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ACTA ARITHMETICA
XVI (1870)

On (j, e)~normality in the rational fractions
. by
B. G. SroxeEsM (New York, N. Y.)

1. Introduction. In 1964, we proved [6] that the distribution of
the digits in the recurring period of the reciprocal of an integral power
of an odd prime when represented in a seale g which i§ a primitive root

. modp® is (f,c)-normal in the sense of Besicoviteh ([6], p. 201). The

computer studies we have carried ount show that the (#, &)-normal phe-
nomenon i§ guite extensive in the rational fractions.

In this paper, we generalize the results in [6] in several directions
and show that broad classes of rational fractions Z/m <1 in lowess
terms, when represented in a base g such that 2 < g < ¢(m) and (g, m) = 1
where C(m) is a constant that depends on m, are (j, )-normal.

In a sequel to the present paper, we will give a fairly elementary
arithmetic construction of normal numbers which can he written in
closed arithmetie forms based on any given rational fraction Zilm < 1.
They are of such generality that we have been able to prove that they
are transcendentals of the non-Liouville type. These are, apparently,
the first known general class of norma) numbers whose irrational character
has been demonstrated.

We have found it convenient o extend the Besicoviteh definition ([e1,
Pp. 201) so as to apply to an infinite periodic representation of Zim ‘which
may or may not have a non-periodic part. Let N (B;, g) denote the number
of oecurrences of the block of j digits B; chosen from 0,1, ..., g—1 com-
mencing in any period of the reprezentation of Z/m in the scale g and
terminating in at most j—1 digits of the next period. Let & = .2, 2,...
he the representation of x in the seale g and let X, denote the block of
the first 1 digits in # where ¥ (B;, X;) denotes the umber of occurrences
of the block B; in X;.

For eonvenience in notation, let us define the base dependent number-
theoretic function w(m) = ord,,g which will denote the namber of digits
in one period of Z/m when represented in the scale g. Without much
difficulty, one can prove the following result. Unless otherwise indicated,
lower case lefters are positive integers.
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LEmma. Let Zlm < 1 in lowest ferms be represented in some scale g
such that 2 < g < m, then if the representation is periodic, we have

tim N (B;, X3)/4 = N (By, g)fw(m

Asp0

(1.0}

Hssentially, this lemma states that the limiting relative frequency
over the periodic infinite set is the same as the relative frequency over
one period. o

It g contains all the prime factors of m, then Z/m iy terminating,
in which case, we can define (j, e)-normality for the fimite set of digits
by ({61, p. 201). However, if g conbains some but not all prime factors
of m, then the expansion of Z/m in the seale g ig periodic and may or may
not have a periodic part. If this is so, we will uge the following defini-
tion. of (j, e}-normality.

DEFINITION. (j, &)-normal rational froctions. Let Z/m <1 in lowest
terms have & periodic representation that may or may not have a non-
periodie part in a scale g such that 2 <{ g < m. If for a given j and ¢ > 0,
every j digit sequence B; which occurs in the expansion is such that

(13) m N (B, X/A—-1/g| = |V (By, g)fw(m)~1jg'| < ¢
A—s00
then Z/m is (j, e)}-normal in the scale g. ‘

Let [w] denote the greatest integer not exceeding @ and {w}, the
fractional part. If (g, m) = 1, then Z/m has no non-periodiec part, in
which case, we have the periodic set of digits B given by
- b,‘_}_j 1 - b m) = E

(L2) Zjm = By, biby,; ..

where Bj = b; b1+1 .b1 +j-1 18 any block of j digits chogen from 0 1,
.y §—1 whose firgt digit commendces anywhere in # and may extend

a.t; most §j—1 digits into the next period. The digits b; are given by
by = [gryfm] and By = g,'j g rsjm] with the initial digit b; where the power
residues - are- generated by Zg' = rymodm for i = 0,1, w(m)—1,
- Bince there is a 1-1 eorrespondance for some bounded consecutive sequence
~of § values between every B; for a given j> 1 and the power residues
rijm = {Zg'/m} for i =0,1,2,..., w(m)— —1, the fundamental issve in
erder to pmve the {7, e)—normznhty of Zfm iz to ghow that the fractional
paxts {Zg'jm} are spproximately “uniformly” dlstrlbuted in some sense
on [0,1]
_ * We find most sppropriate for the description of this finite diserete
; app’mxima;tely uniform distribution the notion of what we shall eall
% “uniferm ’ e-distribution” which can be defined in texms of the dis-
L repaney ef the finite set {Zg /m} on [0 1] as- utlhzed by Weyl [7} and

others T
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On (7, e)-normality in the votional fractions 223

In 1965, LeVeque ([3], p. 23) obtained a precise upper bound on
the discrepancy D, ([3], p. 22) for finite sets in terms of the agsociated
exponential sums by means of the characteristic function technique of
probability theory

DermNITION. Uniform e- dzsmbumon A sequence of real numbers
O=wy<ay <...< @< By =1 has a uniform c-distribution on [0,1]
if for a given n suﬁlclently large there is an & > 0 depending on » and
& 6 such that max (2, —a;) <6<} for 4 =0,1,...,% such that

(1.3) D= swp N (Djn—(f—a)l <s

ota<
for all choices of B—a >4d on [0, 1] where N () denotes the number
of @ for k< n contained in [a, 8].

For the bound on 4, we have made the minimal requirement on the
distribution such that max(wy,—x) < 4 for ¢ =0,1,...,% on [0,1].
The need for this condition will appear near the end of Theorem 2.

As an example to illagtrate a uniform e-distribution, we may prove
the fellowing theorem based on the results in (6], p. 201).

