_0 = S\), then by Lemma 1, \(d_0 = \pm d \pmod{p}\). If \(d_0 = -d\), then because both \((x, y) = (a_0, d_0)\) and \((x, y) = (a, d)\) are solutions of \(3\), \(a_0 = -a\). Thus by Lemma 2, \(-a = a_0 = a+(k+1)d\) from which it follows that \(2a+...
The structure of maximal sum-free sets S in C_p, $p = 3k+1$, such that (i) S is not in arithmetic progression and (ii) $S = S$ is still unknown to the author.

References

UNIVERSITY OF SINGAPORE
Singapore, 19

Received on 16.1.1969

4. Proof of Theorem 4. Let S be a maximal sum-free set in G. If $S = S$, then $|S| = 3$ is odd. Thus, from $2k+1 > |S| > 2k-1$, it follows that either $|S+S| = 2k+1$ and thus $S \cup (S+S) = G$ or $|S+S| = 2k+1 = 2|S|-1$ and thus by Vosper's theorem $(C) S = \{a+id : i = 1, 2, \ldots, k\}$.

In the latter case, we can prove that $(a, y) = (a, d)$ is a nonzero solution of

(D) $2a+(k+1)d = 0$ (mod p)

and conversely, if $(a, y) = (a, d)$ is a nonzero solution of (D), then S, given by (C), is a maximal sum-free set in G.

The proof that there are $(p-1)/2$ distinct maximal sum-free sets S in G such that (i) S is in arithmetic progression and (ii) $S = S$ is omitted.

The following example shows that the first case in Theorem 4 exists.

Example. $S = \{\pm 1, \pm 3, \pm 7\}$ is a maximal sum-free set in C_9, $S \cup (S+S) = C_9$.