THEOREM 1. The rationel fraction Z[p" << 1 in lowest terms for #>=1
has a wniform s-distribution of fractional paris {Zg'lp"} for i =0, 1,

s @(p"y—1 where p is an odd prime, g 45 @ primifive root moélj_c;2 such
thai 2< g <92, qv(a: @s the Huler g-function, & = 2/p(p"), 8 = 2/p" for
r>1; and ¢ = 2flp—1), 6 =1/p for r = 1.

Proof. Follomng the procedure in ([6], p. 203), we determine number
N(I) of residues r;/p" contained in an arbitrary interval {a, #]<[0, 1],
i.e. we have {Zg'p"} = rifp” with

(1.4)

where 0 o< f<1. Removing the numher of residues in (1.4) not
relatively prime to p, we have the number N (I} of {Zg'/p"}e[a, §]

(1.3) NIy = [p" 81—l — (" B1— [ al) .

a<rilp’ < B

similar to ([6], (3.12)). It ig clear that (1.5) implies the following for 5 = o(p’)

(1.6). IV (Dfe(p")—(B—a)l < 2/p(p")

where @(p") = (p—1)p"". Since we delete the residues not relatively
prime to p, then at most 2 adjacent residues in the complete et differ
by 2{p". Therefore, for any choice of [, fle[0,1], f—a > 8 = 2/p" will
ingure that [a, §1 contains at least one #/p”. For r =1, we find that
d =1/p and since

N(I) = [pfl—[pa] = iN( Hp—1}—(f—a)| < (L+f—a)/(p—1),
we have
' sup (l+ﬁ-a/(zﬂ —1) =& = 3/(p—1).

0o g
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We sec that the above £ and & satisfy the requirements for o uniform
e-distribution. Q.I.D.

In Theorem 1, note that the set of primitive roots is now confined
to 2< g < p'f2 whereas in ([6], p. 201), we have 2 < g < p". The reagon
for this change will be discussed after Theorem 3.

In 1949, D. D. Wall ([5], p. 110} proved that a number = is normal
to the base ¢ if and only if {wg} for ¢ = 0,1, 2, ... are uniformly distri-
buted on [0, 1]. There i3 a considerable literature to date which studies
the relations between irrationals, normal numbers, Diophantine approx-
imations, uniform distributions, ete. since the definitive paper of
H. Weyl [7] in 1916.

The results which we present here show that there exists analogous
properties between certain broad classes of rational fractions, (§, )-nor-
mality, and uniform e-distributions. The next theorem is analogous to
Wall's theorem in that it shows that the uniform e-distribution is a ne-
eesssai'y and sufficient condition for (j, s}-normality.

2. Uniform o-distributions and (7, e)-norinality.
TEEOREM 2. The rational fraction Z[/m <21 in lowest terms ds (j, o)-

“mormal in o Seale g such that (g, m) =1 and 2 < g < 1/6 for some & >0

and §=1,2,..,[logl[d] where 0<<d<1lg<1/2 if {Zg'!m} for
i=0,1,..., 0(m)—1 has a uniform e-distribution, and comversely, if
Zfm is (§, &)-normal, then there emists an e, such that {Zg'lm) has o uniform
£~distribution. : .

Proof. Consider (1.2) and the associated description below (1.2).
I the w(m) residues myfm = {Zg'ym} for i =0,1,..., w(m)—1 have
- & uniform e-distribution then according to the definition (1.8), for each
% = w(m), there is an ¢ and § < such that '

(2.0) D{o(m) = sup 1N (I)jo(m}—(f—a) <=
. _ bl -
for all f—a > é. Let us assume equal sub-intervals on [0,1] of width
1/¢ and choose f = (B;+1)jg, a = Byfg’ and f—a =15 for some j
value. Thus it follows from (2.0} that

(2.1) ¥ (By, 9o (m)—1/¢| < &

a;n(l.al} j such that 1/g’ > & for some j where N (I) = N (By, g), the number
of {Zg'fm} eontained in the sub-interval [B,/g’, (B;-+1)/¢'] for some choice
of j digits B; which is, therefore, the count N (By, g} of those B; whose
Initial digit &; is some digit in the Teeurring period. The block B, may
extend into -1 digits of the next period. Furthermore, (2.1) holds for
all 3> 1 such that j< [log,1/8] consequently, we require that 0 < &
<Ig<{ in the given uniform e-distribution so that (2.1) holds for, at
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least j = 1 for some given g > 2. Therefore, Z/m is (4, sj-normal aceording
to (1.1).

00nversely,_a.ssumga that [0, 1] has heen divided into g" equal sub-
intervals [0,1/¢'], [1/¢, 2/4'], ..., [1—1/¢, 1] for some choice of Z/m <1
in lowest terms which is (j, ¢)-normal for some given j and &> 0. Let
an arbitrary interval I = f-— o where 0 < a < § < 1 contain some integral
number ¢ of sub-intervals 1/¢ such that f—a >t/g”' or more precigely

(2.2) B-a = (t+6)/¢

where 0 < 8 < 2. Since N (B; ) §) denotfes the number of #fm = {Zgi/m}
contained in the interval [By/g, (B;+1)/¢’] of width 1/¢ for some subset
of ¢ values, and assuming j so that 1/g’ > max (r;/m—r/m) for adjacent

residues and N(By, g) >0, we have '

(2.3) IN (B g) < N(I) << (t4+2)N (B, g)

a8 bounds on the number of {Z5'/m} contained in the arbitrary sub-inferval
I = f—a Now (j, ¢)-normality implies bounds on N(B;, g) such that

(2.4) g < N(By, pllwim) < e+1]f

for some given J and & > 0. We write (2.3) as

(2.5) N (B g)[o(m) < N (1)/w(m) < (1-+2) N (B, g)]w(m)
and combining (2.4), (2.5) and (2.2), we obtain

(2.6) — 8fg’ — 6t < N (D)} (m) — (f— ) < (2— 0)/g' + e(t+2).

Since 6 is an absolute constant, and ¢ is fixed for some choice of [, 8]

- of appropriate width on [0, 1], we assume the (j, s)-normality so that

there exists an &, and a 4 for & sufficiently small and j sufficiently large
such that .
(2.7) Dlo(m)) = sup |N(I)ew(m)—(f—a) <&

O fggl .
for all choices of f—a > t/g’ > § with ¢ 1 for some fixed g and & < 1/g.
A suitable choice of e, >0 which can be arbitrarily small for a given
121, 0<K0<2, and g2 for appropriate j and & is
(2.8) & = (1-+2)e+ (24 6)/g
where — g, << ~fs— 0/¢ and &; > (14 2)e+ (2— 6)/¢ yields (2.7) from (2.6).
Therefore, with some ¢>> 1 fixed for a particular choice of f—a on [0,1]
not oo small, ie. max(rym—r;m)< <ty <f—a<], we have
satisfied the requirements for a uniform s-distribution on [¢, 1] by appro--
priate (j, e)-norrality. This completes the proof of Theorem 2.

Acta Arithmetica XVL3 : . 15
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Therefore; if we can establish the uniform e-distribution of the frac-
tional parts {Zg'm} for i =0,1,..., w{m)—L on [0,1}, Theorem 2
shows that Z/m < 1 in lowest terms is (j, e}-normal in the sense of defi-
nition (1.1). The & for the (j, ¢}-normality is the = of the nniform e-digtri-
Dution and the range of block sizes By (independent of the choice of digits
in the bloek) that will oecur in the periedic expansion of Zjm to some
base g will be those positive integral j values such that f—a = 1/f >
or §< [log,1/6] where 6 such that 0 < 6 < 1/g is the lower bound on
p— u for a given g ocenrring in the definition of the uniform e-distribution.
Based on Theorem 1, we have the following result.

THEOREM 3. The rational fraction Z[p™ < 1 in lowest terms for r = 1
is (j, 8)-normal in the scale g where g is a primitive root modp® such that

2L g< P2 for ol j<[log,p /2] with &= 2/p(®") for r>1, and all

j < Mlogyp] with s = (L+1g)i(p—1) for r = 1.

Proof. The preof follows directly from fhe uniform s-distribution
in Theorem 1 using the comments above Theorem 3. From the argument
below (1.6), we can use here &= (1+A—a)(p—1) = (1+1/g")/(p—1).

Various conseqnences of Theorem 3 where Z = 1 are discussed in ([6],
Pp. 205-207). Also in Theorems 1 and 3, we would like to fake this op-
portunity to make a slight correction on the upper bound for the j values
for all primitive roots as stated in ([6], p. 201). For > 1, the upper bound
[log,p"] stated in [67] is adequate for most primitive roots modp? such
that 2< g < g, ie. we can say [log,p"/2] = [log,»”]. However, there
can be some ¢ with p and r fixed such that [log,p"/2] < [log,p"]. An
easily derived criterion for this occurrence on the character of ¢ iy that
[log,p"j2] = [log,p’] if the fractional parts {log,p"t —{log,p"/2} = log,2
and [log,p’/2] < {log,p"] i {log,p"} —{log,p"/2} < log,2. -

As an illustration of this point, consider p == 17 and # = 3 for which
_ the complete set of primitive roots are g = 3, 5, 6, 7,10, 11, 12, 14, One
- finds that {log,17°/2] = [log,17°] for g = 3, 6,7, 10, 11, 12 but [logal’?a/ﬁ]
< [log,17°] for g = 5,14. Therefore, j < [loggp {27 is satisfactory for

all g such that 2 < g < p "/2. This conclugion has been entered. into Theo-
rems 1 and 3.

_ 3. Residue progressions, (j, ¢)-normality of Z/m. In Theorem 4, weo
prove a fundamental result which states that the complate set of peri-
odic power regidues r;/m = {Zg* /m} for i=0,1, ,w(m) —1 where

m =g H o7, p; are any odd primes, «;>1, and %> 0 can be parti-

: tloned ﬁrom their irregular or somewhat “random” distribution for con-
seeutive exponents in {Z¢" {m} into sets of residues which are in arithmetic

‘progression. The existence of these “residue progressions” as we shall
: ea]l them depends on the structire of the odd primes in m. The restric- .
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tions are related to the powers n, of the odd primes p;, 2 in p% (g% —1)

which denotes that p%|(g%—1) and p¥t ¢(¢®—1) with #>1 and
d; = ordy, g, as well as the maximum power s; of the p;-th odd prime

contained in any one of the set of least exponents d;,,, di s, ..., d, coITe-
sponding to the strictly increasing sequence of odd primes p, < 2, < ...
o< Pr< L < p, contained in m.

The regidue progressions are the bhasis of a summation technique
used to prove Theorem. 5, i.e. the uniform e-disfribution of the fractional
parts {Zg'jm} for © = 0,1, ..., w(m)~—1. Having established the uniform
e-distribution of the fractional parts {Zg*/m}, we obtain, at once, Theorem 6
from Theorem 2. Theorém 6 states that suitable Z/m are (4, g)-normal.

v .
THEOREM 4. Let Zjm = Z/2" [] pi* where n >0, v =1, each n; > 1
i=1

and the p; ave distinet odd pmmes (P1<Pa<...<p) Let d; = ordyyg
= w(p;) and suppose that p5|{g%—1), so that 2z = 1. Let pfi be the largest
power of p; dividing any one of &, die, ..., dp. Finally assuime
Wy =248 for at least one p;.

For each 4, put ¥ == min(n;, 2-+8) and write D = 2" Hp“ then

the complete set of w(m) power vesidues By = 2 g" mod m can ba pa?t'moned
into w (D) disjoint arithmetic progressions P, each conteining w(m)/w{D)
= /D ter m,s, the elements of such progressions P, being of the form v+ KD
where Z g° = r,modD, Z =2Z'mod D fm’ e=0,1,..., 0(D}—1 and

KF=0,1, .., co(m)/w(l))-»—l

Pr(mf. Oonsider the complete set of w(m) power residues
R; = Z¢modm for j =0,1,..., o(m)—1. For the composite modulns
m, we have '

(3.0)  w(m) = (o (2%, ..., o(p}), .0 = {0 (2™), ..., P} %d; oF dp

power residues if #; > 2; or n; < 2, respectively, according to ([4], p. 52,
»

- Theorems 4~6). Modulo D = 2" [] pl*, we have
i=1

: w(D) = {0 (2"), ..., o (pk)
which becormes
(3.1)  w(D) = (@@, ..., pi 5 or d) = (@), ..., &, ..

for ¢, >, or f; < 2, Tesp., since pi~%|pft for some iy, diy, ..., &y ac-
cording to the definitions of s; and #. Thus the number of residues
mod # which lie in these w(D) residue classes mod.D is

(3.2) | : meo(D)D = [ o=@, ..y &y >

i=1
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The proof will be complete if we show that

i @

- (33) []oE K@), o &y > = (0@, PP o d,
=1 .

when n; > 2 or ;< 2;, rewpectively. It suffices to congider the powers
of p; that divide each side of (3.3}, Tf ; < #;, then #; = n;. Hence p; appears
on each side only as pf dividing some d; 1, dia, ooy & T 2; < g < 2k 5y,
then pit~%|pfi which divides some iy, di.9,...,d, Where Pt =1,
Helice again p; divides both sides of (3.3) to the power pii. If n; > 2+ sy,
then p{*™ is the power of p; dividing the left side of (3.3) and on the
right side, we have pji %pji = pli~ 5 %+% — =% a3 required, Therctore,
gince £ ==m;. when #n;=1,2,..,&,%+1,...,5+s snd f =zts
when ;> #+8, Wwe obtain, succinctly stated; ¥ = min(ng, z;-+8;).
From (3.3), {3.2), and (3.0), it follows that we have the pogitive integer

(3.4) w{m)lo (D) = m/_D — H.p;f:w;—ﬂi.-

‘Since the number of residues in a given progression P, is w(m)/ew (D)
where we have-a total of w(D) residue progressions, we see that if n,
< 2i+8; for all ¢ in m, then ¥, = min (%, &+8;) = n; and w(m)/w (D) =1,
ie. we have no residue progressions in this case. However, if at least
one p; has a power n; such that n; > #--s;, then residue progressions
will exist since the number of ferms in each progression o(m)/w (D) > 1.

Therefore, the structure of the residue progressions P, correspond-
ing t0 arcomplete set of residues modm is as follows. Given any Z/m

= Zj2" ﬂlp:ﬁ such that n; > &+ s; for at least one p;, then the sequence
of power residues E; = r,4-KD for some fixed 7, with D = 2" [] p4 and

_ el
K =’0, 1, ..., w(m)w(D)~1 are such that Z¢' = R = (r,+K.D)modm
=Z¢° = r.modD where ¢ = jmodw (D), Z' = ZmodD and ¢ = 0,1, ...
ceey o(D)—1, ie. every R; for j=0,1,..., o(m)—1 iz contained in one
-and only one of the disjoint w (D) sets (residue progressions P,) corrvespond-
ng to some K =10,1,..., o(m)jw(D)—1 whose initial term is some r,.
The proof of Theorem 4 is now complete. (See regidue progression example
. &t end of paper.) : E s

Let us keep in mind that the exponents of the odd prixhes P in (3.4)

are such that n;—1t; = 0 for those p; such that n, < #+ 8;, and wy—1;

= f—{(%+ 8;} for those p; such that n; > z;+¢; which is ugually the cage.

But miore important for some results in a sequel to this paper, is
that. a8 the n; increase in a given Z/m for a fixed set of odd primes p, in
My e in Zyfm’, Zym®, ... the powers of the given set of primes

icm
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in m increase 80 that the number of residue progressions w (D) remaing -
the same (D does not change under these conditions), but the number of
r

residues o{m)fe(D) = npffi“‘i in each P, may increase indefinitely,
i=1 -

On the maximum power s; of the p,-th odd prime contained in the
least exponents d; ., diyq,..., d, of the strictly increasing sequence of
odd primes greater than p,, ecnsider some p; > p; in the sequence. (Nearly,
the least exponent ; < p,—1 and assuming that & = e;p%, we have
P; = 1+ a;pF as a crude estimate on p; whose least exponent contains p;.
For example, if at most d; = 2p;, then p; > 2p,-5-1. Data from a table
of least exponents to the base 10, illustrates this estimate. If p, = 11,
then p; = 23 = 2(11)+1 where ord, 10 = 2(11); if p; = 17, then »; =103
> 2{17)+41 where ord,; 310 = 2(17); and for p; = 37, p; = 149 > 2(37)+1
with ord;,,10 = 2°(37). In each case, we have given the prime p; greater

fhan p; (and clogest to p; in the strictly increasing sequence of primes)

that contains p; in the exponent d; to which 10 belongs modp;. Perhaps,
a more precise estimate could be found on the prime p; > »; that con-
tains p; in its least exponent.

In order to study the occurrence of the (j, s)-normal property in the
rational fractions, we find it convenient to separate fhe class of all ra-
tional fractions into elasses for which residue progressions may or may
not exist. In the definitions below, we assume Zjm < 1 is in lowest terms
and the previously stated definitions of 2;, d;, and s;. ”

DrpINITION. Type A. A rational fraction Zjm = Z[2" [ pi¢ is of
i=1
Type A if ny > 218 for at least one odd prime.
N

Type B. A rational fraction Z/m = Z/2" [[pit is of Type B if
n; < 2;--8; for all odd primes p,. =l

Type C. A rational fraction Z/m = Z/2" is of Type C when » = 1.

For Type A, we establigh in Theorem 6 of this paper the (j, ¢)-nor-
mality using Theorem 2, i.e. we prove in Theorem 5 the uniform e-distri-
bution of the fraectional parts {Zg'/m} on [0,1] for Type A.

In the case of Type B for which residue progressions do not exist,
numerical studies show that the (j , g)-normal phenomenon may ¢r may
not exist. The simplest case of this in the Type B fractionsis Z/p in Theorem
3 for r = 1. Since g is a primitive root modp?, we have for Theorem 4,
P 1), d=1p~1, 2=1, n =1, s = 0 =>Z/p is of . Type B, le.
% = g4 ¢ gince 1 = 1+ 0. Hence, there are no regidue progressions sinece
f =min(l,1-4+0} =1 =D = p, 80

o (m)]o(D) = m[D = pjp =1 = o(p)je(D) = F-1)jp—1) =1,

yet we have shown in [6] that Z/p i (f, e)-normal when represented in
a primitive root baze ([6], Cor. 1, p. 205). :
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Of course, the essential issue is the wmiform e-distribution of the
{ng,/m} on [0,1] and a more complex case for which numerical work
ghows that we have (j, e)-normality is, for example, a study of 1/59+4
+1/97-+1/109. Here 10 is a primitive root of each prime such that
w(59-97-109) = (58, 96, 108> = 25056; and computer data shows thatb
min ¥ (B, 10) = 2469 and max XN (B;, 10) = 2576 (note ths agreement
with the (j, #)-normal phenomenon, i.e, if g = 10, the counts of any of
the oingle digits B, ==0,1,...,9 are approximately 1/10 of the total
number of digits in one period 25056), where the whole data shows
(5, &)-normality for j< [log,y25056]1 = 4. A reagonable conjecture for f
is 7 < [log, o (P1Ps - -+ Pr]y but to date the resolution of the power residue
distribition for such & case appears diffieult without residue progressions.

We have some resulls on the case when g is not a primitive root, i.e.
consider Z/p, where p!l(g*—1) with d = {p—1)/» which leads to qnestions
concerning the approximately equal distribution of nth power residues
{i.e. the uniform e-digtribution). For example, when # = 2, we have
guadratic regidues and therefore, we can make uge of the Vinogradov
—~Pélya-Burgess inequalities ([2], pp. 182-204). The hest estimate to
date is that due to D. Burgess based on character sums {[27], p. 198).
We will present studies based on such estimates that leads to (j, £)-normal
theorems for such a case of Type B, ie. Z/p where g iy not a primilive
root in some future papers. The (7, &)-normality* for the type illustratod
in the example above which is a case of Type B where Z/m = Z/p,p, ... p,
appears quite difficult with cur present knowledge of their residue distri-
butions. The computer study indicates the above bound on j as a reaso-
nable conjecture for Z/69-97-109. One thing is clear, the (§, s)-normality
is related to the deeper questions concerning the associated resicdue distri-
butions on [0,1] of {Zg'/m} for § = 0,1, ..., w(m)—1.

An interesting case for Type B, shows that we may congtruct
rafional fractions of Type B which msy or may not he (4, s)-normal.
Lef g =10, and write
(3.5) Zim = Z[10*+Z[10” 4. Z/(10*—1)

where Z can be arbitrarily chogen, i.e. the sequence of } digits may ov
may not be (4§, &) -normal such that (Z, 10° —1). Since 10*—1 has = wnigoe

prime factorization H pit where only those P appear such that ® ()1 A

form; 2 1, 1t follows that Z’/(:LO1 —1}is a rational of Type B, i.e. n,; = 2;-+ 8;

for every p, contained in 10°—1 since the leagt ex;ponents are chwsors
of 1. For example,

o (107 —1) = (3% 112234093 877921649 513239)
'=<1,2-11,22,22,22 11, 11>
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and the maximum power of 11 contained in each d; is 1. In our notation,
wehave p, =3, 2, =2, 2, =2, 8, =00, =1L, ty =2, 2, = 1, 8 = 13
Py =23, Ny =1, 2g =1, 83 =0; p, = 4093, m; =1, 2, = 1, 8, = 0; ete,
In each case, we have n; = &-}+8. To summanze, we Inay state that
if Z/m is represented in a scale gy such that m =g *.—1, then Zjm < 1 in
lowest terms is a rational of Type B which may or may not be (j, &)-
normal depending on how the A digits are selected.

Finally, for Type C with n# subject to certain restrictions, residue
progressions exist and (4, s)-normality can be easily demonstrated. Due
to the need for brevity here, we defer this result to a later paper.

TaworREM 5. The rational fraction Zjm of Type A has a wuniform
a-distribution of fractional parts {Zg'[m} for ¢ = 0,1, ..., o(m)—1 for all
bases g such ﬁmt (g, m) =1 amd 2<g<1/8 where ¢ = 6 = w(D)/w(m)

— Djm =1/ H plih, D =2" []pz, and t; = min(ng, &+ 5:).

- Proof. As In the prook of Thecnem 1, we consider the power Tesi-
dues rifm = {Zg'jm} for i =0,1,..., o{m)—1 given by Zg* = r;modm
and determine for suitable e,hnices' of o and f where 0 a< <1, the
number N(I) of residues r;/m contained in o< rfm <8, ie.

(3.6) e << Ty << M.

Using Theorem 4, if we choose the v as least positive residues mod D,
then each residue progression P, is a strietly increasing sequence of least
positive residues modm in arithmetic progression whose terms differ

by D. We may, therefore, determine the number of residues r; contained
- in (3.6) for each P, and thus evaluate N (I).

Within a given residue progression P,, the Nth rvesidue is given by

+{(¥N—1)D where ¥ =1,2,..., o(m)jo(D) = m/D and therefore, if
we 1ep1‘me 7; by 7.+ {N —1)D and sum over each residue progression P,
we obtain the total number of 7; contained in (3.8). We find

(3.7) N{I) = 2 ([mB} D+ (D —7,)| D] —[ma/D--(D—r,)/ D]}
@ .
where } designates that we replace the #, by the sequence of o(D)
(e) ’
C= 02" [T pl) residues 7, that satisty Z'g° = r,mod D where Z = Z'mod D
=1
and then sum. We may write (3.7) as
(3.8) L N(@) = ) (m(g—a) D+ 0, 0))
' (e)

where 0< 6y, 0,<1 are the corresponding fractional parts assuming
that o and § take on continuous real values on [0, 1] such that 0 < «
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< < 1. Using (3.4) which states that m/D = w(m)fw (D} for rationals
of Type A, we have from (3.8} ‘

(3.9) N(I) = o(D){wm)(f—a)jo D)+ 0,— b)

where we have summed over the o (D) residues r,. Congidering the ranges
of the & and rearranging, we obtain

(3.10) ¥ (D)fo(m)—(f— )] < o(D)w(m) = -

where we have the equivalent forms for the bound & given by
¥
(8.11) g = o(D)w@m) = Djm = 1/H3p?i_%"
' : 1=l

In erder to insure that N (I) has & non-zero value, let us note {3.8)
and require that #— a be such that m(f— a)/D > 1. Therefore, for a con-
venient deseription of the umiform e-distribution of the fractional ‘parts
{Zg'{m} for rationals of Type A, we shall require that the least f—a on
[0, 1] be such that

(3.12) f—a > Djm
L
or 8 = ¢ == Djm = 1/ [] pi*~% as stated in the theorem. The restriction,
=1

in (3.12) may not be the most stringent to keep N (I) > 0 for all choices
of [a, §] taken anywhere in [0,1] but the condition does ingure that
each residue progression P, will contribute some #;/m in every sub-in-
terval [a, f1[0, 1] and consequently, in the count N(I) of the number
“of points rfm eontained in [a, 8. '

The condition {3.12) may also be argued independent of (3.8). Con-
sider the complete sets of reduced residmes r,mod D which initiate the
regidue progressions P, which will contain all »;modm ordered as arith-
metic progressions as described in Theorem 1. Rince the 7; = r,+KD
for K=0,1,...; o(m){o(D)-1, the maximum differences between
regidues #; will be the maximum difference between the residues r,. An
upper bound on the maximum difference of residues », is D, therefore,

' 1f. we require that f—a > D/m, the bound D/m will exceed any maximum
difference of residues r;/m on [0, 1]. This implies that any interval B—u
> Djm will surely contain' residue points rjm taken anywhere in
[0,1]. Also note that we have shown that max(rym—r/m) which is

" the maximum distance between adjacent residues out of the complete

N r .
8et 18 such that max (rifm—r/m) < 6§ = Dim < } gince Dim =1/ HP?H"
[AES)

for Type A is such that n; > 2+ s; for at least one odd prime, thus surely
8 = Djm < . We have satisfied the requirements for a uniform e-distri-
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bufion, hence Theorem 5 is complete. The (j, s)-normality for rational
fractions of Type A now follows at once using Theorems 2 and 5.

THEOREM 6. A rational fraction Zlm <1 in lowest terms of Type A

- 48 (4, e)-normal to all bases g such that

(g, m) =1 and 2<§’<me=“%}1‘—-‘;‘:1/8
. =1

for all § < [logym/D] where &= Djm = o(D)]o(m) =1]]] pli—h,
r i1
= min(m, 2+ 8.;), and D =2" ” pf.'i‘
=1

Proof. From Theorem 5, 6 = Djm, and we have according to
Theorem 2, (j, ¢)-normality for j = 1 such that f—a = 1/¢ > é = D/m.
Also 6 = £ which then implies the various equivalent forms

j < [log,m[D] = [log,1/8] = [log,1/c] = [loggn P::!i-—ii]_

In order to have (j, &)-normality for at least j = 1, we restrict the bases
to those g such that (g, m) =1 and 2 < g < m/D =1/ from the total
set of p(m)—1 integers g such that 2 < g <t m. The proof of Theorem 6
is now complete. '

One interesting consequence of Theorem 6 i that we may show that
the (j, s)-normality in Z/p” where p is an odd prime still exists for r suffi-

ciently large even though the base ¢ is no longer a primitive reoot in

contrast to the results in [67.

‘We have from Theorem 6 for m = p”

THEOREM 7. The rational fraction Z|p" << 1 in lowest terms for v > 2
>1 where p°||(g*—1) and 4 = ordyg s (j, £)-normal for all j such ithat
™% when represended in bases g such that (g, p) = 1
and 2 < g< p o

Proof. Since w(p”) = dp™* for r >2=1 ([4], p. 52, Theorems 4-6)

‘where p°l(¢°—1) with d = ord,g and D =p' =p® for t=min(r,2)

T2

if » >z (clearly, s = 0), We have, using Theorem 6, ¢ = Djm = 1/p
= o(D)/w(m) = a/dp"™* = 1[p"~" for j < [log,p" "] Q.E.D.

Furthermore, consider a crueial observation in relation to uniform
digtributions on [0, 1] and the behavior of the uniform e-distributions
ag defined for the fractional parts {Zg'/m} on [0, 1] for the rational frac-
tions Z/m which are (f, ¢}-normal. For example, consider the result in
Theorem 7 for {Z¢'/p"} with ¢ = 0,1, ..., o(p")—1 where w(p") = dp™",
7 > 22 1 for some fixed odd prime p and base g.

Olearly from the uniform e-distribution of parts for this case, the
diserepancy is such that D, < & = 1/p""" where n = (p") = dp"* with &
and z fixed for any suitable p and g. Therefore, for r sufficiently large,
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we can have lim D, = limD, =0, i.e. the discrepancy is zero which
=00 00

is a requirement for a uniform distribution ([3], p. 22). However, here
we do Dot have a uniform distribution in a striet sense, even though,
lim D, = 0. The reason is that for the wniform distribution, we require

- 00 . .
that lim ¥(I)n = I mniformly in » for any choice of =, no matter
N—ro0

how large. In the (j, s)-normal case for the rational fractions, we have
the » increasing; we might say, in discontinuous “jumps” for increasing
gince # = w(p”) for some consecutive inereasing sequence of posttive
integers r. Therefore, the fractional parts {Zg*[p'} foré = 0,1,..., @ (p"y—1
distribute themselves on [0, 17 for increasing r, in an increasingly mmi-
form way, lLe.
D= sup |[N(a, )o@} —I<e=1/p"" where n = o(p),
DLa< Al . ’

but do not satisfy all the requirements for a uniform distribution.

Also, consider another aspect of the (4, ¢)-mormal property in the
rational fractions with reference to block sizes j for somie bounded con-
secutive sequence of j values. .

For example, the condition j< [log,1/e] = [log, [] { pih] implies

=

~ that in the period & of Zfm and at most j—1 digits into the next period
. that all bloeks B; whose lengths are restricted to the hounded set of j
vales will certainly appear with frequency ratios that satisfy (3.10)
independent of the choice of digits they contain. However, blocks B;
may or may not appear in F terminating in at most j—1 places in the
next repetition of &, it j exceeds [log,1/e]. Therefore, it is convenient for
the (j, e})-normal characterization to wse the notion of “independent”
blocks B; a8 those whose lengths satisfy j < [log,1/el, ie. blocks con-
sisting of any combination of j digits that will appear with cerfainty
somewhere in ¥, and “dependent” blocks as thoge blocks whose length
exceed [log,1/e] (or some other preseribed bound!) and may or may not
depending on the choice of the j digits in B;, appear in B.

. Finally, by means of the results here on the (f, e}-normality of Type
A, we can give an answer to what we might call & “Brouwer? type question.
In 1925 and in his later lectures, L.E.J. Brouwer ([1], p. 3) and othevs
in $he infuitionist school of mathematical logic often stated the following
at o possible “undecidable” proposition. Can we prove that the preseribed
block 0123456789 appears in, say, the infinite sequence of digits of =/d
when represented in the base 1074

Let us paxaphrase and ask for a proof of the questlon for a given
rational fraction: Does the block 0123456789 appear, for example,
somewhere in the decimal expansion of the rational fraction 1/17H0
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expanded in the bage 10% Slnce 1/171% ig (4, e)-normal by Theorem 3
with a period length of w(17'") = 16-17°°° (10 is a primitive root of
17) where j<[log,17"%/2] = [100010g1017——10g102]=1230, we can
say that somewhere in the approximately 2.652 x10%* digits of the
period of 1/17"° that the independent block 0123456789 will appear
(with certainty!) with relative frequency of about 1/10%, ie.

|V (1)/16-17°% —1/10] < 2/16-17™",

An important point here ig that we cannot say exactly where the
block 0123456789 will first make its appearance but we do know that
it will with the above frequency. This says that now such questions are
decidable for given particular rational fractions in the real numbers
when their (f, e)-normality has been demonstrated.

Of course, the Brouwer guestion is answered in the affirmative if
we could prove that =/4 is a normal number. But, this nnresolved question
appears quite resistant to solution by our contemporary mathematics.

We can, however, make 2 slight advance cn the Brouwwer question
itgelf with the (j, s)-normal properties of the rational fractions of Type A.
Consider the ath partial produet

n
P, (nf4) =] [ —1/(2i-+1)Y) = paft
te=1 .
based on the Wallis infinite product for =/4. In a fubure paper, we will
show that p,/g, is a rational of Type A for n sufficiently large. In which
cage, the (j, e)-normality shows that the block 0123456789 will appear
somewhere in the arbitrarily long set of digits of one period of p,/g, and,
in which, only a comparatively small portion of the long period repre-
sents w/4 exactly. We would have an answer to the Brouwer question
from another point of view, if we could show in whieh porfion the
block 0123486780 oceurs; the exact portion or the set of digits which
will change as we consider larger values of » in

lim 1--1/(20+1)2) = nf4.

Lo ﬂ( J@i+1)Y = xf

However, we cannot amswer this question yet for (j, e)-normal rational
fractions, i.e. we cannot predict the location of a preseribed block or
where this block will make its first appearance within the period.

On the other hand, we can now study the (j, e}-normal properties
of particular sequences of rational fractions which approximate » given
irrational like =, ¢ 1/2-, ete.

The author would like to express his gratitude for a valuable cox-

- respondance with D. A. Burgess.
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An esample of residue progressions

Let m=53‘112’ Z:l; PI= 5, 21=1’ 31:1, dlﬂlj_—’ ﬂz=3;
Pr=11,8 =28 =0, =70 t=2 gince 11%||(3°—1) and B3[/(3*—1),

we have for m =0, D =2"[[pk -where & = min(n;,#;--s;) implies
Teal

4 = min(3,2) = 2, & = min (2, 2) = 2, hence D = 2°-5"-11* = 3025. Thus
for the B;, we have 3’ = E;mod 5°:11" and the 7, in By = .-~ KD are
given by 3° = r, mod 5°-11° where w(m) = (3% 11 = 451 5117
=100 with X =90, 1,..., o(m)jw(D)—1 =100/20—-1 = 4 given that
w(D) = &-5, 117 = 20.

The residues in sequence

el r |i| & || & |i B |i|l B |i]| %
0 |1 0 1 21 | 9078 42 | 9084 63 | 3052 84 12181
13 1 3 29 | 12109 | 43 | 12127 | 64 | 9156 85 6203
2 |9 2 9 23 | 8077 44 | 6131 65 | 123483 | 86 3754
3. 27 3 27 24 | 3106 45 | 3268 66 | 6779 87 11262
4 |81 4 81 25 | 9318 46 | 9804 671 5212 88 3636
5 | 243 | 5. | 243 26 | 12820 | 47 | 14287 | 68 | 511 89 10608
6 | 729 {6 279 | 27 | 8237 48 | 12611 | 69 | 1533 90 1574:
7 {2187} 1 2187 28 | 8586 49 i 7583 70 | 4599 91 4722
8 |BLl | 8 6561 29 | 13633 | 50 | 7624 71 - 13797 | 92 14166
g 11533 @ 4558 30, 10649 | 51 | TT4T7 72 | 11141 | 93 12248
10 11574 10 { 13674 | 31 | 1697 52 | 8116 73 | 3173 94 6404
11 16971 11 §: 10772 | 32 | 5001 53 | 9223 T4 | 9519 | 95 9357
12 [ 206610 121 2066 | 33 | 148 B4 | 12644 | 75| 13432 | 926 13071
13 | 148 || 13 | 6198 34 | - 444 55 | 7382 76| 10046 | 97 | 8043
14 | 444 || 14| 3469 35 | 1332 b6 | 6021 771 15013 | 98 11764
15 | 13323 15 | 10407 | 36 | 3006 57 | 5938 78 | 14789 | 99 5042
16| 971 | 16 | 971 37 1 11988 | 58 | 2689 79 | 14117 | 100 1
17 | 2018 17 | 2813 38 | 5714 59 | 8087 80 | 12101
18 | 2680 13 | 87392 39 ; 2017 60 | 90i8 81 ¢ 6053
19 120171 19 : 11092 § 40 | 6051 61 | 12103 | 82 3034
2001 20 | 3026 41 | 3028 627 6089 83 | 9102

D = 3025 - Residnes arranged in their residue progressions P,
1 3 | @ 27 81 243 729 2187 | 511 1538
3026 3028 3034 3052 3106 3268 3754 5212 | 3536 | 4658
6051 8053 6059 8077 6131 | 6293 6779 . | 8237 | 6563 7583
9076 " | 9078 9084. 9102 | 9156 0318 9804 11262 | 9586 10608
12101 | 12103 | 121007 12127 12181 | 12343 | 12826 | 14287 | 12611 | 13833
1574 16897 | 2066 148 444 1332 071 2018 | 2689 2017
4599 4722 4001 3173 3469 4357 3996 5038 | 8714 | 5042
7624 | T74T | 8116 | 6198 | 6494 | 7382 | 7021 | 8963 | 8739 | 5087
10649 1 10772 1 11141 | 9223 | 9519 10407 | 10046 | 11988 | 11784 | 11092
13674 | 13797 | 14166 { 12248 | 12544 | 13432 | 13071 | 15013 | 14789 | 14117

11

[2]
(3]
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A general arithmetic construction of transcendental
non-Liouville normal numbers from rational fractions

by
R. G. SronmEaM (New York, N.Y.)

1. Introduction. In this paper, we-derive = general arithmetic con-
struction of an extensive class of transcendental non-Liouville normal
numbers baged on any given rational fraction Z/m < 1 in lowest ferms.
The eonstruction is founded on the results in [14] wherein we proved
that certain broad classes of rational fractions are (f, &)-normal.

In {147, (1.1), we extended the original definition of (§, ¢)-normality
due to Besicoviteh ([157], p. 201) so as to apply to appropriate rational
fractions Z/m < 1 in lowest terms. Essentially, we showed that the defi-
nitien of (j, s)-normality which Besicoviteh defined for finite sets of
digits could be applied to the infinite periodic sequences which represent
certain. broad eclasses of ratiomal fractions. Therefore, we can congider
whether some given rational fraetion Zjm when represented in appro-

.priate bases ¢ is (J, s)-normal or mot in this sense.

Consider the real number z = .2;®,... represented in the seale g
and let N (B;, X;) denote the number of oceurrences of the block B;-
congisting of any combination of j digits chosen from 0,1,...,4—1
in the first A digits @@, ... ¢; of #. We have the following definition ([7],
p. 98, 104) equivalent to that given by Borel in 1908. Unless otherwise
indicated, lower case letters will represent positive integers.

" DEFINITION. Normal number. The number @ iz normal in the
geale ¢ it ’

(1.0) lim ¥ (B;, Xa)j = 1y’

for all j ==1,2,3, ' .

If @ is any real number, @ is said to be normal to the bage g if {»}
{x} = @— [»] is normal to the base g where {&} is the fractional part
of z and [#]is the greatest integer not exceeding ». Furthermore, if some
is to satisfy (1.0), i.e. be a normal number, then it is, necessarily, an
irrational. ' :



